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We present VLMnav, an embodied framework to transform a Vision-Language Model (VLM) into
an end-to-end navigation policy. In contrast to prior work, we do not rely on a separation between
perception, planning, and control; instead, we use a VLM to directly select actions in one step.
Surprisingly, we find that a VLM can be used as an end-to-end policy zero-shot, i.e., without any
fine-tuning or exposure to navigation data. This makes our approach open-ended and generalizable
to any downstream navigation task. We run an extensive study to evaluate the performance of our
approach in comparison to baseline prompting methods. In addition, we perform a design analysis
to understand the most impactful design decisions. Visual examples and code for our project can
be found at jirl-upenn.github.io/VLMnav/.
Keywords: Navigation, VLM, Embodied AI, Exploration

1. Introduction
The ability to navigate effectively within an environment to achieve a goal is a hallmark of

physical intelligence. Spatial memory, along with more advanced forms of spatial cognition, is
believed to have begun evolving early in the history of land animals and advanced vertebrates, likely
between 400 and 200 million years ago Muzio and Bingman (2022). Because this ability has evolved
over such a long period, it feels almost instinctual and trivial to humans. However, navigation is,
in reality, a highly complex problem. It requires the coordination of low-level planning to avoid
obstacles alongside high-level reasoning to interpret the environment’s semantics and explore the
directions that are most likely to get the agent to achieve their goals.

A significant portion of the navigation problem appears to involve cognitive processes similar to
those required for answering long-context image and video questions, an area where contemporary
vision-language models (VLMs) excel OpenAI et al. (2024); Team et al. (2024). However, when
naively applied to navigation tasks, these models face clear limitations. Specifically, when given
a task description concatenated with an observation-action history, VLMs often struggle to pro-
duce fine-grained spatial outputs to avoid obstacles and fail to effectively utilize their long-context
reasoning capabilities to support effective navigation Ramakrishnan et al. (2024); Nasiriany et al.
(2024); Rahmanzadehgervi et al. (2024).

To address these challenges, previous work has included VLMs as a component of a modu-
lar system to perform high-level reasoning and recognition tasks. The systems generally contain an
explicit 3D mapping module and a planner to deal with the more embodied part of the task, e.g., mo-
tion and exploration Kim et al. (2024); Majumdar et al. (2022); Gadre et al. (2023); Yu et al. (2023);
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Figure 1: Prompt: The full action prompt for VLMnav consists of three parts: A system prompt to describe the
embodiment, an action prompt to describe the task, the potential actions, and the output instruction, and an image prompt
showing the current observation along with the annotated actions

Kuang et al. (2024). While modularity has the advantage of utilizing each component only for the
sub-task it excels at, it comes at the disadvantage of system complexity and task specialization.

In this work, we show that an off-the-shelf VLM can be used as a zero-shot and end-to-end
language-conditioned navigation policy. The key idea to achieve this goal is transforming the navi-
gation problem into something VLMs excel at: answering a question about an image.

To do so, we develop a novel prompting strategy that enables VLMs to explicitly consider the
problem of exploration and obstacle avoidance. This prompting is general, in the sense that it can
be used for any vision-based navigation task.

Compared to prior approaches, we do not employ modality-specific experts Ren et al. (2024);
Yu et al. (2023); Shah et al. (2023a), do not train any domain-specific models Zhang et al. (2024);
Ehsani et al. (2023) and do not assume access to probabilities from the models Ren et al. (2024); Yu
et al. (2023).

We evaluate our approach on established benchmarks for embodied navigation Yadav et al.
(2022); Khanna* et al. (2024), where results confirm that our method significantly improves nav-
igation performance compared to existing prompting methods. Finally, we draw design insights
from ablation experiments over several components of our embodied VLM framework.

2. Related Work
The most common approach for learning an end-to-end navigation policy involves training a

model from scratch using offline datasets Shah et al. (2021, 2023b); Chang et al. (2023); Shah et al.
(2023d,c). However, collecting large-scale navigation data is challenging, and as a result, these
models often struggle to generalize to novel tasks or out-of-distribution environments.

An alternative approach to enhance generalization is fine-tuning existing vision-language mod-
els (VLMs) with robot-specific data Brohan et al. (2022, 2023); Kim et al. (2024); Zhang et al.
(2024). Although this method can lead to more robust end-to-end policies, fine-tuning may destroy
features not present in the fine-tuning dataset, ultimately limiting the model’s generalization ability.

An alternate line of work focuses on using these models zero-shot Kuang et al. (2024); Zhou
et al. (2023); Yu et al. (2023); Shah et al. (2023a); Ren et al. (2024); Gadre et al. (2023); Nasiriany
et al. (2024), by prompting them such that the responses align with task specifications. For instance,
Gadre et al. (2023); Chang et al. (2023) use CLIP or DETIC features to align visual observations to
language goals, build a semantic map of the environment, and use traditional methods for planning.
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Figure 2: Approach: Our method is made up of four key components: (i) Navigability, which determines locations
the agent can actually move to, and updates the voxel map accordingly. An example update step to the map shows the
marking of new area as explored (gray) or unexplored (green). (ii) Action Proposer, which refines a set of final actions
according to spacing and exploration. (iii) Projection, which visually annotates the image with actions. (iv) Prompting,
which constructs a detailed chain-of-thought prompt to select an action

Other works design specific modules to handle the task of exploration Shah et al. (2023a); Ren
et al. (2024); Kuang et al. (2024); Topiwala et al. (2018). These systems often require an estimation
of confidence to know when to stop exploring, which is commonly done using token or object
probabilities Ren et al. (2024); Yu et al. (2023). In addition, many of these approaches also use
low-level navigation modules, which abstract away the action choices to a pre-trained point-to-
point policy such as the Fast Marching Method Chang et al. (2023); Gadre et al. (2023); Shah et al.
(2023a); Kuang et al. (2024); Yu et al. (2023).

Visual Prompting Methods: To enhance the task-specific performance of VLMs, recent work
has involved physically modifying images before passing them to the VLM. Examples include Sht-
edritski et al. (2023), which annotates images to help recognize spatial concepts. Yang et al. (2023)
introduces set-of-mark, which assigns unique labels to objects in an image and references these
labels in the textual prompt to the VLM. This visual enhancement significantly improves perfor-
mance on tasks requiring visual grounding. Building on this, Koh et al. (2024); Yan et al. (2023)
apply similar visual prompting methods to the task of web navigation and show VLMs are able to
complete such tasks zero shot.

Prompting VLMs for Embodied Navigation: CoNVOI Sathyamoorthy et al. (2024) overlays
numerical markers on an image and prompts the VLM to output a sequence of these markers in
alignment with contextual cues (e.g., stay on the pavement), which is used as a navigation path.
Unlike our work, they (i) rely on a low-level planner for obstacle avoidance rather than using the
VLM’s outputs directly as navigational actions, and (ii) do not leverage the VLM to guide the
agent toward a specific goal location. PIVOT Nasiriany et al. (2024), introduces a visual prompting
method that is most similar to ours. They approach the navigation problem by representing one-step
actions as arrows pointing to labeled circles on an image. At each step, actions are sampled from an
isotropic Gaussian distribution, with the mean and variance iteratively updated based on feedback
from the VLM. The final action is selected after refining the distribution. While PIVOT is capable
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of handling various real-world navigation and manipulation tasks, it has two significant drawbacks:
(i) it does not incorporate depth information to assess the feasibility of action proposals, leading to
less efficient movement; and (ii) it requires many VLM calls to select a single action, resulting in
higher computational costs and latency.

3. Overview

We present VLMnav, designed as a navigation system that takes as input goal G, which can
be specified in language or an image, RGB-D image I , pose ξ, and subsequently outputs action a.
The action space consists of rotation about the yaw axis and displacement along the frontal axis in
the robot frame, which allows all actions to be expressed in polar coordinates. As it is known that
VLMs struggle to reason about continuous coordinates Rahmanzadehgervi et al. (2024), we instead
transform the navigation problem into the selection of an action from a discrete set of options Yang
et al. (2023). Our core idea is to choose these action options in a way that avoids obstacle collisions
and promotes exploration.

Figure 2 summarizes our approach. We start by determining the navigability of the local region
by estimating the distance to obstacles using a depth image (Sec. 3.1). Similar to Chang et al.
(2023); Shah et al. (2023a); Ren et al. (2024); Sathyamoorthy et al. (2024); Gadre et al. (2023);
Yu et al. (2023); Topiwala et al. (2018) we use the depth image and pose information to maintain
a top-down voxel map of the scene, and notably mark voxels as explored or unexplored. Such a
map is used by an Action Proposer (Sec. 3.2) to determine a set of actions that avoid obstacles
and promote exploration. We then project this set of possible actions to the first-person-view RGB
image with the Projection (Sec. 3.3) component. Finally, the VLM takes as input this image and
a carefully crafted prompt, described in Sec. 3.4, to select an action, which the agent executes. To
determine episode termination, we use a separate VLM call, detailed in Sec. 3.5.

3.1. Navigability

Figure 3: Navigability: An example step of the Nav-
igability subroutine. The navigability mask is shown
in blue and polar actions making up Ainitial are in green

Using a depth image, we compute a navigabil-
ity mask that contains the set of pixels that can be
reached by the robot without crashing into any ob-
stacles.

Next, for all directions θ ∈ fov, we use the nav-
igability mask to calculate the farthest straight-line
distance r that the agent can travel without colliding.
This creates a set of actions Ainitial that are collision-
free. Figure 3 illustrates an example calculation of
the mask and navigable actions.’

At the same time, we use the depth image and
the pose information to build a 2D voxel map of the
environment. All observable areas within 2 meters
of the agent are marked as explored, and the ones
beyond as unexplored.

3.2. Action Proposer

We design the Action Proposer routine to refine Ainitial → Afinal, an action set that is inter-
pretable for the VLM and promotes exploration. Taking advantage of the information accumulated
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in our voxel map, we look at each action and define an exploration indicator variable ei as

ei =

{
1 if region (θi, ri) is unexplored
0 if region (θi, ri) is explored

To build Afinal, we need to prioritize unexplored actions, and also ensure there is enough visual
spacing between actions for the VLM to discern. We start by adding unexplored actions to Afinal if
an angular spacing of θδ is maintained.

Afinal ← Afinal ∪ {(θi, ri) | ei = 1 and |θi − θj | ≥ θδ, ∀(θj , rj) ∈ Afinal}

To sufficiently cover all directions but still maintain an exploration bias, we supplement Afinal by
adding explored actions subject to a larger angular spacing of θ∆ > θδ :

Afinal ← Afinal ∪ {(θi, ri) | ei = 0 and |θi − θj | ≥ θ∆,∀(θj , rj) ∈ Afinal}

Lastly, we want to ensure these actions don’t move the agent too close to obstacles, so we clip

ri ← min(
2

3
· ri, rmax) ∀(θi, ri) ∈ Afinal

Occasionally, the agent can get stuck in a corner where there are no navigable actions (Ainitial = ∅).
To address this, we add a special action (π, 0), which rotates the agent by 180°. This also allows
efficient entry/exit of rooms where the agent quickly identifies that the goal is not in that room.

The proposed set Afinal now has three important properties: (i) actions correspond to navigable
paths, (ii) there is sufficient visual spacing between actions, and (iii) there is an engineered bias
towards exploration. We call this approach to exploration explore bias.

3.3. Projection

Visually grounding these actions in a space the VLM can understand and reason about is the next
step. The Projection component takes in Afinal from 3.2 and RGB image I , and outputs annotated
image Î . Similarly to Nasiriany et al. (2024), each action is assigned a number and overlayed onto
the image. We assign the special rotation action with 0 and annotate it onto the side of the image
along with a label Turn Around. We find that visually annotating it, instead of just describing it in
the textual prompt, helps ground its probability of being chosen to that of the other actions.

3.4. Prompting

To elicit a final action, we craft a detailed textual prompt T , which is fed into the VLM along
with Î . This prompt primarily describes the details of the task, the navigation goal, and how to
interpret the visual annotations. Additionally, we ask the model to describe the spatial layout of the
image and to make a high-level plan before choosing the action, which serves to improve reasoning
quality as found by Wei et al. (2023); Kojima et al. (2022). For image-based navigation goals, the
goal image is simply passed into the VLM in addition to T and Î . The full prompt can be found in
Figure 1.

The action chosen by the VLM, Pvlm(a
∗|Î , T ) ∈ Afinal is then directly executed in the envi-

ronment. Notably, this does not involve any low-level obstacle avoidance policy as in other works
Chang et al. (2023); Shah et al. (2023a); Gadre et al. (2023); Yu et al. (2023); Kuang et al. (2024).
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Figure 4: Termination: The separate prompt for determining episode termination

3.5. Termination

To complete a navigation task, the agent must terminate the episode by calling special action
stop within a threshold distance of the goal object. Compared to other approaches that leverage a
low-level navigation policy Chang et al. (2023); Shah et al. (2023a); Gadre et al. (2023); Yu et al.
(2023); Kuang et al. (2024), our method does not explicitly choose a target coordinate location to
navigate to, and therefore we face an additional challenge of determining when to stop. Our solution
is to use a separate VLM prompt that explicitly asks whether or not to stop, which is shown in Figure
4. We do this for two reasons:

1. Annotations: The arrows and circles from Sec. 3.3 introduce noise and clutter to the image,
making it more difficult to understand.

2. Separation of tasks. To avoid any task interference, the action call is only concerned with
navigating and the stopping call is only concerned with stopping.

To avoid terminating the episode too far away from the object, we terminate the episode when
the VLM calls stop two times in a row. After the VLM calls stop the first time, we turn off the
navigability and explore bias components to ensure the agent doesn’t move away from the goal
object.

4. Experiments
We evaluate our approach on two popular embodied navigation benchmarks, ObjectNav Batra

et al. (2020) and GoatBench Khanna* et al. (2024), which use scenes from the Habitat-Matterport
3D dataset Yadav et al. (2023); Savva et al. (2019). Further, we analyze how the performance of an
end-to-end VLM agent changes with variations in design parameters such as field-of-view, length
of the contextual history used to prompt the model, and quality of depth perception.

Setup: Similar to Yadav et al. (2022), the agent adopts a cylindrical body of radius 0.17m and
height 1.5m. We equip the agent with an egocentric RGB-D sensor with resolution (1080, 1920)
and a horizontal field-of-view (FOV) of 131◦. The camera is tilted down with a pitch of 25◦ similar
to Ren et al. (2024), which helps determine navigability. We use Gemini Flash as the VLM for all
our experiments, given its low cost and high effectiveness.

Metrics: As in prior work Khanna* et al. (2024); Yadav et al. (2022); Anderson et al. (2018), we
use the following metrics: (i) Success Rate (SR): fraction episodes that are successfully completed
(ii) Success Rate Weighted by Inverse Path Length (SPL): a measure of path efficiency.
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Baselines: We use PIVOT Nasiriany et al. (2024) as a baseline as it is most similar to ours. To
investigate the impact of our action selection method, we ablate it by evaluating Ours w/o nav: the
same as ours but without the Navigability and Action Proposer components. The action choices
for this baseline are a static set of evenly-spaced action choices, including the turn around action.
Notably, these actions do not consider navigability or exploration. To further evaluate the impact
of visual annotation, we also evaluate a baseline Prompt Only, which sees actions described in
text (“turn around”, “turn right”, “move forward”, ...) but not annotated visually. These different
prompting baselines can be visualized in Fig 5.

Figure 5: Baselines: Comparing the four different methods on a sample image. Ours contains arrows that point to
navigable locations, PIVOT has arrows sampled from a random 2-D Gaussian, Ours w/o nav sees uniformly spaced
arrows (note arrows 3 and 5 point into a wall), and Prompt Only sees just the raw RGB image

We note that in our experiments and baselines, we turn the allow slide parameter on, which
allows the agent to slide against obstacles in the simulator. Our experiments show that removing
this assumption leads to large drops in performance.

4.1. ObjectNav

The Habitat ObjectNav benchmark requires navigation to an object instance from one of six
categories [Sofa, Toilet, TV, Plant, Chair, Bed]. As in Yadav et al. (2022), to get the optimal path
length, we take the minimum of the shortest paths to all instances of the object. These experiments
are evaluated with a success threshold of 1.2 meters Shah et al. (2023a).

Run SR SPL
Ours 50.4% 0.210
Ours w/o nav 33.2% 0.136
Prompt Only 29.8% 0.107
PIVOT Nasiriany et al. (2024) 24.6% 0.106
Ours w/o sliding 12.9% 0.063

Table 1: ObjectNav Results. We evaluate four dif-
ferent prompting strategies on the ObjectNav bench-
mark, and see our method achieves highest perfor-
mance in both accuracy (SR) and efficiency (SPL). Ab-
lating the allow slide parameter shows our method is
dependent on sliding past obstacles

Table 1 summarizes our results. Our method outperforms PIVOT by over 25%, and nearly
doubles its navigation efficiency in terms of SPL. We see that our action selection method is highly
effective as shows a 17% improvement over Ours w/o nav. Removing visual annotations leads to a
slight decrease in success rate but a significant reduction in SPL, indicating that visual grounding
is important for navigation efficiency. Interestingly, we find that PIVOT performs worse than both
of our ablations. We attribute this to limited expressivity in its action space, which prevents it from
executing large rotations or turning around fully. This often leads to the agent getting stuck in
corners, hindering its ability to recover and navigate effectively.

We note that disabling sliding results in a large drop in performance, signaling that while effec-
tive in simulation, our method would likely lead to collisions with obstacles in the real world. While
our Navigability module can identify navigable locations, it does not consider the specific size and
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shape of the robot in this calculation, leading to occasional collisions where the agent gets stuck
since we lack an explicit action to backtrack previous motions.

4.2. Go To Anything Benchmark (GOAT)

GOAT Bench Khanna* et al. (2024) is a recent benchmark that establishes a higher level of
navigation difficulty. Each episode contains 5-10 sub-tasks across three different goal modalities:
(i) Object names, such as refrigerator, (ii) Object images, and (iii) Detailed text descriptions such
as Grey couch located on the left side of the room, next to the picture and the pillow. Table 2 shows
our results, evaluated on the val unseen split.

Run SR SPL Image SR Object SR Description SR
Ours 16.3% 0.066 14.3% 20.5% 13.4%
Ours w/o nav 11.8% 0.054 7.8% 16.5% 10.2%
Prompt Only 11.3% 0.037 7.7% 15.6% 10.1%
PIVOT Nasiriany et al. (2024) 8.3% 0.038 7.0% 11.3% 5.9%

Table 2: GOAT Results. Comparison of prompting strategies on GOAT Bench, a more challenging navigation task.
Across three different goal modalities, our method strongly outperforms baseline methods

Across all goal modalities, our model achieves significant improvements over baselines. These
improvements are especially evident in image goals, where our model achieves nearly twice the
success rate of all baseline methods. This highlights the robustness and general nature of our sys-
tem. As with the ObjectNav results, Ours w/o nav and Prompt only perform comparable, and both
outperform PIVOT. For all prompting methods, the image and description modalities prove more
challenging than the object modality, similarly to what was found by Khanna* et al. (2024).

Comparison to state-of-the-art: We turn the allow slide parameter off and compare to two
state-of-the-art specialized approaches: (i) SenseAct-NN Khanna* et al. (2024) is a policy trained
with reinforcement learning, using learned submodules for different skills; and (ii) Modular GOAT Chang
et al. (2023) is a compound system that builds a semantic memory map of the environment and uses
a low-level policy to navigate to objects within this map. Unlike SenseAct-NN, our work is zero-
shot, and unlike Modular GOAT, we do not rely on a low-level policy or a separate object-detection
module.

Run SR SPL
SenseAct-NN Skill Chain 29.5% 0.113
Modular GOAT 24.9% 0.172
Ours w/ sliding 16.3% 0.066
Ours 6.9% 0.049

Table 3: Comparison to other works: We see
that specialized systems still produce superior perfor-
mance. We also note these other works use a narrower
FOV, lower image resolution, and a different action
space, which could explain some of the differences

We compare the results of our approach to these baselines in Table 3. Interestingly, these meth-
ods have different strengths: a reinforcement learning approach leads to the highest success rate.
Conversely, the modular navigation system achieves the highest navigation efficiency.

Our method shows lower performance compared to these specialized baselines across both met-
rics, even when permitted to slide over obstacles. Notably, we observe that in 13.9% of the runs,
the VLM prematurely calls stop when it is between 1 to 1.5 meters from the target object. These
instances are classified as failures, as the benchmark defines a run as successful only if the agent
is within 1 meter of the object. This finding suggests that our VLM lacks the fine-grained spatial
awareness necessary to accurately assess distances to objects. However, it also indicates that in
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over 30% of the runs, our VLM agent is able to approach the goal object closely, highlighting its
capability to reach near-target positions.

As shown in previous experiments, when not allowed to slide over objects, our approach’s per-
formance drastically decreases, as it gets frequently blocked between obstacles and does not have a
way to backtrack its actions.

4.3. Exploring the design space of VLM agents for navigation

In this section, we look at major design choices that impact the navigation ability of VLM-based
agents in our setup, all evaluated on the ObjectNav dataset.

4.3.1. HOW IMPORTANT IS CAMERA FOV FOR NAVIGATION?

Figure 6: Impact of sensor FOVs. We evaluate the performance of four different sensor FOVs, and find that
a wider FOV invariably leads to higher performance

An agent’s navigation abilities largely depend on how fine-grained its vision is. In this section,
we study whether our VLM agent can benefit from high-resolution images. Specifically, we run
our method using four different FOVs: 82◦ Yadav et al. (2022), 100◦, 115◦ and 131◦ (iPhone 0.5
camera). The results of this experiment, shown in Fig. 6, indicate positive scaling behaviors on both
navigation accuracy and efficiency.

4.3.2. DO LONGER OBSERVATION-ACTION HISTORIES HELP?

In this section, we study whether a VLM navigation agent can effectively use a history of observa-
tions. We create a prompt containing the observation history in a naive way, i.e., we concatenate
observations and actions from the K most recent environment steps and feed this into the VLM as
context. For all these experiments, we remove our exploration bias (see Sec. 3.2) to specifically
isolate the contribution of a longer history.

History Length SR SPL
No history 46.8% 0.193

5 42.7% 0.180
10 45.4% 0.196
15 40.4% 0.170

Table 4: Impact of adding context history. We compare our
method to alternatives of keeping the past 0, 5, 10, and 15 obser-
vations and actions. We see that adding context history does not
improve the performance of our method
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The results of these experiments are shown in Table 4. We find that when naively concatenating
past observations and actions, our prompt strategy is unable to use a longer context. Indeed, the
performance remains the same or decreases when increasing the history length.

4.3.3. HOW IMPORTANT IS PERFECT DEPTH PERCEPTION?

Within the simulator, the depth sensor provides accurate pixel-wise depth information, which is
important for determining the navigability mask. To investigate the importance of quasi-perfect
depth perception, we evaluate two alternate approaches that only use RGB: (i) Segformer, which
uses Xie et al. (2021) to semantically segment pixels belonging to the floor region. We use this
region as the navigability mask and bypass the need for any depth information. We estimate the
distances to obstacles by multiplying the number of pixels with a constant factor. (ii) ZoeDepth,
which uses Bhat et al. (2023) to estimate metric depth values. We use such predicted values instead
of the ground-truth distances from the simulator and compute navigability in the original way.

Run SR SPL
Depth sensor 50.4% 0.210
Segformer Xie et al. (2021) 47.2% 0.183
ZoeDepth Bhat et al. (2023) 39.1% 0.161

Table 5: Depth Ablation. We evaluate two alternate
approaches that only require RGB. We find that semantic
segmentation performs close to using ground truth depth,
whereas estimating depth values leads to a significant
performance drop

The results of this study are presented in Table 5. We find that depth estimation from Bhat
et al. (2023) is not accurate enough to identify navigable areas. Indeed, depth noise leads to a
10% drop in SR. However, using a segmentation mask instead of relying on depth information
surprisingly proves to be quite effective, with only a decrease of 3% with respect to using perfect
depth perception. Overall, our experiments show that a VLM navigation agent can perform well
with only RGB information.

5. Conclusion
In this work, we present VLMnav, a novel visual prompt-engineering approach that enables an

off-the-shelf VLM to act as an end-to-end navigation policy. The main idea behind this approach
is to carefully select action proposals and project them on an image, effectively transforming the
problem of navigation into one of question-answering. Through evaluations on the ObjectNav and
GOAT benchmarks, we see significant performance gains over the iterative baseline PIVOT, which
was the previous state-of-the-art in prompt engineering for visual navigation. Our design study fur-
ther highlights the importance of a wide field of view and the possibility of deploying our approach
with minimal sensing, i.e., only an RGB image.

Our method has a few limitations. The drastic decrease in performance from disabling the al-
low slide parameter indicates that there are several collisions with obstacles, which could be prob-
lematic in a real-world deployment. In addition, we find that specialized systems such as Khanna*
et al. (2024) outperform our work. However, as the capabilities of VLMs continue to improve,
we hypothesize that our approach could help future VLMs reach or surpass the performance of
specialized systems for embodied tasks.
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