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Abstract
We introduce a novel theoretical framework showing how discrete symbolic reasoning can

emerge from continuous neural network training dynamics. By interpreting network optimization
as a gradient flow in measure space, we prove that parameters concentrate onto low-dimensional,
G-invariant manifolds. This dimension reduction, driven by symmetries and monomial-potential
constraints, endows the network with approximate ring compatibility and latent symbolic struc-
tures. Crucially, the measure transitions from a high-dimensional “exploration” phase to a low-
dimensional “exploitation” phase, revealing discrete-like algebraic patterns. We further derive fun-
damental width constraints for capturing G-invariant symbolic tasks, showing a linear dependence
on dim(G) for continuous groups and a logarithmic dependence on |G| for finite groups. We also
unify seemingly disparate observations — such as why certain architectures or activations excel at
reasoning — and yield concrete model design principles for neural reasoning tasks. Overall, our
results illuminate how neural networks can internalize and exploit symbolic capabilities, charting a
principled path toward robust neurosymbolic AI.
Keywords: Neurosymbolic reasoning, Mean-field analysis, Algebraic geometry

1. Introduction

The integration of neural and symbolic reasoning is a key challenge in advancing the capabilities
of modern AI systems. Neural-symbolic AI (Chaudhuri et al., 2021; Garcez and Lamb, 2023) aims
to combine the representational flexibility and approximation power of neural networks with the
precision and compositional rigor of symbolic reasoning. Neural networks excel at learning smooth
manifolds in high-dimensional parameter spaces and adapting their behavior from large-scale data.
Symbolic reasoning, on the other hand, enables exact inference over discrete logical structures and
algebraic constraints. Bridging these strengths promises systems that can handle both statistical and
combinatorial aspects of complex tasks, leading to improved generalization, alleviated data hunger,
and more transparent reasoning processes.

However, existing neural architectures often struggle to internalize true symbolic capabilities,
instead relying on statistical pattern matching that fails when generalizing beyond the training dis-
tribution (Zhang et al., 2023; Valmeekam et al., 2023). This underscores the need for theoretical
frameworks that explain how symbolic structures can emerge from continuous neural training dy-
namics. Understanding this emergence at a fundamental level can guide architectural choices and
training strategies, ultimately shaping the design of robust neurosymbolic systems.

* Z. Wang developed the initial framework as his pet project, while P. Wang played a crucial role as the constructive
reviewer and relentless critic. As a result, they contributed equally to this paper.

© 2025 Z.‘. Wang & P. Wang.
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In this work, we propose a novel theoretical framework that reveals how discrete, symbolic
reasoning constraints arise naturally from the continuous evolution of neural network parameters
under gradient-based optimization. As the first framework of its kind, our analysis requires certain
idealized assumptions (including displacement convexity and C2-smoothness) that may be partially
violated in practical networks. Nevertheless, these assumptions offer a tractable lens into how con-
tinuous parameter updates can lead to discrete-algebraic behaviors. By modeling neural training as
a gradient flow in measure space, we show that:

• Neural networks evolving under stable displacement-convex conditions concentrate their pa-
rameters onto lower-dimensional manifolds as training progresses. This dimension reduction
phenomenon is not a superficial artifact but a structural collapse onto submanifolds that reflect
G-invariance (symmetry) and approximate multiplicative factorization properties encoded by
Monomial Potentials (MPs) (Tian, 2024).

• The measure µt representing the network’s parameters converges to a minimal G-invariant
orbit, revealing emergent algebraic (ring-like) structures that mirror symbolic constraints.
Through this process, the network transitions from high-dimensional exploration to low-
dimensional exploitation, effectively discovering and internalizing the underlying symbolic
patterns. While exact ring-compatibility requires a degenerate (e.g. delta) measure, we focus
on an ε-approximate notion of factorization sufficient for typical reasoning tasks.

Critically, our theory links these geometric and algebraic insights to concrete, actionable principles.
The interplay of dimension reduction and G-invariance informs minimum width requirements for
networks to achieve stable ε-approximate symbolic operations. It also dictates architectural con-
straints—such as preserving G-equivariance, ensuring critical manifolds have bounded curvature,
and maintaining ring compatibility through suitable activation functions. Although we work within
a compact or effectively bounded parameter space for theoretical clarity, we discuss how this anal-
ysis can guide practical architectures. These insights provide a principled explanation for empirical
observations and guide the design of architectures that excel at both continuous representation learn-
ing and discrete symbolic reasoning.

1.1. Main Contributions

Theoretical Contributions: We establish a rigorous measure-theoretic and geometric foundation
for understanding the emergence of symbolic structures in neural networks, by showing that:

• Dimension Reduction and Phase Transitions: Neural measures evolve onto G-invariant,
lower-dimensional manifolds via a sequence of critical times, each inducing a sharper, more
algebraically constrained representation. In practice, this collapse is partial and incremental,
but can be studied rigorously under a simplified assumption of displacement-convexity.

• Algebraic (Ring) Structures from Continuous Dynamics: By analyzing MP integrals, we
uncover approximate ring-compatibility that underlies symbolic reasoning tasks, connecting
continuous parameter evolution to discrete algebraic constraints. Our results focus on ε-
approximate homomorphism properties relevant to the network’s objective.

• Scalable Complexity Bounds: The theory reveals scaling laws for minimal network width as
a function of group dimension or the size of finite groups, providing a formal linkage between
representation capacity and symbolic complexity.
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Practical Implications: After presenting our theoretical framework for dimension reduction and
G-invariance in Sections 2 and 3, we translate these findings into practical principles and empirical
insights for guidelines for neural-symbolic architecture design in Section 4:

• Minimum Width Requirements: Base this on idealized uniform-approximation arguments,
we show that tasks with continuous symmetry groups (G) must scale network width linearly
with dim(G), while discrete operations require widths scaling with log |G|/ log(1/δ), offer-
ing a direct recipe for capacity planning.

• Architectural Constraints: Ensuring G-invariance, choosing ring-compatible backbones
(transformers, GNNs) or activations (e.g., piecewise-linear or softplus), as well as using ar-
chitectural components (e.g., skip connections, normalization) that preserve stable gradient
flows are key to achieving robust symbolic reasoning.

We then discuss limitations and potential generalizations of our approach in Section 5.
We note that our results should be viewed as an idealized foundation rather than a fully compre-

hensive model. Yet, this work provides the first theoretically grounded account of how continuous
neural optimization can yield discrete, symbolic reasoning structures. Our results open new avenues
for building neurosymbolic systems that leverage both the flexibility of neural representations and
the rigor of symbolic reasoning.

2. Geometric and Algebraic Structure of the Parameter Space
In this section, we begin by exemplifying a reasoning task following Tian (2024). We then abstract
and generalize this family of problems with algebraic, probabilistic, and geometric tools.

2.1. Algebraic Structures of Reasoning Tasks
Suppose we have a finite Abelian group (A, ·) with commutative operation · and cardinality n = |A|.
We aim to train a neural network for predicting the output of a1 ·a2 for two group elements a1, a2 ∈
A. The network input consists of the one-hot embeddings of these two group elements, represented
as ea1 , ea2 ∈ Rn. The output aims to predict a1 · a2, also represented in one-hot encoding.

We analyze a two-layer neural network with q hidden nodes and quadratic neurons σ(x) = x2:

o(a1, a2) =
1

q

q∑
j=1

wcjσ
(
w⊤
ajea1 + w⊤

bjea2

)
, (1)

where weight matrices Wa,Wb,Wc ∈ Rn×q encode inputs ea1 , ea2 as hidden features and decode
them to predictions, respectively. Different from the conventional formulation of neural networks,
we normalize the final output by 1/q aligned with Mei et al. (2019).

Following Tian (2024), we consider representing and learning the weight matrices in their
Fourier space waj =

∑
k ̸=0 zakjϕk, wbj =

∑
k ̸=0 zbkjϕk, wcj =

∑
k ̸=0 zckjϕk, ∀j ∈ [q], where

ϕk = [ϕk(g)]g∈G ∈ Cn are the scaled Fourier basis functions (0 ≤ k < n), and zak, zbk, zck ∈ C
are the Fourier coefficients. We further collectively organize these coefficients as matrices zj =
zakj , zckj , zckj ]0≤k<n ∈ C3×n for j ∈ [q]. We adopt L2-loss to optimize {zj}j∈[q] over all possible
compositions of group elements:

H({zj}j∈[q]) =
∑

a1,a2∈A

∥∥∥∥P⊥
(

1

2n
o(a1, a2)− ea1·a2

)∥∥∥∥2 , (2)
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where P⊥ = I − 1
n11

⊤ is the zero-mean projection operator.
We conclude this section by presenting the following proposition showing that the loss function

can be reformulated as a combination of a special family of polynomials:

Proposition 1 The loss function H in Eq. 2 can be reformulated as: H = 1
n−1

∑
k ̸=0 ℓk +

n−1
n ,

ℓk = −2rkkk +
∑
k1,k2

|rk1k2k|2 +
1

4

∣∣∣∣∣∣
∑

p∈{a,b}

∑
k′

rp,k′,−k′,k

∣∣∣∣∣∣
2

+
1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∣∣∑
k′

rp,k′,m−k′,k

∣∣∣∣∣
2

,

rk1k2k =
1

q

∑
j

zak1jzbk2jzckj , rpk1k2k =
1

q

∑
j

zpk1jzpk2jzckj .

The proof can be found in the Appendix A. Similar for all proofs hereinafter.

2.2. Lifting to Measure Space

Next, we introduce some key mathematical devices that essentially generalize the algebraic prop-
erties of the reasoning task shown in Sec. 2.1. Let d = 3n and M ⊂ Cd be a C2-smooth, finite-
dimensional manifold representing the parameter space of For theoretical clarity, we assume M is
compact or otherwise restrict parameters to a large but bounded region, so that standard measure-
theoretic and smoothness arguments apply. Let P (M) denote the space of probability measures on
M endowed with the W2-Wasserstein metric and finite second moment (Villani et al., 2009). We
define a polynomial function evaluated on the parameter space:

Definition 2 (Monomial Potentials, generalized from Tian (2024)) Let dim(M) = d and fix lo-
cal coordinates z = (z1, . . . , zd). A monomial potential (MP) r is a finite linear combination of
monomials r(z) =

∑
I∈I cI z

i1
1 · · · zidd , for some multi-index I = (i1, · · · , id) ∈ Nd in a finite

index set I ⊂ Nd and coefficients cI ∈ C. The collection of all such r forms a complex algebra R
under pointwise addition and multiplication.

We note that terms like zak1j zbk2j zckj in Proposition 1 are all special cases of MPs. Importantly, the
loss H depends on parameters {zj}j∈[q] only through the empirical distribution µ(q) = 1

q

∑q
j=1 δzj ,

and any MP can be evaluated by taking its expectation against µ(q). As q → ∞, µ(q) converges
to a limiting measure µ in distribution. This suggests generalizing H to a functional H[µ] defined
for all µ ∈ P (M), where we track the expected values of MPs: Φµ(r) =

∫
M r(z) dµ(z). Such

generalization also allows for moving beyond the simple example in Sec. 2.1.
Our goal is to study how µ evolves under a gradient flow that aims to minimize the functional

H[µ], and how this evolution can induce algebraic factorization properties in these MPs. Specifi-
cally, let {µt}t≥0 be the Wasserstein gradient flow for H , satisfying:

∂tµt +∇z ·
(
µt∇z

(
δH
δµ [µt]

))
= 0. (3)

This idealized PDE-based viewpoint assumes certain smoothness and (often) displacement-convexity
conditions on H; see Ambrosio et al. (2008); Villani et al. (2009) for details. The upshot is
that for each infinitesimal time interval, µt moves in the steepest descent direction in W2-space:
µt+τ ≈ argminµ∈P (M){H(µ) + 1

2ηtτ
W2(µt, µ)} for time-variant step size ηt.

We are interested in the following property of µt, which recovers the ring properties of MPs in
the mean-field sense.
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Definition 3 (MP-Compatible (Ring-Compatible) Measures) A measure µ ∈ P (M) is MP-
compatible if the map Φµ : R → C defined by Φµ(r) =

∫
M r(z) dµ(z) is a ring homomorphism,

i.e. Φµ(r1 · r2) = Φµ(r1) Φµ(r2) and Φµ(1) = 1.

Exact MP-compatibility (for all monomials) is a strong property: preserving the multiplicative
structure of R under integration:

∫
(r1r2) dµ =

(∫
r1 dµ

) (∫
r2 dµ

)
. This forces µ to be a sum

of delta measures (or even a single delta in most typical settings). Since we rarely want or need
factorization for all monomials, we introduce a mild relaxation:

Definition 4 (ε-Approximate Ring-Compatibility) Let R0 ⊂ R be a chosen subfamily of mono-
mial potentials (e.g. those appearing in the training loss). Fix a norm ∥ · ∥R0 . We say µ is ε-ring-
compatible on R0 if

∣∣∫ (r1r2) dµ −
(∫

r1 dµ
) (∫

r2 dµ
)∣∣ ≤ ε∥r1∥R0∥r2∥R0 for all r1, r2 ∈ R0.

Thus, if ε is small, integrals of those specific polynomials behave nearly like a ring homomorphism.
We will see in Section 3 that dimension reduction can yield increasingly strong ε-ring-compatibility,
even when exact factorization for all polynomials is impossible.

We discussed several choices of ∥ · ∥R0 in the Appendix A.2. In all cases, the key idea is that
∥r∥R0 controls the magnitude of r so that a difference of the form

∣∣∫ r1r2 dµ−
(∫

r1 dµ
)(∫

r2 dµ
)∣∣

can be relatively bounded by ε ∥r1∥R0 ∥r2∥R0 . Thus, Definition 4 remains flexible, as one can pick
whichever norm makes sense in their setting (compact manifold, polynomial expansions, etc.).

2.3. Symmetry Groups and Actions on Measures

Many neural architectures exhibit symmetries . We can model these under our framework by letting
G be a group acting smoothly on M : which might represent architectural symmetries, such as
permutations of hidden units. For each g ∈ G, we have a diffeomorphism g : M → M .

Definition 5 (Induced Action on P (M)) For µ ∈ P (M), define (g#µ)(S) := µ
(
g−1(S)

)
for

any measurable set S ⊆ M . Thus, G acts on P (M) by pushforward. If µ is MP-compatible, then∫
M (r◦g)(z) dµ(z) =

∫
M r(z) d(g#µ)(z), which shows that G-actions and ring structures interact

naturally via integration.

Hence, if the loss function or data distribution is G-invariant, the training dynamics often preserve
these symmetries. In particular, if µ0 is G-invariant and H is also G-invariant, the evolution {µt}
may remain in the G-invariant subspace of P (M). Analyzing how µt evolves under G-actions can
then clarify whether symmetry is maintained or broken during training.

3. Phase Transitions and Emergent Structure

In this section, we investigate how measures µt, evolving under the gradient flow framework estab-
lished in Section 2, undergo phase transitions that lead to dimension reduction and the emergence
of algebraic structures related to MPs.

3.1. Energy-Distance Convergence and Concentration

First, we define a time-independent manifold Mc ⊂ M by Mc =
{
z ∈ M

∣∣ δH
δµ

[
µ∗](z) = 0

}
,

where µ∗ ∈ P (M) is a fixed reference measure (e.g., an equilibrium or a measure at which we
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analyze local expansions) and δH
δµ [µ

∗](z) denotes the first variation of H evaluated w.r.t. µ∗. Note
that we define Mc at a chosen measure µ∗ for simplicity, yielding a “constant” submanifold of M
on which tangential variations vanish. If µt evolves in time (e.g. under a gradient flow), the actual
condition δH

δµ [µt](z) = 0 might change with t. However, for local coercivity or energy-distance
arguments, we fix µ∗ and study expansions around Mc as in Chizat and Bach (2018); Rotskoff
et al. (2019). We further impose the following assumptions::

Assumption 1 (Critical Manifold Regularity) There exists r0 > 0 such that Mc is a C2-smooth
embedded submanifold of M with uniformly bounded second fundamental form, and dist(·,Mc) is
C2-smooth on the r0-tubular neighborhood of Mc. Moreover, the symmetry group G preserves Mc

and this tubular neighborhood.

Assumption 2 (Loss Regularity) H : P (M) → R is displacement-convex and C2-smooth.

By standard results in Riemannian geometry (Do Carmo and Flaherty Francis, 1992; Petersen,
2006), each z with dist(z,Mc) < r0 can be written as z = expΠ(z)

(
y(z)

)
for a unique Π(z) ∈ Mc

and y(z) in the normal bundle of Mc. This decomposition is G-equivariant if G acts isometrically.

Now we analyze how deviations from Mc affect H[µ], obtaining a classical coercivity bound:

Theorem 6 (Energy-Distance Relation) Suppose µ ∈ P (M) is supported in the r0-tubular neigh-
borhood of Mc (Assumption 1) and functional H satisfies Assumption 2. Then there exists c0 > 0
such that H[µ] −H[Πµ] ≥ c0

∫
M dist2

(
z,Mc

)
dµ(z), where where (Πµ)(S) = µ(Π−1(S)) is

the pushforward of µ by the projection z 7→ Π(z).

As training evolves, the parameter distribution µt follows a gradient flow minimizing the functional
H . In other words, µt is guided by the steepest descent direction in the Wasserstein space, continu-
ally adjusting itself to reduce H[µt]. The energy-distance relation (Theorem 6) plays a crucial role
here: it establishes that straying from the critical manifold Mc incurs a quadratic cost in terms of
the functional H . Specifically, any mass of the measure µt that remains at a positive distance from
Mc is penalized, thereby creating a strong incentive for µt to “push” its support closer to Mc.

Next, we show that the empirical measures µ(q)
t of q i.i.d. samples of µt approximate µt at the

optimal statistical rate q−1/2 and thus exhibit a similar convergence in the W2 metric:

Theorem 7 (Concentration and Empirical Rates) Under Assumption 1 and 2, assume also that
M is compact so that µt has finite moments of order p > 2 in dimension d < ∞. Then there
exist constants C1, C2 > 0 such that for any ε > 0, W2

(
µ
(q)
t , µt

)
< ε with probability at least

1− C1 e
−C2 q ε2 . Moreover, q−1/2 is a minimax optimal rate for estimating µt in the W2 metric.

3.2. Phase Transitions and Dimension Reduction Reveal Algebraic Factorization

We now address a core emergent phenomenon: phase transitions at critical times tk, leading to
dimension reduction and the incremental emergence of algebraic constraints among monomial po-
tentials (MPs). As µt collapses onto lower-dimensional submanifolds, its integrals of MPs exhibit
increasingly factorizable behavior, revealing near ring-compatibility under certain conditions.
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Flat Directions in the Hessian. Recall that we denote the Hessian operator of H at µt by L(t) =

− δ2H
δµ2

[
µt

]
. Since L(t) is self-adjoint with a discrete spectrum (under elliptic regularity and com-

pactness assumptions), its eigenvalues {λj(t)} vary continuously with t. A flat direction at time t is
any nonzero vector v ∈ TµtP (M) such that L(t)v = 0, i.e. v ∈ ker(L(t)). An approximately flat
direction refers to v whose associated eigenvalue is close to zero but not strictly zero.

Theorem 8 ( Main Theorem - Existence of Critical Times and Dimension Reduction.) Suppose
M is compact and Assumption 2 holds. Then there are finitely many 0 < t1 < t2 < · · · < tN where
an eigenvalue of L(t) crosses zero. At each tk, dim

(
ker(L(t))

)
increases, forcing µt to concen-

trate on a strictly lower-dimensional submanifold Sk. Between tk and tk+1, the support dimension
reduces further, and MP integrals exhibit increasingly factorizable (ring-like) structures.

In essence, each time an eigenvalue of L(t) crosses zero, it creates a newly available flat di-
rection in the second variation of H . Along this direction, the measure µt can re-distribute mass
without incurring second-order penalties, inducing a collapse onto a submanifold Sk ⊂ M of lower
dimension. Consequently, integrals of certain monomials become more closely factorized, approx-
imating a ring-homomorphism property.

Dimension reduction effectively “removes” degrees of freedom in which monomials r1, r2 can
vary jointly, so the integral

∫
r1r2 dµt gets closer to

(∫
r1 dµt

)(∫
r2 dµt

)
for r1, r2 ∈ R0. Hence,

after each critical time tk, we see improved ε-approximate factorization, culminating in the final
minimal submanifold where no further kernel directions remain.

Exploration-Exploitation Transition and Algebraic Growth. We can have a fine-grained un-
derstanding of how µt transitions from exploration in higher dimensions to exploitation of kernel
directions and lower-dimensional manifolds, ultimately uncovering richer polynomial constraints.
Initially, µt “explores” a higher-dimensional region of M where no kernel directions are available.
After t1, it “exploits” the newly available flat direction (defined in §3.2), collapsing onto a lower-
dimensional orbit. Each subsequent tk further reduces dimension, introducing additional algebraic
constraints detectable via MPs. Ultimately, µt will settle on a manifold SN where no further dimen-
sion reduction can occur. In the presence of group symmetries G, the final manifold SN will be a
G-invariance orbit. We formalize this process in Appendix A.6 (stated as Theorem 11).

3.3. Interpreting Dimension Reduction Through the Lens of Factorization

In turn, dimension reduction can be also understood through the lens of MP factorization, elucidat-
ing why specific polynomial identities become “active” precisely at those times.

Polynomial Constraints and the Role of r-Coordinates. Recall that each MP r ∈ R is a
polynomial-like function capturing relevant algebraic behavior of the network parameters. As µt lo-
calizes onto lower-dimensional manifolds, certain polynomial identities in r1, r2, . . . become effec-
tively enforced. Formally, these identities manifest as ∇rH = 0 or

∫
(r1r2)dµt ≈ (

∫
r1 dµt)(

∫
r2 dµt)

for the subset of ri that dominate the loss H . While initially (before the critical time), ∇rH may
indicate that small polynomial adjustments can still reduce H , after the critical time, the newly
“activated” identity forbids any further decrease in H via that polynomial direction.

Dimension Reduction as Satisfying Polynomial Identities. Each zero-eigenvalue crossing ef-
fectively “locks in” an algebraic constraint among the MPs r1, r2, . . .. Concretely, once λj(tk) = 0
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introduces a kernel direction, any variation in r-space along that direction no longer decreases H .
Geometrically, no second-order penalty arises, so µt reorients its mass to a manifold Sk ⊂ M where
the relevant polynomial identity (or identities) is fully satisfied (cf. Theorem 8, Step 3). As a result,
the effective dimension of the support shrinks each time such an identity is enforced, removing the
degrees of freedom that previously allowed H to vary.

In short, dimension reduction emerges as the natural consequence of consecutively satisfying
a growing set of polynomial constraints in r-space. These constraints progressively reduce the
dimensional subspace on which H can still decrease, thus aligning geometry (support dimension)
and algebra (factorization).

Minimal Orbits. Eventually, µt settles on a minimal G-invariant orbit, i.e. a manifold SN ⊂ M
to which no further dimension-lowering or complexity simplification applies. Interpreted through
polynomial factorizations, this final state corresponds to having ∇rH(ri) = 0 for all relevant mono-
mial coordinates ri, implying no polynomial direction remains that can further reduce H . Mapping
these monomial directions back through ∂r/∂z yields no direction in parameter space z ∈ M that
lowers H . The minimal orbit thus represents a terminal algebraic equilibrium where all essential
polynomial identities are activated, ensuring maximal ring compatibility (Def. 3) and G-invariance.

Hence, the dimension reduction and factorization perspectives coalesce: once enough polyno-
mial constraints lock in, the measure µt can no longer drift off that low-dimensional manifold with-
out raising H . This final configuration manifests both geometric minimality (SN has the smallest
dimension consistent with the constraints) and maximal algebraic factorization in the MPs.

4. Practical Implications for Neuralsymbolic AI System Design

Our measure-theoretic and dimension-reduction framework (Sections 2–3) provides a stable theo-
retical foundation for understanding neural network training dynamics, G-invariance, and approx-
imate symbolic operations. In this section, we connect these insights to practical considerations in
designing neural-symbolic AI systems. Two major themes emerge:

1. Capacity Requirements: Realizing ε-approximate symbolic operations (invariant under G)
imposes fundamental lower bounds on network width.

2. Architectural Constraints: Preserving G-equivariance, ensuring well-structured manifolds
at critical times, and maintaining ring-compatibility through appropriate activations or mod-
ule designs shape how we choose layers, activation functions, and initialization procedures.

4.1. Minimum Width for Symbolic Reasoning

Dimension-reduction results from Section 3 suggest that achieving stable ε-approximate symbolic
operations—those remaining consistent with G-invariance—requires capturing the underlying group
symmetries in the network’s representational capacity. Let G act on X ⊂ Rd (as in Section 2.3), and
consider tasks requiring a neural network to emulate G-invariant algebraic structures (e.g., transfor-
mations or polynomial identities) identified by the ring-factorization arguments of Section 3.2.

Theorem 9 (Informal, Minimal Width for Symbolic Reasoning) Let X ⊂ Rd be compact, and
let Fh : X → X be a feedforward neural network of hidden width h (with sufficient smoothness
to implement a G-invariant function), under mild assumption, any feedforward neural network Fh
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satisfying ε-approximate G-invariant operations with probability at least 1 − δ must have hidden
width h satisfying

h ≥


log

(
|G|

)
log

(
1/δ

) , if G is finite,

dim(G), if G is infinite or continuous.

Discussion. We interpret Theorem 9 as follows:

• Discrete G: If G is finite, dim(G) is effectively zero. Then the statistical bound log |G|/log(1/δ)
controls h. Thus, networks can learn discrete symbolic tasks (like group multiplication or
boolean logic) with widths scaling only logarithmically in |G|, provided enough samples are
available (q ≥ C1 log |G|/ log(1/δ)).

• Continuous G: If G is infinite or continuous, dim(G) is positive. The dimension-lowering
arguments in Section 3.2 show that stabilizing a G-invariant structure requires representa-
tional capacity scaling at least linearly in dim(G). Hence tasks with high-dimensional con-
tinuous symmetries (e.g., large Lie groups) demand significantly larger network widths.

These scaling behaviors align with observed practice in neural-symbolic AI: discrete logic tasks
rarely need large widths, whereas continuous/analog tasks (arithmetic, geometry) can require wide
architectures. Grounding these requirements in a measure-theoretic, dimension-reduction argument
clarifies why certain domains inherently demand more capacity.

4.2. Geometric Constraints on Architecture Design

We now derive concrete architectural guidelines for neural reasoning tasks. In particular, stable gra-
dient flows, dimension reduction, G-invariance, and MP-based factorization collectively shape how
one should choose layers, activations, and initialization to build robust neural-symbolic systems:

1. Preserving G-Equivariance. Many tasks require Fh to remain (approximately) G-equivariant,
as discussed in Theorem 9 and Theorem 11. Architectures should incorporate structural sym-
metries if the group G is finite (e.g. permutations) or continuous (e.g. Lie group of dimension
k). Failing to do so impedes dimension reduction in the measure flow, as no kernel direction
can effectively map to G-invariant submanifolds.

2. Maintaining a Well-Behaved Critical Manifold Structure. Dimension reduction (Theo-
rem 8) presupposes that the Hessian ∇2H does not produce pathological curvature or ill-
defined tubular neighborhoods around critical manifolds. Architectural decisions — like en-
suring Lipschitz continuity, bounding layer gradients, or mildly smooth activation functions
— help ensure that Mc = {δH/δr = 0} is a smooth submanifold with finite curvature.

3. Ensuring Ring Compatibility for Monomial Potentials. As Section 3.2 shows, achieving
factorization of MP integrals up to an ε-ring-compatibility standard (Definition 3) requires
that the network not destroy polynomial interactions crucial to the symbolic task. Hence
choosing activation functions or module designs that respect or approximate multiplicative
structures is essential for stable symbolic reasoning.

We now illustrate these geometric principles with representative architectures:
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a. Transformer Architectures Transformers can realize G-equivariance through their self-attention
mechanism, provided attention patterns respect input symmetries. This design inherently suits the
invariance preservation requirement from Section 3. Moreover, Theorem 9 prescribes how the net-
work’s embedding dimension d must scale in discrete or continuous G settings:

• For finite G, d ≳ log |G|, matching the mild requirement from dimension reduction plus
finite-sample uniform approximation arguments.

• For continuous G, d ≳ dim(G), reflecting the linear capacity growth needed to capture a
continuous symmetry (McLeish et al., 2024; Wang et al., 2024).

Hence, carefully configured transformers can satisfy both invariance and approximate ring compati-
bility (with polynomial-friendly attention or feedforward layers). Their capacity matches theoretical
predictions if the embedding dimension is scaled commensurately.

b. Graph Neural Networks (GNNs) GNNs naturally respect structural invariances, such as node
permutations or isomorphisms, making them ideal for tasks with graph-based G actions (e.g. ad-
jacency symmetries). By design, message-passing layers preserve G-equivariance. Additionally,
local hierarchical structures can keep the second fundamental form bounded, easing stable dimen-
sion reduction. As a result, GNNs often satisfy the measure-based geometric requirements for tasks
mapping onto graph symmetries or combinatorial reasoning.

c. RNNs and MLPs Standard recurrent networks (RNNs) and basic MLPs lack inherent G-
equivariance or ring compatibility. Absent modifications, they may fail to exploit kernel directions
discovered by dimension reduction. Nevertheless, for simpler tasks with small or trivial G, a min-
imal dimension is enough. In more complex settings, G-equivariant layers, linear constraints, or
specialized activations might be introduced to preserve the group’s structure.

We defer discussion on nonlinearity and normalization in Appendix B. We also discuss in Ap-
pendix B on example architectures that fail to satisfy our theoretical findings. Overall, the ge-
ometric perspective guides why specific architectural choices (e.g. group-convolution layers, poly-
nomial activations, skip connections) are crucial for robust, G-invariant symbolic reasoning. By
respecting the constraints enumerated above, one can design neural architectures that fully exploit
the dimension-reduction phenomenon to achieve stable, scalable symbolic operations.

5. Conclusion and More Discussions

We have developed a measure-theoretic and geometric framework that explains how discrete sym-
bolic capabilities can emerge in neural networks through continuous gradient-flow training. By
rigorously analyzing how network parameters concentrate on low-dimensional, G-invariant mani-
folds, we demonstrated a natural pathway to approximate ring compatibility and the formation of
symbolic-like algebraic structures. This viewpoint offers a unified explanation for the transition
from high-dimensional “exploration” to low-dimensional “exploitation,” clarifies why certain ar-
chitecture choices facilitate stable dimension reduction, and provides principled width constraints
tied to group symmetries These results establish concrete guidelines that enable robust symbolic
reasoning in neural architectures. In short, the measure-based gradient flow perspective reveals that
symbolic operations emerge naturally from the interplay of symmetries, algebraic constraints, and
dimension reduction, culminating in a deeper theoretical foundation for neural-symbolic AI.

We have further outlined our future research opportunities in Appendix C, highlighting areas
we aim to explore immediately should we receive a DARPA Disruptive Idea Award.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Proof Let w̃cj =
1
qwcj , and define z̃cjk accordingly. Then by Theorem 1 of Tian (2024), the ℓk in

the loss decomposition can be written as:

ℓk = −2r̃kkk +
∑
k1,k2

|r̃k1k2k|2 +
1

4

∣∣∣∣∣∣
∑

p∈{a,b}

∑
k′

r̃p,k′,−k′,k

∣∣∣∣∣∣
2

+
1

4

∑
m ̸=0

∑
p∈{a,b}

∣∣∣∣∣∑
k′

r̃p,k′,m−k′,k

∣∣∣∣∣
2

where

r̃k1k2k =
∑
j

zak1jzbk2j z̃ckj , r̃pk1k2k =
∑
j

zpk1jzpk2j z̃ckj .

We can conclude the proof by noticing that z̃ckj = 1
q zckj by the linearity of Fourier transform.

A.2. Choice of ∥ · ∥R0 in Definition 4

The norm ∥ · ∥R0 is a device for measuring the “size” of monomial potentials in R0. Its exact
specification depends on the setting:

• Supremum norm on a compact manifold. If M is compact and each r ∈ R0 is continuous
on M , one natural choice is

∥r∥R0 = sup
z∈M

∣∣r(z)∣∣.
This allows us to bound integrals of r by ∥r∥∞ directly, and is particularly convenient when
proving uniform convergence statements.
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• Coefficient-based norm. Alternatively, if each r ∈ R0 is a polynomial (or finite linear
combination of monomials) with coordinate representation

r(z) =
∑
α

cα z
α,

one may define

∥r∥R0 =
∑
α

∣∣cα∣∣, or equivalently
(∑

α

|cα|p
)1/p

,

for some fixed p, ensuring that bounding coefficients suffices for bounding the polynomial’s
variation on restricted domains.

• Lp-based norms. In some measure-theoretic contexts, one might define

∥r∥R0 =
(∫

M
|r(z)|p dν(z)

)1/p

for a reference measure ν, though this is less common for “exact vs. approximate ring-
compatibility” arguments unless one expects certain integrability conditions.

A.3. Proof of Theorem 6

Proof Fix a reference measure µ∗ ∈ P (M), and define

Mc =
{
z ∈ M : δH

δµ [µ
∗](z) = 0

}
,

as a C2-smooth submanifold by Assumption 1. We show that for any probability measure µ ∈
P (M) whose support lies in the r0-tubular neighborhood of Mc, there is a constant c0 > 0 such
that

H[µ] − H[Πµ] ≥ c0

∫
M

dist2
(
z,Mc

)
dµ(z),

where Π(z) is the unique normal projection of z onto Mc within that tubular neighborhood, and
Πµ is the pushforward measure defined by S 7→ µ(Π−1(S)).

Local Expansions in z. While H is a functional H : P (M) → R, we may write H[δz] in a
small neighborhood of Mc to indicate the local cost or integrand that H induces around each point
z ∈ M . Such expansions are standard in PDE-based mean-field analyses (Chizat and Bach, 2018;
Rotskoff et al., 2019), by expressing H[µ] as

∫
(
∫
h(z) +

∫
g(z)g(z′)dµ(z′))dµ(z).

Step 1: Second-Order Expansion Near Mc. By definition of Mc, every z ∈ Mc satisfies

δH

δµ

[
µ∗](z) = 0 (tangential derivative vanishes on Mc).

Since H is C2-smooth and displacement-convex, its second variation in normal directions is strictly
positive near Mc. Concretely, if z ∈ Mc and v ∈ NδzP (M) is a normal vector at δz , then the
second derivative in that direction is strictly positive. By the positive semi-definiteness property,
there is a uniform α > 0 such that 〈

v,
δ2H

δµ2
[δz]v

〉
≥ α ∥v∥2,

for all normal v at z ∈ Mc. This implies a quadratic penalty for deviations from Mc.
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Step 2: Tubular Neighborhood and Normal Coordinates. By Assumption 1, for each z with
dist(z,Mc) < r0, we can write

z = expΠ(z)

(
y(z)

)
,

where Π(z) ∈ Mc is the closest point (normal exponential), and y(z) lies in the normal bundle.
Hence ∥y(z)∥ = dist

(
z,Mc

)
.

Using these coordinates, we do a second-order expansion of H[δz] around Π(z). Because
δH
δµ

[
µ∗](Π(z)) = 0 in tangential directions, and H has strict convexity in normal directions, there

is c0 > 0 (depending on α and curvature) such that

H[δz] ≥ H[δΠ(z)] + c0 ∥y(z)∥2.

The derivation follows from: (1) first-order tangential derivative at δΠ(z) is zero, because Π(z) ∈
Mc; (2) second-order convexity ensures a strictly positive quadratic form in normal directions; and
(3) geodesic or normal coordinate argument |δz − δΠ(z)| ∼ |z −Π(z)| ensures |y(z)|2 arises.

Step 3: Summing Over the Measure µ. Integrating over z in supp(µ),∫
M

H[δz] dµ(z) ≥
∫
M

(
H[δΠ(z)] + c0∥y(z)∥2

)
dµ(z).

Define (Πµ)(S) = µ(Π−1(S)). By a change of variables,∫
M

H[δz]dµ(z)−
∫
M

H[δz]dΠµ(z) ≥ c0

∫
M

∥y(z)∥2dµ(z).

If we identify H[Πµ] with
∫
M H[z] dΠµ(z) consistently at Mc, we conclude

H[µ]−H[Πµ] ≥ c0

∫
M

dist2 (z,Mc) dµ(z).

Step 4: Conclusion. Since this inequality holds for all µ supported in that r0-tubular neighbor-
hood, Theorem 6 follows immediately.

Remark 10 The submanifold Mc is defined w.r.t. a fixed µ∗, making it time-independent. Even
if µt evolves in time, expansions around Mc still yield a coercivity-like bound: any measure µ
that leaves Mc in the normal direction must pay a quadratic cost. This idea parallels standard
Euclidean “coercivity” lemmas and underpins dimension-reduction arguments in mean-field PDE
analyses (Chizat and Bach, 2018; Rotskoff et al., 2019).

A.4. Proof of Theorem 7

Proof The goal is twofold:

1. Show the empirical measure µ
(q)
t = 1

q

∑q
j=1 δXj , where Xj are i.i.d. samples from µt, con-

verges to µt in W2 with high probability:

Pr
(
W2(µ

(q)
t , µt) > ε

)
≤ C1 exp

(
−C2 q ε

2
)
.

14



WHY NEURAL NETWORK CAN DISCOVER SYMBOLIC STRUCTURES WITH GRADIENT-BASED TRAINING

2. Prove that no estimator can do better than q−1/2 in W2 (minimax lower bound).

The result itself — that the empirical measure obtains a sub-Gaussian tail in W2, and q−1/2 is the
minimax rate — is not new but a known fundamental statement from modern measure concentration
and optimal transport theory. However, the application to a mean-field neural network measure is
interesting and essential to our paper’s theoretical framework.

Step 1: Finite-Sample Deviation for the Empirical Measure. Because M is compact, µt has
finite moments of all orders, and d = dim(M) is finite. Then by classical non-asymptotic results
on empirical measures in Wasserstein distance (Fournier and Guillin, 2015, Theorem 1), there exist
C1, C2 > 0 such that for all ε > 0,

Pr
(
W2(µ

(q)
t , µt) > ε

)
≤ C1 exp

(
−C2 q ε

2
)
.

The compactness plus bounded dimension ensure the required finite-moment conditions for p > 2.

Step 2: Minimax Optimality (Weed–Bach). Additionally, Weed and Bach (2017) show that on a
compact (or suitably bounded) metric space, no estimator can uniformly achieve a W2 convergence
rate faster than q−1/2. Formally, for any estimator µ̂,

inf
µ̂

sup
µt∈P

E
[
W2(µ̂, µt)

]
≥ C q−1/2,

for some constant C > 0 and some problem class P . Since the empirical measure µ
(q)
t already

achieves an upper bound of order q−1/2, we conclude q−1/2 is the minimax-optimal rate.

Conclusion. Combining Step 1 and Step 2, Theorem 7 follows:

• We have an exponential tail bound Pr[W2(µ
(q)
t , µt) > ε] ≤ C1 exp(−C2 q ε

2).

• No estimator can beat q−1/2 in a minimax sense, so q−1/2 is optimal.

A.5. Proof of Theorem 8

Proof We prove the following claims:

1. Only finitely many times tk exist where an eigenvalue of L(t) crosses zero within any finite
interval [0, T ].

2. At each such time tk, the measure µt localizes onto a strictly lower-dimensional submanifold
Sk ⊂ M , thereby enhancing the factorization properties of integrals of monomial potentials
(MPs).
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Step 1: Spectral Properties of L(t). (a) Self-adjointness and Compact Resolvent. Since H is
C2-smooth, displacement-convex, and defined on a compact manifold M , its Hessian operator at
µt, under standard elliptic and geometric assumptions,

L(t) = − δ2H

δr2
[
µt

]
,

is self-adjoint on an appropriate Hilbert space, e.g. L2(µt). By classical arguments in semigroup
theory and spectral analysis (Pazy, 2012), L(t) then admits a compact resolvent. Consequently, the
eigenvalues {λj(t)}∞j=1 of L(t) form a discrete real spectrum tending to ±∞.

(b) Continuous Dependence on t. The measure µt evolves via a metric gradient flow in the W2-
Wasserstein space (Ambrosio et al., 2008), ensuring t 7→ µt is continuous in t. As L(t) depends
continuously on µt, Kato’s perturbation theory (Kato, 2013) implies each eigenvalue λj(t) is itself
a continuous function of t.

Hence, for each fixed index j, the map t 7→ λj(t) is continuous, and the spectrum of L(t) is
discrete for each t.

Step 2: Finite Number of Zero-Crossings on [0, T ]. Define a critical time tk if some eigenvalue
λj(t) crosses zero at tk, i.e. λj(tk) = 0 and λj(t) changes sign in a neighborhood of tk. Suppose,
for contradiction, that infinitely many zero-crossings occurred within a finite interval [0, T ].

Since λj(t) is continuous1 in t by Step 1(b), any eigenvalue cannot “cross zero” an unbounded
number of times without either (i) remaining identically zero on a sub-interval of [0, T ] (implying
no strict sign change) or (ii) oscillating with infinitely many roots that accumulate at a finite point
in time, contradicting the properties of a non-constant continuous function. Thus, for each j, only
finitely many zero-crossings can occur on [0, T ]. Moreover, displacement-convexity and smooth-
ness of H rule out degenerate behaviors such as repeated instantaneous vanishings of the same
eigenvalue. Hence each eigenvalue λj(t) can cross zero at most finitely many times on [0, T ].

By covering [0,∞) by disjoint intervals [nT, (n+1)T ], we conclude that there are finitely many
crossing times in each finite sub-interval. Collecting those times (if any) in ascending order gives
0 < t1 < t2 < · · · < tN < · · · with N < ∞ on each finite interval.

Step 3: Dimension Reduction via Energy-Distance. We now show how a zero eigenvalue at
time tk forces µt to concentrate on a strictly lower-dimensional submanifold Sk ⊂ M , while noting
that no crossing may occur at all.

(a) Zero-Crossing & Kernel Direction in Measure Space. Suppose an eigenvalue λj(t) in-
deed crosses zero at time tk, giving λj(tk) = 0 with v ∈ ker(L(tk)) a nonzero kernel vector in
Tµtk

P (M). By definition, L(tk)v = 0 indicates no second-order cost for variations of µtk along v.
If no eigenvalue crosses zero on [0, T ], no dimension reduction occurs, yet Theorem 8 still holds in
that sign changes cannot accumulate infinitely.

(b) Defining Sk in M via a Parameterization Map. To interpret v as a “flat direction” in the
parameter manifold M (rather than producing delta measures), we note that in a mean-field or

1. If one allows arbitrary continuous (non-analytic) dependence on t, we cannot automatically exclude infinitely many
zero-crossings. In PDE/spectral settings, real-analytic or at least sufficiently regular dependence typically holds
(Kato, 2013), ensuring each eigenvalue is real-analytic and cannot exhibit infinitely many sign changes unless iden-
tically zero. We adopt or reference such regularity assumptions to exclude pathological oscillations.
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infinite-width setting, each measure µ ∈ P (M) typically emerges from a higher-level parameter
θ ∈ Θ (or from an entire family of local coordinates). Formally, there is a map

Φ : Θ → P (M), with µθ = Φ(θ),

describing how each θ (often representing an entire distribution of neurons or sub-parameters) in-
duces a measure µθ ∈ P (M), which is a full distribution over M . Thus, if at µtk = µθtk

we have
v = dΦ(θtk)(w) for some w ∈ Tθtk

Θ, we see that second variations vanish along w. Translating w
back to local coordinates in M yields a submanifold Sk ⊂ M of strictly lower dimension, on which
these second-order variations remain zero (the “flat direction”). Formally, we define Sk as:

Sk =
⋃
µ∈U

supp(µ), U =

{
µ ∈ P (M) :

δH

δµ
[µ] ∈ ker(L(tk))

}
,

|U| = 1 if H is strongly convex.

(c) Strict Dimension Drop: dim(Sk) < dim(Sk−1). Because v must be linearly independent of
previously discovered kernel directions, Sk is contained in but strictly lower-dimensional than Sk−1.
Concretely, each new zero-crossing reduces the rank of the Hessian, forcing the measure to confine
itself to fewer degrees of freedom. Thus

dim(Sk) < dim(Sk−1),

and if multiple eigenvalues cross simultaneously, an even larger dimension drop can occur.

(d) Localization of µt onto Sk. By the energy-distance relation (Theorem 6), any mass of µt lying
away from Sk incurs a positive second-order penalty. Since µt follows a steepest descent flow, it
continuously “moves” mass toward Sk for t > tk. We do not claim an instantaneous jump at tk;
instead, one typically shows∫

M
dist

(
z, Sk

)2
dµt(z) → 0 as t ↓ tk + ϵ,

meaning µt localizes near Sk after a short time. Hence from t > tk + δ onward, supp(µt) is
effectively in Sk, enforcing dimension reduction in µt’s support.

(e) If No Zero-Crossing, No Dimension Reduction. If no λj(t) crosses zero, no Sk is defined, and
no dimension-lowering arises. The theorem’s statement that infinitely many sign changes cannot
appear remains true, but no crossing is mandated.

Step 3 thus confirms: (1) zero-crossings are finite in number, and (2) any actual crossing yields
a strict dimension drop by localizing µt on a lower-dimensional Sk. We next show (Step 4) how
factorization of monomial potentials is enhanced at each dimensional reduction.

Step 4: Approximate Factorization of Monomial Potentials. Once µt is predominantly (or
entirely) supported on a submanifold Sk ⊂ M of dimension dk < dim(M), we claim that for
r1, r2 ∈ R0, the difference ∫

(r1r2) dµt −
(∫

r1 dµt

)(∫
r2 dµt

)
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can be made arbitrarily small (up to a factor ∥r1∥R0 ∥r2∥R0), thus implying ε-ring-compatibility.
Specifically, bounding such products on a manifold of dimension dk ensures near factorization.

The concrete bounding arguments are standard for polynomial factorization. To be self-contained,
we outline a short bounding approach step by step below.

(a) Reduction to a Covariance-Like Quantity. Define the function

Fr1,r2(z) = r1(z) r2(z) −
(∫

r1 dµt

)
r2(z) −

(∫
r2 dµt

)
r1(z) +

(∫
r1 dµt

)(∫
r2 dµt

)
.

One easily checks that∫
M

Fr1,r2 dµt =

∫
(r1r2) dµt −

(∫
r1 dµt

)(∫
r2 dµt

)
.

Hence controlling
∣∣∫ Fr1,r2dµt

∣∣ is precisely controlling how closely
∫
(r1r2) factorizes as (

∫
r1)(

∫
r2).

(b) Bounding Fr1,r2 on a Lower-Dimensional Manifold. Since r1, r2 ∈ R0 are (finite) linear
combinations of monomials of bounded degree, their product r1r2 is also a polynomial of bounded
total degree. Consequently, Fr1,r2(z) is again a polynomial in z (albeit with some constant shifts).

Now, Sk ⊂ M is of dimension dk < d. There are two main ways to show that Fr1,r2(z) cannot
vary too much on Sk:

1. Uniform Bound on a Compact Manifold. If Sk is a compact (or at least closed and bounded)
submanifold of dimension dk, then Fr1,r2 is a continuous function on Sk. Hence

sup
z∈Sk

∣∣Fr1,r2(z)
∣∣ ≤ C(R0, Sk) ∥r1∥R0 ∥r2∥R0

for some constant C(R0, Sk) that depends on (i) the polynomial degrees in R0 and (ii) the
geometry of Sk. Thus∣∣∫

M
Fr1,r2(z) dµt(z)

∣∣ ≤ sup
z∈Sk

∣∣Fr1,r2(z)
∣∣ ≈ ε ∥r1∥R0 ∥r2∥R0 ,

provided that µt is predominantly supported on Sk and C(R0, Sk) can be made small or is
finite while ε > 0 captures the desired approximation level.

2. Variance / Covariance Argument. One can interpret
∫
Fr1,r2dµt as something akin to

Cov(r1, r2;µt) plus a constant shift. If µt is restricted to Sk, the dimension dk can limit
the “joint variation” of (r1(z), r2(z)). Formally, bounding second moments on Sk or em-
ploying dimension-based constraints on polynomials can show that Cov(r1, r2;µt) is forced
below any positive ε · ∥r1∥∥r2∥. Hence again∣∣∣∫ (r1r2) dµt −

∫
r1 dµt

∫
r2 dµt

∣∣∣ ≤ ε ∥r1∥R0 ∥r2∥R0 .

Thus in both approaches, the key fact is that restricting µt to a manifold of dimension dk below
d precludes large “cross-terms,” ensuring factorization up to a small ε > 0.

Since we achieve an upper bound of the form∣∣∣∫ (r1r2) dµt −
(∫

r1 dµt

) (∫
r2 dµt

)∣∣∣ ≤ ε ∥r1∥R0 ∥r2∥R0

for all r1, r2 ∈ R0, it follows that µt is ε-ring-compatible on R0. Hence dimension reduction at
time tk improves the factorization properties of µt, completing the argument for Step 4.
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Summary. Combining these steps, we conclude:

• Zero-crossings of L(t)’s eigenvalues can only occur finitely many times in any finite interval
[0, T ].

• Each zero-crossing lowers dimension by producing an additional kernel direction, forcing µt

onto a strictly lower-dimensional manifold Sk ⊂ M .

• Finally, dimension reduction entails enhanced approximate factorization of MP integrals,
completing the proof of Theorem 8.

A.6. Formal Statement and Proof of Theorem 11

Theorem 11 (Exploration–Exploitation Characterization) Let M be a compact Riemannian
manifold and H satisfies Assumption 2. Assume also that a group G acts smoothly on M (Defi-
nition 5), and H,µt remain G-invariant (no spontaneous symmetry-breaking).

Then, there exists a finite set of “critical times” 0 < t1 < t2 < · · · < tN , each corresponding
to a zero eigenvalue crossing of the Hessian operator L(t), such that:

1. For t < t1, µt has no nontrivial kernel direction in L(t) and thus stays in a higher-dimensional
region of M , “exploring” without collapsing.

2. At t1, a zero eigenvalue emerges, creating a kernel direction in L(t1) which forces µt to lo-
calize on a lower-dimensional submanifold S1 ⊂ M . This reduces the “effective dimension”
of its support and increases algebraic factorization for monomial potentials.

3. Repeating at each tk (k = 2, . . . , N ), µt aligns with an even lower-dimensional manifold
Sk ⊂ Sk−1 after a new zero-crossing appears.

4. Ultimately, no further dimension reduction occurs; µt settles on a final G-invariant mani-
fold (or orbit) SN that cannot be simplified further, exhibiting maximal algebraic (ring-like)
factorization among relevant monomial potentials.

Proof We prove the four statements in turn, highlighting how dimension reduction ensues from
zero-eigenvalue crossings and why G-invariance endures throughout.

Step 1: Initial Phase (t < t1): Full-Dimensional Exploration. By Theorem 8, an eigenvalue
of the Hessian operator L(t) = −δ2H/δr2[µt] crosses zero only finitely many times, and none
occurs before t1. Hence for 0 ≤ t < t1, no eigenvalue λj(t) is zero, implying L(t) is strictly
non-degenerate in all directions.

Thus, there is no kernel direction (“flat direction”) in the second variation of H at µt. Any
attempt to confine µt to a strictly lower-dimensional manifold in M would incur a positive second-
order penalty, preventing measure collapse. Therefore, µt remains relatively extended in a higher-
dimensional region of M during t < t1. Moreover, if H and µ0 are G-invariant, displacement-
convexity ensures uniqueness of the gradient flow solution, implying µt stays G-invariant for t < t1.
No external impetus exists to break the group symmetry.
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Step 2: Emergence of a Zero Eigenvalue at t1: First Exploitation. At time t1, Theorem 8
indicates an eigenvalue λj(t) crosses zero for the first time, creating a nontrivial kernel direction
v ∈ ker

(
L(t1)

)
. By definition, L(t1) v = 0 implies no second-order growth of H in that direction,

enabling µt to “rearrange” its mass onto a lower-dimensional submanifold S1 ⊂ M associated with
v (see the dimension-reduction argument of Theorem 8, Step 3). The measure thus reduces H[µt]
by confining its support to S1, lowering the effective dimensionality of its support.

Since G-invariance is assumed, we may choose S1 to lie within a G-invariant orbit or to be itself
G-invariant, thus preserving the group action throughout. Hence the time t1 marks a transition from
a fully high-dimensional “exploratory” regime to an “exploitive” regime, where µt localizes on S1.
MP integrals now exhibit partial factorization due to dimension reduction (see Step 4 in Theorem 8
on approximate ring-compatibility).

Step 3: Iterative Crossings and Cumulative Dimension Reduction. Each subsequent time tk
(for k = 2, . . . , N ) similarly corresponds to another zero-crossing of λj(t), providing a fresh kernel
direction. Repeating the dimension-reduction argument yields a chain of submanifolds

S1 ⊃ S2 ⊃ · · · ⊃ Sk ⊃ · · · ,

each strictly lower-dimensional than its predecessor. Because H remains G-invariant and the gra-
dient flow is unique, µt must likewise remain G-invariant. No spurious oscillations or jumps occur,
as displacement-convex gradient flows do not spontaneously revert dimension. Meanwhile, MP in-
tegrals factorize more closely at each step, reflecting the diminished degrees of freedom in M on
which µt has nonnegligible mass.

Step 4: Stabilization onto a Minimal G-Invariant Orbit. Since Theorem 8 asserts only finitely
many zero-crossings can occur, at time tN the last such crossing takes place. No further kernel
directions are introduced afterward; thus µt stabilizes onto a final submanifold SN ⊂ M of dimen-
sion at most d′ < d. By G-invariance, SN is (or can be chosen to be) G-invariant. No additional
dimension-lowering is possible without increasing H , so SN is a “minimal G-invariant orbit.”

In this final configuration, MP integrals∫
M

r1(z)r2(z) dµt(z)

factorize up to an ε-ring-compatibility degree (Definition 4), reflecting a “maximal algebraic com-
plexity” that emerges once no further dimension-lowering is available.

Conclusion. Hence we obtain the exploration–exploitation characterization:

• Exploration (t < t1): no kernel directions, thus no dimension-lowering.

• Exploitation (t > t1): each zero eigenvalue crossing reduces dimension, leading to more
“algebraic structure” (factorization) in MP integrals.

• Final Stabilization: a minimal G-invariant submanifold (or orbit) SN of M with no further
dimension-lowering possible, attaining maximal factorization properties under G-symmetry.

This completes the proof of Theorem 11.

20



WHY NEURAL NETWORK CAN DISCOVER SYMBOLIC STRUCTURES WITH GRADIENT-BASED TRAINING

A.7. Formal Statement and Proof of Theorem 9

Theorem 12 (Minimal Width for Symbolic Reasoning) Let X ⊂ Rd be compact, and let Fh :
X → X be a feedforward neural network of hidden width h (with sufficient smoothness to implement
a G-invariant function). Suppose:

• µt emerges from a measure-based gradient flow that is G-invariant under displacement-
convexity, and localizes onto a lower-dimensional submanifold as per Theorem 11.

• For each x ∈ X and g ∈ G, Fh is required to be ε-approximate G-equivariant, i.e.∥Fh(g ·
x) − g ·Fh(x)∥ ≤ ε, so that Fh captures the symbolic operations stable under group action.

• When G is finite of cardinality |G|, we also assume an available sample size q ≥ C1 log
(
|G|/δ

)
ensures uniform approximation across the |G| transformations with probability at least 1− δ.

• When G is infinite (or a continuous Lie group), let dim(G) be its dimension. The dimension-
reduction arguments (Theorem 8, 11) imply that capturing G-invariant orbits requires at least
dim(G) degrees of freedom in the final submanifold.

Then any feedforward neural network Fh satisfying these ε-approximate G-invariant operations
with probability at least 1− δ must have hidden width h satisfying

h ≥


log

(
|G|

)
log

(
1/δ

) , if G is finite,

dim(G), if G is infinite or continuous.

Proof Step 1 (Continuous G): Representation Constraint from Dimension Reduction.
Assume G is an infinite (continuous) group with dim(G) > 0. By Theorem 11, once µt localizes
on a minimal G-invariant orbit O ⊆ M , that orbit has dimension at most dim(G). Any neural
network Fh that expresses a stable G-invariant symbolic operation must, at minimum, be capable
of resolving all degrees of freedom inherent in O.

Concretely, capturing a dim(G)-dimensional continuous symmetry calls for at least dim(G)
“directions” in function space for implementing the group action. In feedforward architectures,
the effective dimension of the hypothesis class is typically bounded by a polynomial in h, but to
exactly encode a group of dimension dim(G), a linear scaling h ≥ dim(G) is necessary in typical
universal-approximation arguments (cf. McLeish et al., 2024; Wang et al., 2024).

If h < dim(G), the network lacks the capacity to represent a dim(G)-dimensional family of
G-equivariant transformations stably. Hence for continuous G, we obtain

h ≥ dim(G).

Step 2 (Finite G): Statistical Complexity and Uniform Approximation.
Now assume G is a finite group of cardinality |G| < ∞. To remain ε-approximate G-invariant
on all |G| transformations with probability ≥ 1 − δ, standard PAC or uniform-convergence theory
states we need at least log(|G|/δ) bits (or “units of capacity”) in the hypothesis class (Valiant,
1984). Specifically, with q ≥ C1 log(|G|/δ) i.i.d. training samples, to maintain uniform error
≤ ε across |G| transformations w.p. ≥ 1 − δ, the network’s expressive power must be at least
Θ(log |G|/ log(1/δ)).
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In a feedforward neural network, the width h provides a principal bottleneck on capacity. Typ-
ically, if h < (log |G|)/(log(1/δ)), no architecture can guarantee ε-approximate invariance across
all |G| transformations. Thus we get

h ≥ log |G|
log(1/δ)

.

Step 3: Combining Results and Concluding the Lower Bound.
For a discrete group G, dim(G) is effectively zero, so the representational constraint from Step 1 is
trivial. The statistical bound from Step 2 then dominates:

h ≥ log |G|
log(1/δ)

.

For an infinite or continuous group G, Step 2 becomes irrelevant, whereas Step 1’s dimension-
limiting argument imposes the stronger requirement h ≥ dim(G).

Consequently, we combine these two scenarios into the piecewise expression

h ≥


log |G|
log

(
1/δ

) if |G| < ∞,

dim(G) if |G| = ∞.

This completes the proof.

Remark 13 (Remark on Necessity vs. Sufficiency.) Our argument shows a necessary condition
on h: even if one had an ideal optimization procedure or infinite training time, a network with
width h below these thresholds cannot systematically realize the required G-invariant symbolic
mappings. Of course, reaching such a solution in practice may require additional inductive biases,
but the established bound clarifies that no optimization method can circumvent this fundamental
representational limit.

Appendix B. Further Discussion on Architectural Design

Activation Functions and Ring Compatibility Maintaining ring compatibility is critical: poly-
nomial factorization arguments (Section 3.2) show how multiplicative structures can degrade if acti-
vations over-mix terms. Discrete tasks often tolerate piecewise-linear activations like ReLU, which
do not overly distort polynomial relations. Continuous tasks benefit from smoother or polynomial-
like activations (e.g. softplus) that help retain essential monomial interactions for dimension-reduction
arguments on continuous G. Strong nonlinearities such as sigmoid, tanh, Swish, or GeLU can hinder
ring factorization by breaking multiplicative consistency. These theoretical considerations clarify
empirical findings that certain activations better suit symbolic tasks despite similar performance on
conventional benchmarks.

Stabilization Components A bounded second fundamental form around critical manifolds (The-
orem 6) requires that gradient flows remain stable. Techniques like skip connections (residual
blocks) and normalization layers (BN, LN) help regulate Hessian curvature in parameter space.
From a dimension-reduction perspective, these are not mere engineering heuristics but theoretical
enablers ensuring a well-defined tubular neighborhood around critical submanifolds and facilitating
measure localization onto lower-dimensional sets.
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Anti-Patterns in Architectural Design Certain design decisions directly clash with our theoreti-
cal lens:

• Breaking G-equivariance: Inserting operations that fundamentally violate the group’s sym-
metry (without compensations) obstructs the dimension-reduction synergy from Section 3.

• Deep or brittle flows: Excessively deep networks lacking proper stabilization risk undefined
or highly curved Hessians, impeding the “flat” directions that drive dimension-lowering.

• Violations of ring compatibility: Combining neural modules (e.g. attention) with symbolic
modules (e.g. exact solvers) in ways that break multiplicative composition fosters discontinu-
ities, undermining stable G-invariant reasoning.

Case Study: Mixed Architecture Incompatibility. Consider a hybrid system mixing a neural
encoder (e.g. transformer) with a symbolic solver:

• The neural encoder applies nonlinear attention and extraction functions: σattn, σextract.

• The symbolic solver applies exact algebraic rules: rexact.

While conceptually appealing, if σattn, σextract do not compose multiplicatively with rexact, we obtain:

σextract ◦ σattn
(
r(z1∗z2)

)
̸= rexact

(
σextract(σattn(z1))

)
∗ rexact

(
σextract(σattn(z2))

)
,

thus violating the ring-compatibility needed for stable symbolic reasoning. Empirically, one ob-
serves instability or discontinuous logic when the neural and symbolic components are not aligned
with the measure-based geometry or the group symmetry. A more principled design either (i) uses
differentiable approximations of rexact, or (ii) ensures each neural transformation σattn, σextract re-
spects ring multiplicative laws to the degree necessary for stable G-invariant synergy.

Appendix C. Future Directions

Should our team receive a DARPA Disruptive Idea Award, we will immediately launch an intensive
research program targeting several crucial expansions of the present framework, both theoretically
(Sec .C.1 and C.2) and practically (Sec .C.3 and C.4).

First, we seek to handle multiple symmetry groups and more general (non-polynomial) function
spaces, capturing the broader range of algebraic constraints found in real-world tasks. Second, we
aim to formulate and empirically validate neural scaling laws specific to neurosymbolic models,
clarifying how group structure and ring compatibility reduce required model capacity. Finally, we
plan to translate our theoretical findings into concrete design principles for practical architectures,
to tackle the growing complexity of modern neurosymbolic applications.

C.1. Beyond MP-Based and Single-Group Settings

Our reliance on monomial potentials (MPs) and a single symmetry group G provided a clean al-
gebraic framework but constrained the scope to tasks that fit neatly into polynomial or monomial
potential formulations. This limitation becomes apparent in practical scenarios where multiple
groups or non-polynomial transformations arise. For instance, consider a speech-recognition sys-
tem that must simultaneously respect time-translation symmetry (a continuous group) and discrete
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symmetries (like phoneme permutations). Extending our approach to accommodate multiple inter-
acting groups would capture far more complex tasks, such as multi-modal integration (vision plus
language), each contributing distinct G-invariant structures.

Moreover, real-world data often exhibits piecewise-defined operations or partial symmetries not
purely polynomial in nature. Handling these requires moving beyond strictly MP-based expansions,
perhaps introducing piecewise-polynomial or spline-like potentials. While technically challeng-
ing—especially regarding ring factorizations that do not hold globally—these generalizations could
yield a deeper understanding of how neural networks encode diverse symbolic transformations.

C.2. Beyond One Fixed-Width Parameter Space

Although our theory emphasized a single, fixed-width setting, many practical architectures adapt
capacity on-the-fly—via layer expansion, architecture search, or model compression—to handle
varying task complexities. For instance, consider an evolving LLM that adds layers whenever it
encounters insufficient capacity for capturing novel symbolic patterns in code or reasoning tasks.
Another example is one same architecture family of LLMs, yet at different parameter counts. Build-
ing on Tian (2024), we could treat the overall parameter space as a union of subspaces {Mw}w∈W
for widths w, letting the measure µt move across these subspaces rather than remain in a single M .

Analyzing dimension reduction under such dynamic expansions is significantly more involved
but promises valuable insights. If G is large or if multiple groups G1, . . . , Gr are in play, the
capacity must scale in ways partially reflecting

∑
dim(Gi). By permitting µt to migrate to a higher-

capacity subspace Mw′ when beneficial, we might uncover a more natural synergy between data
complexity, symbolic constraints, and network sizes.

C.3. Exploring Neural Scaling Laws for Neurosymbolic Models

A central insight of our framework is that minimal network width h for implementing G-invariant
symbolic tasks must scale at least linearly in dim(G) or logarithmically in |G| - as a necessary con-
dition stated in Sec. 4.1. This motivates exploring formal scaling laws for neurosymbolic models,
akin to how large-scale language models exhibit emergent behaviors upon crossing certain width or
depth thresholds. Concretely, one could hypothesize a “hybrid” scaling law such as

h ≳ dim(G) + f(problem complexity),

where dim(G) captures the algebraic constraints needed for G-invariance, and f(problem complexity)
encodes the data-driven or combinatorial aspects (akin to existing LLM scaling laws).

Such a perspective would not merely restate that h must be large but predict how combined sym-
bolic structure (group symmetry) and data complexity (like input length, vocabulary size) determine
architecture growth. We conjecture that, if a neurosymbolic model already encodes the relevant
symmetry or ring-compatibility prior, it could exhibit provably better scaling than a conventional
model that attempts to learn these structures from scratch. Empirical exploration could involve
systematically varying dim(G) or the difficulty of a ring-based reasoning task, testing whether our
predicted dimension-limiting threshold indeed triggers emergent symbolic performance.

C.4. Guidelines for Designing More Practical Neurosymbolic Architectures

Our analysis of smoothness, G-equivariance, and ring-compatible activations focuses on idealized
conditions (e.g., C2 activations). Many real networks rely on ReLU or piecewise-linear units—often
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non-smooth but still amenable to a modified displacement-convexity and stable measure evolution.
Extending the theory to these practical activations would align well with widely deployed architec-
tures in computer vision or language.

Beyond activations, the dimension-reduction principle suggests several design heuristics:

• Enforcing G-invariance or approximate group symmetries: e.g., group-convolution layers or
transformer self-attention that respect known symmetries (permutations, rotations, etc.).

• Structuring layers to preserve multiplicative relationships: e.g., factored or diagonal weight
matrices to better maintain ring compatibility for tasks involving polynomials or factorable
transformations.

• Stabilizing gradient flows: employing skip connections, residual blocks, or normalization
layers that regulate the Hessian’s curvature to keep critical manifolds well-defined.

In practice, a system that must, for instance, parse algebraic expressions and reason about geo-
metric transformations might (i) adopt specialized group-convolution for local transformations, (ii)
incorporate ring-friendly activation functions in deeper layers, and (iii) employ skip connections to
ensure smooth dimension-lowering.

By systematically applying these heuristics across varied tasks—from discrete logic puzzles
to continuous transformations in robotics—one can concretely test the measure-based dimension
reduction hypothesis in real neurosymbolic models. The hope is to show that explicitly embed-
ding G-invariance and ring-compatibility, along with the appropriate scaling laws for network size,
enables robust and efficient neural reasoning, bridging symbolic and sub-symbolic paradigms.
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