
Proceedings of Machine Learning Research vol 288:1–21, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Learning Minimal Neural Specifications

Chuqin Geng CHUQIN.GENG@MAIL.MCGILL.CA
McGill University

Zhaoyue Wang ZHAOYUE.WANG@MAIL.MCGILL.CA
McGill University

Haolin Ye HAOLIN.YE@MAIL.MCGILL.CA
McGill University

Xujie Si SIX@CS.TORONTO.EDU

University of Toronto

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Formal verification is only as good as the specification of a system, which is also true for neural net-
work verification. Existing specifications follow the paradigm of data as specification, where the
local neighborhood around a reference data point is considered correct or robust. While these spec-
ifications provide a fair testbed for assessing model robustness, they are too restrictive for verifying
any unseen test data points — a challenging task with significant real-world implications. Recent
work shows great promise through a new paradigm, neural representation as specification, which
uses neural activation patterns (NAPs) for this purpose. However, it computes the most refined
NAPs, which include many redundant neurons. In this paper, we study the following problem:
Given a neural network, find a minimal (general) NAP specification that is sufficient for formal
verification of its robustness properties. Finding the minimal NAP specification not only expands
verifiable bounds but also provides insights into which set of neurons contributes to the model’s
robustness. To address this problem, we propose three approaches: conservative, statistical, and
optimistic. Each of these methods offers distinct strengths and trade-offs in terms of minimality
and computational speed, making them suitable for scenarios with different priorities. Notably, the
optimistic approach can probe potential causal links between neurons and the robustness of large
vision neural networks without relying on verification tools — a task existing methods struggle to
scale. Our experiments show that minimal NAP specifications use far fewer neurons than those
from previous work while expanding verifiable boundaries by several orders of magnitude.
Keywords: Specifications, formal verification, and neural network robustness.

1. Introduction

The rise of deep learning in decision-critical applications has elevated safety concerns regarding AI
systems, particularly their vulnerability to adversarial attacks [17, 10]. Therefore, the verification
of AI systems has become increasingly important and attracted much attention from the research
community [32]. The field of neural network verification largely follows the paradigm of soft-
ware verification – using formal methods to verify desirable properties of systems through rigorous
mathematical specifications and proofs [42]. A notable trend in existing works [23, 24, 19, 21, 39]
focuses on scaling verification to larger and more complex neural networks. While scalability is un-
deniably important and requires the collective effort of the research community, this paper explores
an orthogonal angle that has been largely overlooked: defining meaningful specifications.

© 2025 C. Geng, Z. Wang, H. Ye & X. Si.

GENG WANG YE SI

To illustrate, nearly all existing works follow a ”data as specification” paradigm, where the
specification is defined by the consistency of local neighborhoods—often L8 balls—around refer-
ence data points. While local neighborhood specification provides a fair and effective testbed for
evaluating neural network robustness, it primarily covers a tiny convex region of input data that
can mathematically be described by adding noise to the reference point, as illustrated by the red
bounding box in Figure 1(a). This small region is constrained by it’s adversarial examples. It is too
restrictive to adequately address a broader, unseen test set, which are real data sampled from the
underlying distribution.

(a) The NAP specifications cover larger and
more flexible regions than the local neigh-
borhoods specifications.

(b) A coarser (more general) NAP specification
extends much larger verifiable boundaries,
from 21.37% to 54.43% of the total area.

Figure 1: Verifiable regions of the WL class in ACAS Xu [22] for a head-on encounter with aprev “

COC, τ “ 0s. Red boxes represent local neighborhood specifications around reference
points, while green hatched areas indicate NAP specifications in the WL region.

Ideally, the specification should produce a verifiable region that includes all data points from
the same class, where the data points may be distributed in a non-linear and non-convex manner
within the input space. For instance, consider the safety-critical Airborne Collision Avoidance
System for Unmanned Aircraft (ACAS Xu), the neural network processes an input representing
the state of the aircraft and outputs one of five advisories: Clear of Conflict (COC), Weak Left
(WL), Strong Left (SL), Weak Right (WR), or Strong Right (SR). As shown in the gray irregular-
shaped region in Figure 1, which represents the WL class, this complexity highlights the need
for flexible and robust specifications capable of accurately capturing such intricate distributions.
Unlike local neighborhood specifications, manually defining such a specification is impractical.
This poses a tricky chicken-egg problem: machine learning is necessary because it’s challenging
to formally write down a precise definition (aka specification); but to be able to verify machine
learning models, a formal specification would be needed. We argue that, in order to tackle this
challenge, a separate learning algorithm for specifications is necessary. In this view, the “data as
specification” paradigm is a simple but extremely overfitted algorithm for specification learning,
which simply picks a small neighborhood of a reference data point in the input space. To this
end, Geng et al. [16] proposes using a new and more promising paradigm - ”neural representation
as specification”, which learns a specification in the representation space of the trained machine
learning model in the form of neural activation patterns (NAPs). NAPs are value abstractions of
hidden neurons which have been shown useful for understanding the inference of a model [18].

2

LEARNING MINIMAL NEURAL SPECIFICATIONS

Most importantly, a well-trained neural network would exhibit similar activation patterns for input
data from the same class, regardless of their actual distance in the input space [5, 36, 16]. This
key observation suggests that if we learn a NAP—a common activation pattern shared by a certain
class of data—it can serve as a candidate specification for verifying data from that class. Once the
NAP specification is verified, any data exhibiting this NAP pattern can be provably classified within
the corresponding class. Geometrically, NAPs offer greater flexibility than L8 ball specifications,
enabling coverage of larger and more irregular regions, as shown by the learnt NAP in Figure 1(a).

However, the current approach to computing NAPs relies on a simple statistical method that as-
sumes every neuron contributes to certifying robustness. As a result, the computed NAPs are often
overly refined. This is a restrictive assumption, as many studies [15, 28, 26, 41] suggest that a signif-
icant portion of neurons may be redundant. In the spirit of Occam’s Razor, we aim to systematically
remove (coarsen) these neurons while preserving robustness. This leads to the key question: given
a neural network, how can we identify a minimal NAP (i.e., the coarsest abstraction) sufficient for
verification? This problem is important because: i) Minimal NAP specifications can cover much
larger input regions than refined ones, improving generalization to unseen data. For example, as
shown in Figure 1(b), coarsening just a few neurons results in a NAP that verifies much broader in-
put regions than those refined ones in Figure 1(a); ii) Learning minimal NAP specifications reveals
which neurons contribute to the robust predictions of models, shedding light on neural networks’
internal behavior and ultimately helping uncover their black-box nature.

To tackle this, we propose three approaches—conservative, statistical, and optimistic—each
balancing efficiency and performance differently. The first two methods iteratively improve the
solution through interaction with verification tools in either deterministic or statistical manners,
whereas the optimistic method estimates minimal NAPs using adversarial examples. We show
that the optimistic approach can estimate essential neurons - the building blocks of minimal NAP
specifications without invoking verification tools. This allows us to explore potential causal links
between neurons and the robustness of large neural networks, such as VGG-19 [34] — a task at
which existing methods struggle to scale. Our contributions can be summarized as follows:

• We introduce the problem of learning minimal NAP specifications, emphasizing its impor-
tance in neural network verification. We present three approaches, each offering distinct
trade-offs between efficiency and performance.

• Our experiments show that minimal NAP specifications use far fewer neurons than those from
previous work while expanding verifiable boundaries by several orders of magnitude.

• We estimate essential neurons in the large vision network VGG-19. Using a modified Grad-
CAM map, we show that these essential neurons contribute to visual interpretability, provid-
ing strong evidence that they may also explain the model’s robustness.

2. Background and Problem Formulation

2.1. NAP Specifications for Robustness Verification

Definition 1 (Neural Activation Pattern (NAP)) Given a neural network N and an abstraction
function A : N Ñ S mapping neurons to an abstraction space S, a Neural Activation Pattern
(NAP) P is a tuple representing the abstracted activation states of all neurons in N . Formally,

P “ xApNiq | Ni P Ny,

3

GENG WANG YE SI

where ApNiq (or Pi) is the abstracted state of neuron Ni. Equivalently, P “ ApNq.

In this work, we focus on feed-forward neural networks with ReLU activations. Using a binary
abstraction :A for ReLU neurons, we define two states: 0 :“ 0 (deactivation) and 1 :“ p0,8q (acti-
vation). The binary activation pattern of N triggered by an input x is denoted :AxpNq. Additionally,
0 and 1 can be abstracted into a unary state ˚ “ r0,8q, yielding S :“ t0,1, ˚u. The power set of
NAPs in N , denoted P , forms a partially ordered set.

Definition 2 (Partially ordered NAP) For any given two NAPs P, P 1 P P , we say P 1 subsumes P
if, for each neuron, its state in P is an abstraction of that in P 1. Formally, this can be defined as:

P 1 ď P ðñ P 1
i ĺ Pi @Ni P N

Moreover, two NAPs P, P 1 are equivalent if P ď P 1 and P 1 ď P .

For example, consider the NAP family of a simple neural network with 4 neurons, we have:
x˚, ˚, ˚, ˚y ď x1,0, ˚, ˚y ď x1,0,1, ˚y. Similar to local neighbor specifications, a NAP P can
specify a region in the input space X , denoted as RP . RP is the set of inputs whose binary acti-
vation pattern subsumes P . Formally, we have RP “ tx | :AxpNq ď P , x P Xu. A coarser NAP
will specify larger regions than those that subsume it. Clearly, the most abstracted NAP, such as
x˚, ˚, ˚, ˚y, will cover the entire input space. Recall that robustness verification involves proving
that no adversarial examples exist in the specification. Geng et al. [16] argues that to qualify as
NAP specifications, the following property must be satisfied:

Property 1 (NAP Robustness Property) For any x located in the region specified by a NAP P , x
must be predicted as the certain class c P C by the neural network N . Formally, we have:

@x P RP @k P C s.t. k ‰ c FN
c pxq ´ FN

k pxq ą 0

where FN p¨q denotes the output logit of N . P is also denoted as P c to represent class c.

2.2. Problem Formulation

Let pPc,ďq be a partially ordered set corresponding to a family of class NAPs regarding some class
c P C. For simplicity, we omit the superscript c when the context is clear. We assume access to
a verification tool, V : P Ñ t0, 1u, which maps a class NAP P to a binary set. Here, VpP q “ 1
denotes a successful verification of the underlying robustness query, while 0 indicates the presence
of an adversarial example. From an alternative perspective, VpP q “ 1 also signifies that P is a NAP
specification, i.e., it satisfies NAP robustness properties; whereas VpP q “ 0 implies the opposite.

It is not hard to see that V is monotone with respect to the NAP family pP,ďq. Given P 1 ď P
and VpP 1q “ 1, it follows that VpP q “ 1. However, given P 1 ď P and VpP q “ 1, we cannot
determine VpP 1q. In other words, refining a NAP (by increasing the number of neurons abstracted
to 0 or 1) can only enhance the likelihood of successful verification of the robustness query.

Definition 3 (The minimal NAP specification problem) Given a family of NAPs P and a verifi-
cation tool V , the minimal NAP specification problem is to find a NAP P such that:

@P 1 ď P, P 1 ‰ P ùñ VpP 1q “ 0

That is, when P is minimal, any NAP P 1 that is strictly coarser than P will result in VpP 1q “ 0.
The size of P , denoted by |P | or s, represents the number of neurons abstracted to 0 or 1.

4

LEARNING MINIMAL NEURAL SPECIFICATIONS

It is important to note that “minimal“ refers to the level of abstraction, not the size of the NAP.
Since pPc,ďq is a partially ordered set, multiple minimal NAP specifications may exist, rather than
a single global minimum. In such cases, selecting any one of the minimal NAPs is sufficient.

3. Learning Minimal Neural Specifications

3.1. Conservative Bottom Up Approach

We introduce COARSEN, a simple method that begins with the most refined NAP and progressively
coarsens it to derive minimal NAP specifications. The most refined NAP, denoted as rP , is computed
based on the activation values of training data using a statistical approach [16]. For further details,
we refer interested readers to the original paper.

The COARSEN approach starts by verifying if the most refined NAP rP successfully passes
verification. For each neuron, we attempt to coarsen it, i.e., change state from 0 or 1 to ˚. If the
resulting NAP no longer verifies the query, we revert it to its previous refined state; otherwise, we
retain the coarsened NAP. The procedure may require up to |N | calls to V in the worst case, as
shown in Theorem 4. More details on the proof and algorithm are provided in Appendix A.

Theorem 4 The algorithm COARSEN returns a minimal NAP specification with Op|N |q calls to V .

Even the most refined NAPs may fail to verify the robustness query, leaving no minimal NAP
specification. Given the high cost of verification, we aim to efficiently find a minimal NAP specifi-
cation while minimizing the number of calls to V .

3.2. Statistical Coarsen Approach

The COARSEN algorithm initiates with the most refined NAP and progressively coarsens each neu-
ron until verification fails. Enhancing the algorithm’s performance is possible by coarsening multi-
ple neurons during each iteration. However, a fundamental question emerges: How do we determine
which set of neurons to coarsen in each round?

We present STOCHCOARSEN to answer this question. In this approach, we assume that each
neuron is independent of the others and select neurons to coarsen statistically. Specifically, in each
iteration, we randomly coarsen a subset of refined neurons in the current NAP simultaneously to see
if the new NAP can pass verification. We repeat this process until the NAP size reaches s.

It’s important to note that the stochastic manner of this algorithm faces the challenge of sample
efficiency. For instance, if a minimal NAP specification P of size s is identified after one iteration,
the probability of selecting the exact s essential neurons in P is θs. Consequently, if we set θ as a
constant, the expected number of samples required to find the NAP becomes p1θ q

s.
STOCHCOARSEN allows us to narrow down the estimated solution by an expected factor of θ

once a valid NAP is learned. Thus, the expected number of samples and iterations are inversely
related, with their product equating to the total calls to V . By setting θ “ e´ 1

s , we can achieve
polynomial expected samples in s while minimizing the total number of calls to V , as proven in
Theorem 5. The proof and algorithm are detailed in Appendix B.

Theorem 5 With probability θ=e´ 1
s , STOCHCOARSEN learns a minimal NAP specification with

Opslog|N |q calls to V .

5

GENG WANG YE SI

Algorithm 1: OPTADVPRUNE

Input: Neural network N , input dataset X
Output: Collection of essential neurons
Function OptAdvPrune(N , X)

EssentÐH; P Ð rP
for xj P X do

x1
j Ð Adversarial Attackpxjq

for Ni P N do
if Pi P t0,1u and :Ax1

j
pNiq ‘ Pi then

EssentÐ EssentY tNiu /* Add essential neurons for x1
j */

end
end
return Essent

3.3. Optimistic Approach

While COARSEN and STOCHCOARSEN guarantee minimal NAP specifications, their practicality is
hindered by numerous costly verification calls, making them unsuitable for time-sensitive or large-
scale applications. To address this, we propose an optimistic approach that efficiently estimates
NAP specifications without verification calls and provides a reliable upper bound on minimal NAP
size. Central to this approach is identifying essential neurons.

Definition 6 (Essential neuron) A neuron n P N is considered essential if it cannot be coarsened
to ˚ in any minimal NAP specification. We denote the set of all essential neurons as E, defined by:

E “ tNi | Pi P t0,1u, P is minimalu

Note that E is the union of the set of essential neurons from all minimal NAP specifications. It
follows that |E| ě s, where s denotes the size of the largest minimal NAP specification.

(a) N4 is essential. (b) N4, N2 are essen-
tial.

(c) N4 is essential. (d) N2 is essentibal.

Figure 2: Geometric interpretation of NAPs on essential neurons.

We introduce OPTADVPRUNE to identify essential neurons. Intuitively, it attempts to show
a neuron is essential by actively falsifying NAP candidates with adversarial examples. When an
adversarial example x is found, it implies that any NAP subsumed by the activation pattern of x
fails verification. For instance, suppose an adversarial example x is found for a simple one-layer
four-neuron neural network and its activation pattern is x1,0,1,0y. We can infer that NAPs like

6

LEARNING MINIMAL NEURAL SPECIFICATIONS

x1,0,1, ˚y, x1,0, ˚, ˚y, x1, ˚, ˚,0y, and x1,0, ˚,0y fail the verification. The fourth neuron N4 is
essential because coarsening it would expand P to x1,0, ˚, ˚y, including the adversarial example x
and causing verification to fail, as shown in Figure 2(a).

Now, consider a more general case. Suppose the NAP specification P is x1,1, ˚,1y, i.e.,
Vpx1,1, ˚,1yq “ 1. We know Vpx1,0, ˚,0yq “ 0 by the adversarial example x. If we coarsen
the second and fourth neurons, N2 and N4, the specification will expand to x1, ˚, ˚, ˚y, which will
cover the x1,0, ˚,0y, thus failing the verification. In this case, N2 and N4 could both be essential
neurons or either one of them is essential, as illustrated in Figures 2(b), 2(c), 2(d). So, we simply
let tN2, N4u be the upper bound of essential neurons (learned from x). Formally, given a NAP P ,
we say a neuron Ni is in the upper bound of essential neurons E if satisfies the following condition:

1. Ni must be in the binary states, i.e., Pi P t0,1u

2. There exists x such that :AxpNiq XORs with Pi, i.e., Dx such that :AxpNiq ‘ Pi “ 1

In this work, we leverage adversarial attack methods, including Projected Gradient Descent (PGD)
[30] and Carlini-Wagner (CW) [8], to generate adversarial examples. By computing the upper
bound of essential neurons for each example and taking their union, we estimate the overall upper
bound without verification calls, as outlined in Algorithm 1. OPTADVPRUNE can also interact with
verification tools, improving the learned specification by iteratively sampling additional adversarial
examples until verification is achieved. While it may provide a loose upper bound, it usually requires
significantly fewer verification calls than other approaches.

4. Evaluation

Setup All experiments were conducted on an Ubuntu 20.04 LTS machine with 172 GB RAM and
an Intel Xeon Silver Processor. We use Marabou [24] as the verifier, with a 5-minute timeout per
query. If the timeout is exceeded, the neuron is retained in the minimal NAP specification. To
compare region sizes across NAPs, we propose an efficient volume estimation method for NAP-
specified regions (see Appendix C for details). The most refined NAP [16] serves as the baseline.

Table 1: Overview of the learned minimal NAP specifications on the WBC benchmark. Columns
indicate labels, and rows represent different approaches. |P | is the NAP size, and #V is
the number of calls to V . The train and test columns show the percentage of data covered
by P . The vol. column shows the estimated volume change (order of magnitude) relative
to a baseline, which is normalized to 1.

0 1
|P | #V train test vol. |P | #V train test vol.

Baseline [16] 102 1 78.11 81.40 1 93 1 83.06 80.28 1
COARSEN 31 102 98.22 95.35 105 32 93 99.65 94.37 105

STOCHCOARSEN 42 47 94.69 92.34 103 45 41 94.15 91.52 102

OPTADVPRUNE 61 1 91.06 89.37 102 54 3 87.06 87.28 102

4.1. The Wisconsin Breast Cancer Dataset with Binary Classifier

We evaluate a four-layer neural network with 32 neurons per layer, trained on the Wisconsin Breast
Cancer (WBC) dataset [43]. The most refined NAPs, rP 0 and rP 1, contain 102 and 93 neurons,

7

GENG WANG YE SI

respectively. In contrast, COARSEN reduces these to 31 and 32. Additionally, STOCHCOARSEN

learns NAPs of size 42 and 45 for labels 0 and 1 using only 47 and 41 verification calls, offering a
less precise but more efficient solution.

Our optimistic approach, OPTADVPRUNE, efficiently estimates essential neurons while provid-
ing a reliable upper bound. For label 0, it identifies 61 essential neurons, capturing 25 of the 31 in
COARSEN’s minimal NAP. For label 1, it finds 54, covering 25 of the 32 essential neurons. Notably,
OPTADVPRUNE requires only 1 and 3 verification calls, demonstrating its efficiency. However, this
comes at the cost of a looser upper bound on the minimal NAP specification.

We see minimal NAP specifications enable verification over significantly larger input regions.
The baseline NAPs, rP 0 and rP 1, verify 81.40% and 80.28% of test data for labels 0 and 1, respec-
tively. In contrast, minimal NAPs learned by our approaches achieve substantially higher coverage.
Notably, COARSEN learns minimal NAP specifications that extend test data verification coverage to
95.35% and 94.37% for labels 0 and 1, respectively. The estimated verifiable region RP expands
dramatically—by a factor of 105 for both labels.

Table 2: Overview of learned minimal NAP specifications on the MNIST benchmark.
0 1 4

|P | #V train% test% vol. |P | #V train% test% vol. |P | #V train% test% vol.

Baseline [16] 751 1 79.50 71.51 1 745 1 75.01 70.11 1 712 1 77.54 75.24 1
COARSEN 480 751 98.68 98.78 108 491 745 98.90 98.59 106 506 712 98.51 97.45 109

STOCHCOARSEN 532 33 93.19 93.01 105 559 27 94.12 93.68 103 562 25 93.89 93.64 106

OPTADVPRUNE 618 15 83.13 81.32 102 630 18 86.02 85.51 102 699 21 82.66 84.12 102

4.2. MNIST with Fully Connected Network

To demonstrate the applicability of our methods to more complex datasets and networks, we conduct
experiments using the mnistfc 256x4 model [38], a 4-layer fully connected network with 256
neurons per layer, trained on the MNIST dataset. Due to space constraints, we present results for
selected classes 0, 1, and 4; details for other classes are in Appendix D.

We compute the baseline NAPs, rP 0, rP 1, and rP 4, for labels 0, 1, and 4, with sizes 751, 745,
and 712, respectively. In contrast, COARSEN reduces these to 480, 491, and 506, covering over
98% of the training and test data, with volumetric changes on the order of 109. STOCHCOARSEN

achieves comparable results with only about 30 calls, at the cost of a 5% reduction in coverage.
This highlights the generalization ability of minimal NAPs to unseen test data. In contrast, local
neighborhood specifications cover zero test images in the MNIST dataset with ϵ “ 0.2, which is the
maximum L8 verifiable bound used in VNN-COMP 2024 [7]. For label 0, OPTADVPRUNE detects
618 essential neurons and identifies 445 and 160 of the 480 neurons in COARSEN’s minimal NAP.
It requires fewer than 20 calls on average but incurs a 5% drop in coverage.

In summary, there is no one-size-fits-all solution for minimal specification problems. Our exper-
iment demonstrates the distinct strengths and trade-offs of the three algorithms. While all provide
correctness guarantees, COARSEN finds the minimal NAP, making it the most reliable for applica-
tions requiring strict minimality. STOCHCOARSEN offers a speed advantage over COARSEN, using
1.1x more neurons but only 5% of the verification calls, making it ideal for efficiency-focused sce-
narios. Lastly, OPTADVPRUNE is the fastest. When the initial set of neurons can be successfully
verified, it provides a tight upper bound for the global minimum. When the initial set cannot be
verified, it can provide an effective starting point for STOCHCOARSEN and COARSEN.

8

LEARNING MINIMAL NEURAL SPECIFICATIONS

Figure 3: Visualization of hidden representations retained by NAPs. Columns show: original im-
ages, Grad-CAMs, modified Grad-CAMs using baseline NAPs (same class and another
class), and modified Grad-CAMs using minimal NAPs (same class and another class).

4.3. ImageNet with Deep Convolutional Neural Network

In this experiment, we analyze the fully connected layers of the VGG-19 network pretrained on
ImageNet, containing 8192 neurons. Due to the challenge of verifying NAP specifications at this
scale, we focus on studying minimal NAPs estimated by OPTADVPRUNE, limiting our analysis to
the top five largest classes (about 1000 training and 350 test images each). Our results show that
these estimated NAPs cover a significant portion of unseen test data, highlighting their robustness
as certificates. More details are in Appendix E.

NAP Captures Visual Interpretability and Inherent Robustness Neural networks learn both
low- and high-level features to make classification decisions based on hidden neuron representations
[5]. The robustness and consistency of a model’s predictions depend on the quality of these features,
with “good” hidden representations contributing to accuracy and interpretability [46]. Studies high-
light the link between visual interpretability and robustness in learned features [2, 6, 11]. Although
we cannot yet formally verify these estimated NAP specifications, we show through visual inter-
pretability that they are meaningful and enhance model robustness.

To this end, we modify Grad-CAM [31] by masking neurons not included in the NAPs from the
fully connected layers and recalculating the gradient flow to generate the updated map. We conduct
the following experiments on image samples: 1) Compute modified Grad-CAM maps using the
baseline NAPs; 2) Compute modified Grad-CAM maps using minimal NAPs; 3) Compute modified
Grad-CAM maps using NAPs from different classes. All maps are validated with sanity checks [1].

Figure 3 presents the experimental results. The original Grad-CAMs highlight key image re-
gions crucial for classification. Both refined and minimal NAPs produce nearly identical highlights,
despite using a small fraction of neurons neurons, indicating that minimal NAPs preserve essential
visual features. This suggests minimal NAPs capture critical aspects of VGG-19’s decision-making,
supporting “the NAP robustness property”. Furthermore, Grad-CAMs for different classes pinpoint
distinct regions, indicating that our estimated NAPs do not specify overlapping areas - a critical
property for their role as specifications. Notably, these NAPs provide valuable interpretability in-
sights. A small subset of NAP neurons can capture critical neural network dynamics, helping to

9

GENG WANG YE SI

demystify their black-box nature. From a machine-checkable perspective, concise NAPs are easier
to decode into human-understandable programs than refined ones, emphasizing the value of learning
minimal NAPs. We leave translating NAPs into human-readable formats as future work.

NAP as a Defense Against Adversarial Attacks From a practical point of view, we believe that
even before formal verification scales or NAPs are fully interpretable, NAPs can already serve as
empirical certificates or defense mechanisms, as shown in prior work [29]. We demonstrate that our
estimated essential neurons can defend against adversarial attacks.

We select images that are: 1) correctly predicted by the model and 2) covered by the respective
NAP. On average, each NAP covers 40% of the training data for the corresponding class. For each
selected image, we generate 100 adversarial examples using the Projected Gradient Descent [30] and
Carlini Wagner [8] attacks. We check whether the NAPs reject the adversarial activation patterns.
Both the baseline and minimal NAPs reject all adversarial examples, confirming their effectiveness
as safe region specifications and potential certificates.

5. Related Work

Neural Network Verification Neural network verification has gained significant attention due to
the growing use of neural networks in safety-critical systems. Its NP-hard nature resulting from the
non-convexity introduced by activation functions [23] makes it a challenging task. Most existing
work focuses on scalable verification algorithms. Early solver-based approaches [20, 13, 9, 37] were
limited to small networks (ă100 neurons), but state-of-the-art methods [44, 40, 27] can now verify
more complex networks. It is worth mentioning that most existing work adopts local neighbourhood
specifications to verify the robustness properties of neural networks [33]. Despite being a reliable
measure, local neighbourhood specifications around reference data points may fail to cover test data
or generalize to unseen test sets. Geng et al. [16] propose a new paradigm of NAP specifications to
address this challenge. Our work advances the understanding of NAP specifications.

Neural Activation Patterns Neural activation patterns are widely used to interpret neural network
decision-making. Research in feature visualization [45, 4] examines neuron activations for different
inputs, while activation maximization [35] identifies inputs that maximally activate specific neu-
rons. These works focus on learning statistical correlations between NAPs and inputs [3, 14] or
prediction outcomes [29]. However, these correlations raise questions about their trustworthiness
and verifiability. We introduce essential neurons, emphasizing their role in model robustness, and
establish verified causal links between neurons and predictions. We believe this “identify then ver-
ify“ paradigm can be extended to existing research on NAPs to certify our understanding of neural
networks. We leave the exploration of this direction for our future work.

6. Conclusion

We introduce a novel challenge: learning minimal NAP specifications and demonstrating their sig-
nificance in neural network verification. To address this, we propose three approaches—conservative,
statistical, and optimistic, and show each offers unique trade-offs between efficiency and perfor-
mance. Additionally, we use the optimistic approach to explore potential causal connections be-
tween neurons and the robustness properties of large networks like VGG-19, a task existing meth-
ods cannot scale to. Our experimental results show that minimal NAPs require significantly fewer
neurons compared to prior work while expanding verifiable regions by several orders of magnitude.

10

LEARNING MINIMAL NEURAL SPECIFICATIONS

References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. Advances in neural information processing systems,
31, 2018.

[2] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in neural information processing systems, 31, 2018.

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissec-
tion: Quantifying interpretability of deep visual representations. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 3319–3327. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.354. URL
https://doi.org/10.1109/CVPR.2017.354.

[4] Alex Bäuerle, Daniel Jönsson, and Timo Ropinski. Neural activation patterns (naps): Visual
explainability of learned concepts. CoRR, abs/2206.10611, 2022. doi: 10.48550/arXiv.2206.
10611. URL https://doi.org/10.48550/arXiv.2206.10611.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):
1798–1828, 2013. doi: 10.1109/TPAMI.2013.50.

[6] Akhilan Boopathy, Sijia Liu, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, and
Luca Daniel. Proper network interpretability helps adversarial robustness in classification. In
International Conference on Machine Learning, pages 1014–1023. PMLR, 2020.

[7] Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu. The fifth international
verification of neural networks competition (vnn-comp 2024): Summary and results, 2024.
URL https://arxiv.org/abs/2412.19985.

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57, Los Alamitos, CA, USA,
may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.49. URL https://doi.
ieeecomputersociety.org/10.1109/SP.2017.49.

[9] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In Deepak D’Souza and K. Narayan Kumar, editors, Automated Tech-
nology for Verification and Analysis - 15th International Symposium, ATVA 2017, Pune,
India, October 3-6, 2017, Proceedings, volume 10482 of Lecture Notes in Computer Sci-
ence, pages 251–268. Springer, 2017. doi: 10.1007/978-3-319-68167-2z 18. URL https:
//doi.org/10.1007/978-3-319-68167-2_18.

[10] Thomas G. Dietterich and Eric Horvitz. Rise of concerns about AI: reflections and directions.
Commun. ACM, 58(10):38–40, 2015. doi: 10.1145/2770869. URL https://doi.org/
10.1145/2770869.

[11] Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. Towards interpretable deep neural networks
by leveraging adversarial examples. arXiv preprint arXiv:1708.05493, 2017.

11

https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.48550/arXiv.2206.10611
https://arxiv.org/abs/2412.19985
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1145/2770869
https://doi.org/10.1145/2770869

GENG WANG YE SI

[12] Martin E. Dyer and Alan M. Frieze. On the complexity of computing the volume of a poly-
hedron. SIAM J. Comput., 17(5):967–974, 1988. doi: 10.1137/0217060. URL https:
//doi.org/10.1137/0217060.

[13] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. CoRR,
abs/1705.01320, 2017. URL http://arxiv.org/abs/1705.01320.

[14] D. Erhan, Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. 2009.

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, train-
able neural networks. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

[16] Chuqin Geng, Nham Le, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, and Xujie Si. To-
wards reliable neural specifications. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages 11196–11212. PMLR, 2023. URL
https://proceedings.mlr.press/v202/geng23a.html.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

[18] Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S. Pasareanu, and Sarfraz Khurshid.
Symbolic execution for deep neural networks. CoRR, abs/1807.10439, 2018. URL http:
//arxiv.org/abs/1807.10439.

[19] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verifica-
tion - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science, pages 3–29.
Springer, 2017. doi: 10.1007/978-3-319-63387-9z 1. URL https://doi.org/10.
1007/978-3-319-63387-9_1.

[20] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verifica-
tion - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science, pages 3–29.
Springer, 2017. doi: 10.1007/978-3-319-63387-9z 1. URL https://doi.org/10.
1007/978-3-319-63387-9_1.

[21] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo,
Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev., 37:

12

https://doi.org/10.1137/0217060
https://doi.org/10.1137/0217060
http://arxiv.org/abs/1705.01320
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v202/geng23a.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1807.10439
http://arxiv.org/abs/1807.10439
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1

LEARNING MINIMAL NEURAL SPECIFICATIONS

100270, 2020. doi: 10.1016/j.cosrev.2020.100270. URL https://doi.org/10.1016/
j.cosrev.2020.100270.

[22] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks, 2017. URL https://arxiv.org/
abs/1702.01135.

[23] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kuncak, editors, Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes
in Computer Science, pages 97–117. Springer, 2017. doi: 10.1007/978-3-319-63387-9z 5.
URL https://doi.org/10.1007/978-3-319-63387-9_5.

[24] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochen-
derfer, and Clark W. Barrett. The marabou framework for verification and analysis of deep
neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I, volume 11561 of Lecture Notes in Computer Science, pages 443–452.
Springer, 2019. doi: 10.1007/978-3-030-25540-4z 26. URL https://doi.org/10.
1007/978-3-030-25540-4_26.

[25] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal abstractions. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 31–42. ACM, 2011. doi: 10.1145/1926385.1926391. URL https://doi.org/10.
1145/1926385.1926391.

[26] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quan-
tization for deep neural network acceleration: A survey. Neurocomputing, 461:370–403,
2021. doi: 10.1016/J.NEUCOM.2021.07.045. URL https://doi.org/10.1016/j.
neucom.2021.07.045.

[27] Jingyue Lu and M. Pawan Kumar. Neural network branching for neural network verification.
CoRR, abs/1912.01329, 2019. URL http://arxiv.org/abs/1912.01329.

[28] Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and initialization:
Theory and numerical examples. CoRR, abs/1903.06733, 2019. URL http://arxiv.
org/abs/1903.06733.

[29] Anna Lukina, Christian Schilling, and Thomas A. Henzinger. Into the unknown: Active mon-
itoring of neural networks. In Lu Feng and Dana Fisman, editors, Runtime Verification - 21st
International Conference, RV 2021, Virtual Event, October 11-14, 2021, Proceedings, volume
12974 of Lecture Notes in Computer Science, pages 42–61. Springer, 2021. doi: 10.1007/
978-3-030-88494-9z 3. URL https://doi.org/10.1007/978-3-030-88494-9_
3.

13

https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1016/j.cosrev.2020.100270
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1702.01135
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
http://arxiv.org/abs/1912.01329
http://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1903.06733
https://doi.org/10.1007/978-3-030-88494-9_3
https://doi.org/10.1007/978-3-030-88494-9_3

GENG WANG YE SI

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rJzIBfZAb.

[31] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), pages
618–626, 2017. doi: 10.1109/ICCV.2017.74.

[32] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Toward verified artificial intelligence.
Commun. ACM, 65(7):46–55, June 2022. ISSN 0001-0782. doi: 10.1145/3503914. URL
https://doi.org/10.1145/3503914.

[33] Yuval Shapira, Eran Avneri, and Dana Drachsler-Cohen. Deep learning robustness verification
for few-pixel attacks. Proc. ACM Program. Lang., 7(OOPSLA1), apr 2023. doi: 10.1145/
3586042. URL https://doi.org/10.1145/3586042.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale im-
age recognition. CoRR, abs/1409.1556, 2014. URL https://api.semanticscholar.
org/CorpusID:14124313.

[35] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6034.

[36] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle.
In 2015 ieee information theory workshop (itw), pages 1–5. IEEE, 2015.

[37] Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. Evaluating robustness of neural net-
works with mixed integer programming. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HyGIdiRqtm.

[38] VNNCOMP. Vnncomp, 2021. URL https://sites.google.com/view/vnn2021.

[39] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico
Kolter. Beta-crown: Efficient bound propagation with per-neuron split constraints for
neural network robustness verification. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 29909–
29921, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
fac7fead96dafceaf80c1daffeae82a4-Abstract.html.

14

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3503914
https://doi.org/10.1145/3586042
https://api.semanticscholar.org/CorpusID:14124313
https://api.semanticscholar.org/CorpusID:14124313
http://arxiv.org/abs/1312.6034
https://openreview.net/forum?id=HyGIdiRqtm
https://sites.google.com/view/vnn2021
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

LEARNING MINIMAL NEURAL SPECIFICATIONS

[40] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico
Kolter. Beta-crown: Efficient bound propagation with per-neuron split constraints for
neural network robustness verification. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 29909–
29921, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
fac7fead96dafceaf80c1daffeae82a4-Abstract.html.

[41] Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolutional neural network prun-
ing with structural redundancy reduction. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 14913–14922.
Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01467.
URL https://openaccess.thecvf.com/content/CVPR2021/html/
Wang_Convolutional_Neural_Network_Pruning_With_Structural_
Redundancy_Reduction_CVPR_2021_paper.html.

[42] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–24,
1990. doi: 10.1109/2.58215. URL https://doi.org/10.1109/2.58215.

[43] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Di-
agnostic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

[44] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh.
Fast and complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=nVZtXBI6LNn.

[45] Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lipson. Under-
standing neural networks through deep visualization. CoRR, abs/1506.06579, 2015. URL
http://arxiv.org/abs/1506.06579.

[46] Yu Zhang, Peter Tiño, Ales Leonardis, and Ke Tang. A survey on neural network interpretabil-
ity. IEEE Trans. Emerg. Top. Comput. Intell., 5(5):726–742, 2021. doi: 10.1109/TETCI.2021.
3100641. URL https://doi.org/10.1109/TETCI.2021.3100641.

15

https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://doi.org/10.1109/2.58215
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
http://arxiv.org/abs/1506.06579
https://doi.org/10.1109/TETCI.2021.3100641

GENG WANG YE SI

Appendix A. Algorithm and Proof for COARSEN

Algorithm 2: COARSEN

Input: The neural network N
Output: A minimal NAP specification P
Function Coarsen(N)

P Ð rP
if VpP q ““ 0 then

return None ; /* Return None if the most refined NAP fails
verification */

else
for Ni in N do

sÐ Pi ;
˚ Ð Pi ; /* Try to coarsen this neuron */
if VpP q ““ 0 then

Pi Ð s ; /* Refine the neuron back if the verification fails

*/
end
return P ;

end
end

Theorem 7 (Property of COARSEN) The algorithm COARSEN returns a minimal NAP specifica-
tion with Op|N |q calls to V .

Proof Let P be the NAP returned by COARSEN. Our goal is to show that any P 1 smaller than P
results in VpP 1q “ 0. To construct such a smaller P 1, we need to apply the coarsen action through
a collection of neurons. According to the algorithm, VpP 1q “ 0. In the worst case, the algorithm
needs to iterate through each neuron in N , resulting in a runtime complexity of Op|N |q.

Appendix B. Algorithm and Proof for STOCHCOARSEN

Setting the sample probability θ Setting s poses a challenge in practice, as we assume that s is
always provided in STOCHCOARSEN. However, this can be addressed by dynamically updating θ
based on the result of VpP q [25]. With θ from theorem 5, STOCHCOARSEN finds a NAP specifica-
tion with probability

`

e´1{s
˘s
“ e´1. Thus, we aim to set θ such that the PrpVpP q “ 1q “ e´1.

Intuitively, if a sampled NAP P is a specification, we decrease θ so more neurons will be coarsened.
Similarly, if P is not a specification, θ needs to be increased.

Given that θ P r0, 1s, we can parameterize it using the Sigmoid function σpλq “
`

1` e´λ
˘´1,

where λ P p´8,8q. Since PrpVpP q “ 1q depends on θ as well, we express it as a function of λ,
gpλq “ PrpVpP q “ 1q. Then, setting PrpVpP q “ 1q “ e´1 can be achieved through the following
minimization problem:

Lpλq “
1

2
pgpλq ´ e´1{sq2 (1)

The loss function Lpλq can be minimized by statistical learning using stochastic gradient de-
scent. With a step size η, update λ using λÐ λ´ η dL

dλ . Note that dL
dλ can be expressed as:

16

LEARNING MINIMAL NEURAL SPECIFICATIONS

dL

dλ
“ pgpλq ´ e´1{sq

dgpλq

dλ
(2)

Given gpλq “ PrpVpP q “ 1q, we can replace gpλq with VpP q for stochastic gradient update.
Additionally, since dgpλq

dλ ą 0, we simply ignore it as its multiplication effect can be represented by
η. Therefore, the final update rule is given by:

λÐ λ´ ηpVpP q ´ e´1q (3)

Algorithm 3: STOCHCOARSEN

Input: The neural network N , the probability θ, and the size s
Output: A minimal NAP specification P
Function StochCoarsen(cur neurons, θ, s)

P Ð rP ; cur neuronsÐ N
if VpP q ““ 0 then

return None /* Return None if the most refined NAP fails
verification */

else
while |P | ą s do

P Ð Sample NAPspcur neurons, θq
if VpP q ““ 1 then

found neuronsÐH

for Ni in N do
if Pi ““ rPi then

found neuronsÐ found neuronsY tNiu

end
cur neuronsÐ found neurons /* Reduce search space */

else
P Ð Sample Napspcur neurons, θq /* Sample a new NAP */

end
end
return P /* Return the minimal NAP of size s */

end
end

Theorem 8 (Property of STOCHASTIC COARSEN) With probability θ=e´ 1
s , SAMPLE COARSEN

learns a minimal NAP specification with Opslog|N |q calls to V .

Proof Let’s first estimate the number of calls that SAMPLE COARSEN makes to V . We denote
the number of calls as CpPLq, where PL is the most refined NAP. Then CpPLq can be computed
recursively using the following rule:

CpPLq “

#

|P | if |PL| ď s` 1

1` Erp1´ VpP qqCpP q ` VpP qCpPLqs otherwise
(4)

where P is the sampled NAP. By assumption, there exists a NAP PS ď P of size s that passes
the verification. Define GpP q “ ␣pPS ď P q, which is 0 when PS subsumes P , i.e., all essential

17

GENG WANG YE SI

neurons in PS shows up in the sampled P . This follows that PrpGpP q “ 0q “ PrpPS ď P q “ θs.
Note that GpP q ě VpP q, as the NAP PS suffices to prove the robustness query. We can estimate
the upper bound of CpPLq by replacing V with G:

CpPLq ď 1` Erp1´GpP qqCpP q `GpP qCpPLqs (5)

ď 1` θsErCpP q|PS ď P s ` p1´ θsqCpPLq (6)

ď ErCpP q|PS ď P s ` θ´s (7)

We now denote Cpnq “ max|P |“nCpP q as the maximum over NAP of size n. Note that given
PS ď P , |P | “ s`N where N is a binomial random variable with EpNq “ θpn´ sq.

Using the bound Cpnq ď p1´ θnqCpn´ 1q` θnCpnqθ´s, we can observe that Cpnq ď θ´s

1´θn ¨n.
In addition, when n is large enough, Cpnq is concave, then by use Jensen’s inequality:

Cpnq ď CpErs`N sq ` θ´s “ Cps` θpn´ sqq ` θ´s (8)

To solve the recurrence, this gives us:

Cpnq ď θ´slogn

logθ´1
` s` 1 (9)

The equation above illustrates a tradeoff between reducing the number of iterations (by increas-
ing log θ´1) and reducing the number of samples (by decreasing θ´s). To minimize Cpnq, we need
to set θ so that the gradient of Cpnq w.r.t θ´1 is 0. This gives us: sxs´1

log x ´
xs´1

log2 x
“ 0, solving this

gives us θ “ e´ 1
s . Consequently, the upper bound becomes Cpnq “ es log n` s` 1 “ Ops log nq.

Appendix C. Volume Estimation of RP

Conceptually, NAP specifications typically correspond to significantly larger input regions com-
pared to local neighbourhood specifications. This serves as the primary motivation for utilizing
NAPs as specifications. However, previous work lacks sufficient justification or evidence to support
this claim. In this section, we propose a simple method for approximating the volume of RP , i.e.,
the region corresponding to a NAP P . This allows us to: 1) quantify the size difference between
RP and L8 ball specifications; 2) gain insights into the volumetric change from the most refined
NAP specification to the minimal NAP specification.

Computing the exact volume of RP is at least NP-hard, as determining the exact volume of a
polygon is known to be NP-hard [12]. Moreover, computing the exact volume of RP can be even
more challenging due to its potential concavity. To this end, our method estimates the volume of
RP by efficient computation of an orthotope that closely aligns with RP , as illustrated in Figure 4.
We briefly describe it as follows:

Finding an anchor point The first step is to find an anchor point to serve as the center of the
orthotope. Ideally, this anchor point should be positioned close to the center of RP to ensure a
significant overlap between the orthotope and RP . However, computing the actual center of RP is

18

LEARNING MINIMAL NEURAL SPECIFICATIONS

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 4: Volume Estimation of RP using an orthotope in a 2-dimensional case. The gray rectangle
represents the input space, with the training set depicted by a collection of data points `.
The polygon corresponds to some NAP P . Initially, we identify an anchor point, denoted
by`. Then, we construct the orthotope, represented by the green rectangle, by extending
upper and lower bounds starting from the anchor point until it extends beyond P .

costly. Thus, we look for a pseudo-center from the training set X that resides in RP . This pseudo-
center can be computed by finding the point that uses the smallest L8 ball to cover other data points,
solved as the following optimization problem:

cpseudo “ argmin
xPRP

max
x1PRP

}x´ x1}8

where RP “ tx | :AxpNq ď P, x P Xu. When |X| is small, cpseudo can be computed directly; for
larger |X|, a statistical computation strategy is required.

Constructing the orthotope Once the pseudo-center cpseudo is determined, we want to create an
orthotope around cpseudo to closely align with RP . The orthotope is constructed by determining
pairs of upper and lower bounds U piq and Lpiq for each dimension i. Specifically, U piq and Lpiq are
computed through expansion in two opposite directions from cpseudo along dimension i until they
extend beyond RP . This expansion can be expressed as:

max
Upiq

tx1 P RP |x
1 :“ cpseudo ` U piqu ; max

Lpiq
tx1 P RP |x

1 :“ cpseudo ´ Lpiqu

Here, U piq and Lpiq represent the upper and lower bounds in dimension i respectively, originating
from cpseudo. These bounds can be efficiently calculated with binary search.

The choice of the archer point is crucial in our approach. If it is located at a corner of Rp, the
volume calculation will be highly biased. This can pose a problem when we seek to understand the
volumetric change from the most refined NAP specification to the minimal NAP specification. Ad-

19

GENG WANG YE SI

ditionally, using the orthotope as an estimator provides convenience in understanding the volumetric
change simply by examining differences in each input dimension.

Appendix D. Learned Minimal NAP Specifications on the MNIST Benchmark
(Complement)

b

b

a

a

c

c

0.2

0
.5
3

Figure 5: The comparison between NAP specifications (green region) and L8 ball specifications
(gray region) on the MNIST dataset. Image a is the reference image, and image c is
the closest among all 6000 training images of digit 1, with an L8 distance of 0.5294.
However, c cannot be verified using the L8 ball specification, as an adversarial example
b exists at an L8 distance of 0.2. Note that this is not a limitation of the underlying
verification engines but rather an intrinsic limitation of the specifications. In contrast,
NAP specifications allow verification of unseen test set data like c.

Table 3: Overview of the size of learned minimal NAP specifications on the MNIST benchmark.
2 3 5 6

|P | #V train test |P | #V train test |P | #V train test |P | #V train test
Baseline [16] 751 1 79.50 80.51 745 1 86.01 85.11 712 1 77.54 80.24 1 712 1 77.54 80.24
COARSEN 480 751 98.68 98.78 491 745 98.90 98.59 506 712 98.51 97.45 503 708 98.81 98.39
STOCHCOARSEN 532 33 93.19 93.01 559 27 94.12 93.68 562 25 93.89 93.64 542 29 98.81 98.39
OPTADVPRUNE 618 15 83.13 71.32 630 18 79.02 76.51 699 21 82.66 84.12 681 20 85.98 87.63

Table 4: Overview of the size of learned minimal NAP specifications on the MNIST benchmark.
7 8 9

|P | #V train test |P | #V train test |P | #V train test
Baseline [16] 751 1 79.50 80.51 745 1 86.01 85.11 712 1 77.54 80.24
COARSEN 480 751 98.68 98.78 491 745 98.90 98.59 506 712 98.51 97.45
STOCHCOARSEN 532 33 93.19 93.01 559 27 94.12 93.68 562 25 93.89 93.64
OPTADVPRUNE 618 15 83.13 71.32 630 18 79.02 76.51 699 21 82.66 84.12

20

LEARNING MINIMAL NEURAL SPECIFICATIONS

Appendix E. Learned Minimal NAP Specifications on ImageNet with Deep
Convolutional Neural Network (Complement)

Table 5: Overview of the size of learned minimal NAP specifications on the ImageNet benchmark.

box turtle labrador retriever acorn squash confectionery stone wall
|P | test |P | test |P | test |P | test |P | test

Baseline [16] 1978 39.42 691 39.61 1003 29.23 878 33.84 971 31.54
OPTADVPRUNE 1863 39.42 661 41.28 823 25.68 845 23.07 865 39.61
GRADIENT SEARCH 611 53.30 572 87.01 301 52.40 256 44.23 260 54.90

Appendix F. More Visual Examples for NAP Captures Visual Interpretability and
Inherent Robustness

Figure 6: Visualization of hidden representations retained by NAPs. Columns show: original im-
ages, Grad-CAMs, modified Grad-CAMs using baseline NAPs (same class and another
class), and modified Grad-CAMs using minimal NAPs (same class and another class).

21

	Introduction
	Background and Problem Formulation
	NAP Specifications for Robustness Verification
	Problem Formulation

	Learning Minimal Neural Specifications
	Conservative Bottom Up Approach
	Statistical Coarsen Approach
	Optimistic Approach

	Evaluation
	The Wisconsin Breast Cancer Dataset with Binary Classifier
	MNIST with Fully Connected Network
	ImageNet with Deep Convolutional Neural Network

	Related Work
	Conclusion
	Algorithm and Proof for Coarsen
	Algorithm and Proof for StochCoarsen
	Volume Estimation of RP
	Learned Minimal NAP Specifications on the MNIST Benchmark (Complement)
	Learned Minimal NAP Specifications on ImageNet with Deep Convolutional Neural Network (Complement)
	More Visual Examples for NAP Captures Visual Interpretability and Inherent Robustness

