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Abstract
As autonomous systems are increasingly deployed in open and uncertain settings, there is a growing
need for trustworthy world models that can reliably predict future high-dimensional observations.
The learned latent representations in world models lack direct mapping to meaningful physical
quantities and dynamics, limiting their utility and interpretability in downstream planning, control,
and safety verification. In this paper, we argue for a fundamental shift from physically informed
to physically interpretable world models — and crystallize four principles that leverage symbolic
knowledge to achieve these ends: (1) functionally organizing the latent space according to the
physical intent, (2) learning aligned invariant and equivariant representations of the physical world,
(3) integrating multiple forms and strengths of supervision into a unified training process, and (4)
partitioning generative outputs to support scalability and verifiability. We experimentally demon-
strate the value of each principle on two benchmarks. This paper opens several intriguing research
directions to achieve and capitalize on full physical interpretability in world models.
Keywords: world models, representation learning, neuro-symbolic AI, trustworthy autonomy
Source code: https://github.com/Trustworthy-Engineered-Autonomy-Lab/piwm-principles

1. Introduction
Autonomous systems are increasingly deployed in open and uncertain environments (Saidi et al.,
2022; Topcu et al., 2020) and use high-dimensional observations to perceive these environments in
necessary detail. To achieve high performance, planning and control are often implemented with
deep learning methods like reinforcement learning (RL) (Yang et al., 2022; Garg et al., 2019). Since
RL training is sample-inefficient, it is impractical to perform in the real world — leading to con-
trollers trained “in the imagination” of world models (Ha and Schmidhuber, 2018; Wu et al., 2022).

World models learn to approximate the physical world by predicting future observations based
on current observations and actions. Popular neural world models compress observations into the la-
tent space using an autoencoder, propagate these latent values forward in time based on learned tem-
poral dependencies (Deng et al., 2023), and decode them into predicted observations. World models
can be improved by injecting symbolic physical knowledge into their structure and training process.
For example, Chen et al. (2022) automatically extracted physically meaningful variables from raw
observations, yielding more stable long-horizon predictions than standard autoencoders. Brunton
et al. (2016) similarly used sparse regression to recover governing equations of nonlinear dynamics
from noisy data. Controllers also generalize better when expressed as neuro-symbolic predicates
that combine vision-language models with predefined control primitives (Liang et al., 2024).
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A major challenge of modern world models is their lack of physical interpretability. We define
it as the degree to which a model’s learned latent space corresponds meaningfully to the underly-
ing physics: (a) how well latent embeddings map to physical variables, and (b) how closely latent
dynamics emulate physical processes. Without sufficient physical interpretability, a world model of-
fers limited utility in classical model-based autonomy and the design of physically grounded rewards
for RL. We also cannot obtain physical guarantees from reachability analysis based on world mod-
els (Katz et al., 2022). The core reason for this uninterpretability is that deep learning thrives on dis-
tributed representations, in which each feature is partially encoded in multiple latent variables (Hin-
ton, 1986). This challenge is further complicated by partial online observability of the physical state
and the difficulty of precisely labeling the data (e.g., indicating which state is riskier in a video).

This paper calls for a paradigm shift from physically informed world models to physically inter-
pretable ones. The former use symbolic physical knowledge to make learning more effective, effi-
cient, and generalizable. The latter creates neuro-symbolic latent representations with explicit phys-
ical meaning, thus subsuming physically informed approaches. Physically meaningful representa-
tions bring in a plethora of desirable qualities such as reliability, verifiability, and debuggability.

By carefully analyzing the existing world model literature, this paper advances four guiding
principles that underlie physical interpretability of learned world representations. Specifically, each
principle asserts that physically interpretable world models should:

• Principle 1: . . . have a functionally organized latent space.

• Principle 2: . . . learn aligned invariant and equivariant representations of the physical world.

• Principle 3: . . . integrate multiple forms and strengths of supervision into training.

• Principle 4: . . . partition their generative outputs to support scalability and verifiability.

The next section identifies the interpretability gaps in the existing world models, while Section 3
details the four principles. In Section 4, we perform lightweight validation to demonstrate the value
of these principles. Finally, Section 5 discusses the newly opened directions for future research.

2. World Models: State of the Art

Foundations of world models. Modern world models have led to state-of-the-art performance
in autonomous planning and control while addressing the data-efficiency concerns of standard
RL (Deng et al., 2023; Micheli et al., 2023; Robine et al., 2023). Early world models combined
a variational autoencoder (VAE) with a recurrent neural network to predict latent dynamics (Ha
and Schmidhuber, 2018). Later work refined both the encoder-decoder architecture and the sur-
rogate dynamics: PlaNet introduced a recurrent state-space model (RSSM) for prediction (Hafner
et al., 2019); Dreamer backpropagated gradients through imagined trajectories to improve latent
prediction (Hafner et al., 2020); and DreamerV2 extended the RSSM to categorical latent vari-
ables (Hafner et al., 2022). More recent research combines autoregressive transformers with self-
attention layers to capture detailed temporal dependencies (Robine et al., 2023), or diffusion mod-
els to mitigate compounding errors (Ding et al., 2024). World models have been used to opti-
mize planning algorithms for autonomous vehicles in realistic environments: DriveDreamer (Wang
et al., 2023b) generates realistic video trajectories from multi-modal inputs for policy optimization;
DriveWorld (Min et al., 2024), OccWorld (Zheng et al., 2023), UniWorld (Min et al., 2023), and
RenderWorld (Yan et al., 2024) forecast detailed 3D occupancy for motion planning.
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Figure 1: Existing world models by the interpretability of their state and dynamics.

Towards interpretable world models. Despite the strong performance of world models, their in-
terpretability remains a challenge in most frameworks. Relevant efforts toward disentangling latent
variables (i.e., reducing their mutual dependency) include β-VAEs (Higgins et al., 2016) and causal
VAEs (Yang et al., 2021). This disentanglement strategy is also employed in driving prediction
frameworks like GNeVA (Lu et al., 2024a) and ISAP (Itkina and Kochenderfer, 2022). Under the
umbrella of world models, G-SWM (Lin et al., 2020) investigated a principled modeling framework
that inherits interpretable object and context latent separation from various spatial attention ap-
proaches (Kosiorek et al., 2018; Kossen et al., 2020; Jiang et al., 2020; Crawford and Pineau, 2020).
Fremont et al. (2019) proposed SCENIC — a probabilistic program for generating realistic scenes
with physical constraints. More recent methods impose physical constraints for system identifica-
tion Sridhar et al. (2023), motion prediction Tumu et al. (2023), and learnable ODE modeling Linial
et al. (2021); Zhong and Meidani (2023); Mao et al. (2025). Incorporating partial knowledge of
physics with weak supervision has also improved both the state and dynamics interpretability (Mao
and Ruchkin, 2024). A recent Nature article leveraged the biological alignment of latent represen-
tations to predict microbiome community interactions and antibiotic resistance (Baig et al., 2023).
Neuro-symbolic world models have also begun to emerge: VisualPredicator (Liang et al., 2024)
learns a set of abstract states and high-level actions for strong out-of-distribution generalization,
whereas WorldCloner (Balloch et al., 2023) learns symbolic rules to adapt the dynamics to open
world novelty. Relevant neuro-symbolic research includes PhysORD (Zhao et al., 2024), which
embeds physical laws into neural models, and work by Miao et al. (2025) transforming dashcam
footage from a driving environment into a SCENIC script through a vision-language model.
Knowledge gap. We observe the lack of world models with full physical interpretability, as per Fig-
ure 1 (the underlying literature is listed in Table 2 in the Appendix). Some existing neuro-symbolic
architectures scrape the threshold of physically interpretable dynamics, yet lack fluid state repre-
sentations. On the other hand, multimodal transformer-based architectures preserve the physical
context through 3D occupancy but predict with black-box mechanisms. Bridging this gap is key to
transitioning from merely physically informed world models to fully physically interpretable ones.
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Figure 2: Overview of physically interpretable world models and four principles.

Our recent work highlights the need to address these open questions (Lu et al., 2024b) with predic-
tive world models (Mao et al., 2024b) and their foundation-model variants (Mao et al., 2024a).
Benefits of Physical Interpretability. Aligning world models with fundamental physical princi-
ples (e.g., kinematics and conservation laws) has been shown to improve their out-of-distribution
generalization and robustness (Mao and Ruchkin, 2024; Lin et al., 2020; Liang et al., 2024; Balloch
et al., 2023; Greydanus et al., 2019). These principles prevent latching onto spurious correlations in
training and constrain the models to traverse a physically meaningful manifold when extrapolating
observations. Going further, physically interpretable representations would lead us to a qualitatively
new level of safety and trustworthiness. It would make world models more transparent and debug-
gable by cross-checking them with real-world physics. It would also make generative components
suitable for closed-loop verification of physical properties. Finally, physical representation would
improve RL sample efficiency by shrinking the search space to physically feasible solutions.

3. Physical Interpretability Principles for World Models

This section puts forward four guiding principles for building physically interpretable world models.
We begin by formally defining a world model:

Definition 1 (World Model) A world model is a function f : X → X that maps an observation
xt ∈ X ⊂ Rn to xt+1 = f(xt) = (dec ◦ dyn ◦ enc)(xt), where t is the discrete time index,
enc : X → Z maps the observation to a latent embedding zt ∈ Z ⊂ Rm, dyn is the latent
dynamics propagating zt to zt+1, and dec : Z → X maps embedding zt+1 to observation xt+1.

A world model learns its latent space by minimizing the gap between predicted and actual obser-
vations. However, due to being a black box, its latent space often lacks direct physical interpretabil-
ity. To address this, we introduce a general concept of a physically interpretable world model:
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Definition 2 (Physically Interpretable World Model) A world model f is physically interpretable
if: (i) there exists a latent-to-physical mapping v : Rm → Rk, where k is the degrees of freedom
of the physical environment, such that z v−→ zphys, where zphys ∈ Rk is the minimal set of state
variables required to fully describe the environment’s true dynamics dynphys : Rk → Rk; and (ii)
it holds that: v(dyn(z)) = dynphys(v(z)) for all z ∈ Z ⊂ Rm.

3.1. Principle 1: Functionally Organizing the Latent Space with Prior Knowledge

We propose functionally organizing a world model by modularizing the latent space and processing
embeddings through separate branches, as seen in Figure 2. Each latent state is a vector z, which
contains n distinct representations of a single observation, each dedicated to unique functionality.
Let x represent the world model inputs (e.g., images), and enci(x) = zi represent the encoder for a
particular latent branch fi, i = 1..n, as in Figure 2. Thus, the structured latent space becomes:

z = [enc1(x) enc2(x) . . . encn(x)]

Example. An autonomous driving engineer designs a world model with three branches: (1) absolute
dynamics of the agent and environment itself, (2) relative dynamics between other agents, and (3)
residual yet relevant features of the surroundings. Let L denote a loss function over f(z) and x.
The overall training loss should be proportional to the losses in each workflow branch:

L ∝ L1(f1(enc1(x)), x) + L2(f2(enc2(x)), x) + L3(f3(enc3(x)), x)

Recent work for the first branch aligned latent representations with physical properties (Mao
and Ruchkin, 2024). For the second branch, earlier studies demonstrated that physical interactions
between agents can be learned without supervision through graph neural networks (GNNs) (Kipf
et al., 2018). In the context of world models, Lin et al. (2020) constructed a separate latent rep-
resentation using a GNN to capture agent occlusions and interactions. Physics-informed neural
networks (Raissi et al., 2019; Saemundsson et al., 2020) can also improve the physical interpretabil-
ity of the world model’s dynamics. For instance, Hamiltonian neural networks (Greydanus et al.,
2019) learn and adhere to physical conservation laws, leading to impressive generalization. The
third branch follows the typical strategy for creating uninterpretable world models and is consid-
ered a useful layer to the structured latent space (Lin et al., 2020). Latent space structuring has
become increasingly prevalent to improve the performance of planning and control. For instance,
a goal-based neural variational agent (GNeVA) uses separate polyline embeddings for the agent
and the map, enabling interpretable generative motion prediction (Lu et al., 2024a). Similarly, an
interpretable car trajectory prediction framework was proposed, integrating three distinct workflow
branches: agent states, high-definition maps, and social context (Itkina and Kochenderfer, 2022).

Principle 1: Physically interpretable world models should have a functionally organized
latent space.

3.2. Principle 2: Exploiting Invariances and Equivariances in Input and Latent Spaces

Neural networks’ impressive performance is due in part to their ability to learn rich distributed
representations from training data. Rather than memorizing examples, these models construct hi-
erarchical feature embeddings that capture data patterns and generalize to i.i.d. samples (Hinton,
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1986). Nevertheless, training a model to internalize and imagine the world in a human-like manner
far from trivial (Ha and Schmidhuber, 2018). Encoding high-dimensional observations (e.g., im-
ages) through commonplace embedding methods (e.g., through autoencoders or encoder-only trans-
formers) leaves the latent representation generally uninterpretable and task-agnostic. This raises
concerns about whether spurious correlations distort the latent space or if it effectively encodes the
details necessary for discriminating between features that should remain functionally disentangled.

Invariance and equivariance relations can help address uninterpretability in representation learn-
ing. These terms characterize how representations respond to observation-space transformations. If
the representation of x shifts in an expected manner due to a transformation g(x), then the rep-
resentation model is said to be equivariant to that transformation. Likewise, if the representation
does not shift under the transformation, then the model is said to be invariant to the transformation.
For example, bisimulation metrics help learn latent obstacle representations invariant to changes in
type, size, and brightness (Zhang et al., 2020). Pol et al. (2020) use contrastive loss to enforce action
equivariance. Yet, integrating expert priors remains difficult; one method maps complex observation
transformations to simpler latent ones via a symmetric embedding network (Park et al., 2022).

We categorize representations along two dimensions: (1) the nature of their transformation
response (invariance versus equivariance) and (2) their degree of human alignment (aligned ver-
sus misaligned). A representation that is aligned-invariant remains unchanged when an observa-
tion undergoes a meaning-preserving transformation, while an aligned-equivariant representation
transforms predictably when the observation’s meaning is altered. In contrast, a representation is
misaligned-invariant if it does not change under meaningful effects made to the observation (sug-
gesting underfitting), and it is misaligned-equivariant if it changes in response to an observation
transformation that should not affect the underlying meaning (suggesting a domain shift). Our
training objective is to achieve invariance and equivariance alignment by ensuring that the post-
transformation representations accurately reflect our human interpretation of the change.

Principle 2: Physically interpretable world models should learn aligned invariant and
aligned equivariant representations of their environment.

Definition 3 (Equivariance) Let gΘ : X → X be an observation space transformation randomly
parameterized by Θ, and let hΦ : Z → Z be a latent space transformation randomly parameterized
by Φ. An encoder enc : X → Z is an equivariant function if enc(gΘ(x))

d
= hΦ(enc(x)). Invariance

is a special case of equivariance where hΦ returns its argument.

Following Definition 3, a simple loss function promotes aligned invariance and equivariance:

Lwm(x) ∝ EΘ,Φ

[
∥ enc(gΘ(x))− hΦ(enc(x))∥22

]
,

where Lwm is the overall WM training loss, which is a function of the input observation x.

Example. Consider a vision-based autonomous car that hands over its neural-based controls to a
simpler safety controller if a collision is predicted by its world model, consisting of a “physical”
and “style” branch per Principle 1. Based on the prior knowledge, an engineer decides that scene
brightness should not affect the physical latents; hence, the physics encodings should be invariant
to changes in observation brightness. However, the style encodings should represent brightness in
the resulting latent embedding and, thus, should be equivariant to the changes in brightness.
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3.3. Principle 3: Multi-Level and Multi-Strength Supervision for Latent Representations

To bridge rich observations and physical meaning, world models must adapt to supervision signals
of varying form and strength (Lee et al., 2013; Chen et al., 2020) — from exact state labels to
trajectory-level constraints and weak self-supervision. They must also integrate these signals based
on abstraction level (e.g., exact values, intervals, or missing data) to align representations with phys-
ical systems. Multi-level supervision tailors the loss functions and training process to the level of
abstraction (e.g., full trajectories vs. specific state dimensions) and strength (e.g., exact labels vs.
intervals). For instance, physical state labels allow for the direct alignment of latent representations
with real-world quantities using supervised loss. When such labels are unavailable, temporal con-
sistency and smoothness of trajectories can serve as implicit regularization techniques to constrain
learned representations. Finally, self-supervision can leverage data-driven structures to discover
meaningful latent representations in entirely unsupervised settings.

Principle 3: Physically interpretable world models should integrate multiple forms and
strengths of supervision based on their availability and informativeness.

Supervised Learning: Strong supervision directly aligns specific latent dimensions with known
physical states (e.g., positions, velocities), enabling fine-grained interpretability. In many cases,
supervision signals are introduced directly into the embeddings to capture key features from labeled
data (Zhuang et al., 2015). For example, in low-dimensional systems with position and velocity
states s = [p, v], additional latent dimensions (zextra ∼ N (0, 1)) can improve reconstruction quality
and stability (Chen et al., 2016; Alemi et al., 2018; Rezende et al., 2014).
Semi-Supervised Learning: When the labels are only available for some data, semi-supervised
techniques can refine representations. Pseudo-labeling (e.g., Mean Teacher (Tarvainen and Valpola,
2017) and FixMatch (Sohn et al., 2020)) utilizes both labeled and unlabeled data to iteratively im-
prove the latent space. In Motion2Vec (Tanwani et al., 2020), a small amount of labeled data is first
used to initialize the embedding space; subsequently, RNNs predict pseudo-labels for unlabeled
data, allowing the model to iteratively refine both the embedding and segmentation components.
Weak Supervision: Noisy or coarse labels, such as position constraints (p ∈ [a, b]), can be uti-
lized via the trajectory smoothness loss: Lsmooth =

∑
t ∥pt − 2pt+1 + pt+2∥2. Temporal models

like Kalman filters (Kalman, 1960) stabilize noisy trajectories in tasks such as autonomous driving.
Interval signals as weak supervision can be directly incorporated into the loss (Mao and Ruchkin,
2024) or combined with contrastive learning to reinforce constraints (Sorokin and Gurevych, 2017).
Self-Supervised Learning: In the absence of labels, contrastive learning (Chen et al., 2020) aligns
latent representations with task-specific similarity metrics (e.g., Euclidean distance or structural
similarity). Contrastive world models (Poudel et al., 2022) explicitly employ representation learning
losses to map similar states closer in the latent space. Plan2Explore (Sekar et al., 2020) generates
self-supervised uncertainty-driven objectives to guide the representations.
Combining Supervision Levels: For a given dataset D with supervision signals (e.g., full trajecto-
ries, state variables, or interval constraints), the training objective should integrate matching losses
to align the latent space with physical semantics. We advocate for using every available supervision.
Given explicit state labels, use direct supervision. When only partial information is available, use
weakly supervised constraints to refine the representations.
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3.4. Principle 4: Output Space Partitioning for Verifiability

Ensuring the safety of vision-based autonomy is a critical and open challenge (Teeti et al., 2022;
Geng et al., 2024; Fremont et al., 2019). The verification of such systems is difficult due to high-
dimensional image inputs: classical techniques cannot handle this complexity, motivating new prin-
ciples for pre-deployment safety guarantees (Althoff, 2015; Păsăreanu et al., 2023). One such at-
tempt is to employ a generative image model to overapproximate observations from a given physical
state and feed them into a state estimator or controller (Katz et al., 2022; Cai et al., 2024). Sadly,
due to uninterpretable latent states, such “verification modulo generative models” does not provide
guarantees for the physical world. Furthermore, decoder verification does not scale to large images.

To reduce decoder complexity, we propose to partition the generated image into physically
meaningful parts. Specifically, a world model will contain multiple generators of output signals —
each dedicated to its own object in the image. Each generator would be separately verifiable, and the
results would be combined to provide world model-wide guarantees. This principle reduces each
generator’s size, making the verification of such world models tractable.

When applied to physically interpretable latent states, this principle can transfer verification
guarantees to the physical world: the generators would represent the relationship between images
and physical states, not uninterpretable latent ones. Specifications are written at the level of inter-
pretable states (rather than images), after the information has been propagated through perception,
control, and dynamics. This process grounds the verification in physical states rather than images.

Principle 4: Interpretable world models should partition generated observations into
segments from multiple simpler generators, enabling scalable verification.

Definition 4 (Partitioned World Model Generation) A world model decoder dec translates a la-
tent state z into a generated high-dimensional observation x̂, expressed as dec(z) = x̂, by mini-
mizing the reconstruction error between the original and reconstructed observations. Each image
segment is produced by a separate decoder: dec1(z) = x̂1,dec2(z) = x̂2, ...,decn(z) = x̂n.
The combined generated image is represented as x̂ =

⊕n
i=1 x̂i, where

⊕
is a signal composition

operation (e.g., overlaying image segments). The corresponding loss function Lgen is:

Lgen = ||x− x̂||2 + λ
N∑
i=1

||xi − x̂i||2

The question of automatic partitioning of world model outputs can be answered by zero-shot
approaches like the Segment Anything Model (SAM) (Kirillov et al., 2023). Recently, SAM was
used to segment images to improve image and safety prediction (Mao et al., 2024a). A similar
partitioning was used in the action space to scale up the verification of vision-based controllers via
multiple low-dimensional approximations (Geng et al., 2024). Principle 4 propagates the physical
meaning from different parts of the world model (established in Principle 1) to its generative outputs,
effectively linking the high-dimensional observation with a lower-dimensional representation.

This principle has two remaining limitations. First, as the number of objects increases, parti-
tioning becomes increasingly difficult, as in autonomous driving tasks with dynamic objects like
cars and pedestrians. Additionally, the gap between a world model and the real world still needs to
be formally quantified to obtain guarantees, which is an open problem for future research.
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4. Experimental Validation

The objective of our experiments is to evaluate the impact of the four proposed principles on the
interpretability of world model representations. We expect each principle to improve the prediction
of future physical states compared to a baseline interpretable world model. The success is measured
by the mean squared error (MSE) of state predictions over varying prediction horizons.

Two case studies are used to validate the principles: the Lunar Lander and Cart Pole environ-
ments from OpenAI Gym (Brockman et al., 2016). The state dimensions for the Lunar Lander
and Cart Pole are 8 and 4, respectively, reflecting different levels of complexity in achieving in-
terpretability. We utilize classical models, namely a Variational Autoencoder (VAE) for encoding
observations and a Long Short-Term Memory (LSTM) network for temporal prediction. There are
64 latent dimensions in all experiments. In the baseline interpretable world model, only the first few
dimensions are supervised with interpretable physical meanings, whereas the remaining dimensions
are not supervised. Additional details are available in the Appendix and online repository.

Figure 3: MSE of physical state prediction across different prediction horizons for Principles 1–3.

World model Environment Average MSE ↓ Average SSIM ↑ Model Size ↓
Baseline (monolithic) Cart Pole 0.02856 0.997122 200,259
Partitioned 3-way Cart Pole 0.05176 0.995614 144,665
Baseline (monolithic) Lunar Lander 0.18801 0.8686 360,773
Partitioned 3-way Lunar Lander 0.306 0.6289 78,101

Table 1: Model size reduction and reconstruction performance for validating Principle 4, λ = 0.2.

Principle 1: Here we split the encoder into the image part for extracting low-level visual features
and the state part that produces values of physical variables. The latent vector size is the same for
the baseline and the modified models. Figures 3A and 3C show that Principle 1 significantly reduces
the MSE for longer horizons, highlighting the stability that comes from physical interpretability.
Principle 2: We specify a function g that shifts the lunar lander’s position, and a corresponding
function g that shifts the latent state. For cart pole, we shift both the rotation and position, with
corresponding changes made to the latent state. Figures 3A and 3C show that Principle 2 reduces
prediction error across all prediction horizons, confirming the value of equivariance. While this
principle improves performance on lunar lander, it has less of an effect on the cart pole. We hypoth-
esize that this principle benefits more complex and partially observable systems.
Principle 3: Here we train world models in semi- and weakly-supervised settings: (1) only static
information (position, angle) is supervised, while dynamic (velocity) is unknown; (2) velocity is es-
timated from positions/angles, adding supervision through physical knowledge. Figures 3B and 3D
show that weak physical supervision improves prediction quality at all prediction horizons.
Principle 4: We partition the original cartpole and lunar lander images into three parts with SAM,
training three smaller decoders for each and combining them as shown in Figure 4 in the Appendix.
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The partitioned generator inputs are the exact physical states, while the baseline approach’s unin-
terpretable latents. Our partitioning reduces the baseline’s parameters by 27.7% while keeping a
comparable reconstruction quality remains comparable, as per Table 1. Though based on simple
environments, these standard benchmarks help isolate each principle’s effect. We plan to extend
validation to more complex domains like 3D navigation and visual robotic manipulation.

5. Future Research Directions

A. Extracting Physical Knowledge from Foundation Models. It is difficult for humans to exter-
nalize their implicit knowledge of the physical world (Trager et al., 2023; Xu et al., 2024). Having
absorbed humanity-scale data patterns, large language models are promising sources of implicit and
plausible physical knowledge. We intend to investigate how to extract candidate dynamics tem-
plates, invariances, and equivariances. An important step is validating the candidate information
(e.g., via open datasets) before incorporating it into the world model training.
B. Physically Aligned Multimodality. Reliable multimodal world models are urgently needed in
many autonomous systems (Gupta et al., 2024; Zheng et al., 2025). However, the consistency of
predicted modalities has been a challenge for learned representations (Lu et al., 2024b). We suggest
the use of physically meaningful representations in making image and LiDAR predictions consistent
on real-world datasets such as nuPlan (Caesar et al., 2022) and Waymo Open (Sun et al., 2020).
C. Interpretable Uncertainty in World Models. Commonplace uncertainty quantification tech-
niques for deep learning models struggle to express the uncertainty in the terms relevant to the
application domain (Gal and Ghahramani, 2016; Kendall and Gal, 2017). Traditional Bayesian ap-
proaches and ensemble methods often focus on model uncertainty but fail to capture the structured
uncertainty inherent in physical systems (Zhang et al., 2019). In contrast, uncertainty estimation
within physically meaningful latent representations allows for more interpretable and actionable
uncertainties. We consider it fruitful to develop an uncertainty quantification method based on
distributions over physically meaningful latent states and partitioned outputs, which can facilitate
robust decision-making and improve reliability in downstream tasks (Depeweg et al., 2018).
D. Unified Training Pipeline. We outlined several training objectives and supervision strategies for
world models. However, when their combinations are used, the convergence and stability of training
remain elusive (Sener and Koltun, 2018). We recommend developing an automated training pipeline
that will combine and tune different losses to ensure reliable training (Li et al., 2018).
E. Integrating World Models into Classical Autonomy. Physically meaningful states enable high-
performance components of world models to serve as state estimators, trajectory predictors, and
verification models (Mao and Ruchkin, 2024). This allows combining the previously incompatible
first-principles and end-to-end learning models. We intend to improve the performance of classic
autonomy tasks with world-model components while preserving their reliability and verifiability.
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Appendix

Experimental Details

All experiments used an NVIDIA GeForce RTX 3090 GPU. The source code can be found at
https://github.com/trustworthy-engineered-autonomy-lab/piwm-principles.

Principles 1–3. Our world model employs a VAE for encoding/decoding high-dimensional image
observations and an LSTM time-series predictor for modeling state transitions in the latent space.
The encoder consists of three convolutional layers with increasing feature maps (16, 32, 64) and
ReLU activations, downsampling the input image through strided convolutions. The latent repre-
sentation is parameterized by two fully connected layers (µ and log σ2), each mapping the encoded
feature vector to a latent space of 64 dimensions. The decoder reconstructs the input image using a
fully connected layer followed by three transposed convolutional layers, producing a three-channel
output with a sigmoid activation. The VAE is trained using the Adam optimizer with an initial
learning rate of 0.001, incorporating learning rate decay to stabilize convergence.

The input to the LSTM consists of 64-dimensional latent representations extracted by the VAE.
The network comprises two LSTM layers with a hidden size of 64, followed by a fully connected
output layer mapping to a 64-dimensional output representing the predicted latent state at the next
time step. The LSTM predictor is trained using the Adam optimizer with an initial learning rate
of 0.001 and also incorporates learning rate decay. The objective is to minimize the MSE between
predicted and true latent representations over time.
Principle 4. Our decoder network maps low-dimensional physical state representations to high-
dimensional images using a series of transposed convolutional layers. The baseline decoder has one
linear layer, two convolutional layers, and a 4-dimensional encoded feature map. Our partitioned
decoder only contains one linear layer and one smaller convolutional layer. Using a fully connected
layer, the decoder first maps the input state (four-dimensional vector in cartpole; eight-dimensional
vector in lunar lander) to a high-dimensional feature space. This produces an intermediate repre-
sentation of size 3×16×24×24. The image output is further refined through independent transposed
convolutional layers, each producing a separate image (three independent layers for each segment
image for cartpole and lunar lander). The model is trained using the Adam optimizer with an initial
learning rate of 0.001. Training is conducted with mini-batches of size 64, incorporating valida-
tion loss tracking to ensure generalization. The loss function is a λ-weighted combination of the
reconstruction MSE of the overall reconstructed image and each segmented part.

For the partitioned loss function in Definition 4, the choice of λ plays a crucial role in image
generation behavior: (a) If λ is too small (< 0.1), the model fails to separate the three parts, blend-
ing “shadows” of the original image into the outputs; (b) If λ is too big (> 0.5), the three parts are
completely disconnected, leading to inferior reconstruction quality. Through hyperparameter tun-
ing, we found that setting λ = 0.2 provides an optimal balance between the quality of the separation
and the reconstruction in both case studies.

Additional Illustrations

• Table 2 lists the literature with the interpretability and adherence to the proposed principles.

• Figure 4 shows example observations and their partitioned reconstructions for Principle 4.

• Figure 5 shows the imperfect part-wise reconstruction for inadequate values of λ.
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Short Name Reference Principle 1 Principle 2 Principle 3 Principle 4 State interp. Dyn. interp.
WM (Ha and Schmidhuber, 2018)
PlaNet (Hafner et al., 2019) Weak Weak
Dreamer (Hafner et al., 2020) Weak Weak
G-SWM (Lin et al., 2020) Strong Weak Weak Moderate Weak
AWM (Kim et al., 2020) Weak Weak Weak
Plan2Explore (Sekar et al., 2020) Weak Weak Weak
Pathdreamer (Koh et al., 2021) Weak Weak Strong Weak
DreamerV2 (Hafner et al., 2022) Weak Weak Weak
NSV (Chen et al., 2022) Strong Strong
DayDreamer (Wu et al., 2022) Weak Weak
DreamingV2 (Okada and Taniguchi, 2022) Weak Weak Weak
SEN (Park et al., 2022) Strong Moderate
STEDI (Nakano et al., 2022) Strong Moderate Strong
DriveDreamer (Wang et al., 2023b) Weak Strong Weak
GAIA-1 (Hu et al., 2023) Strong Moderate
IFactor (Liu et al., 2023) Moderate Moderate
IRIS (Micheli et al., 2023) Weak Weak
MTS3 (Shaj et al.) Weak Weak Weak Weak
Denoised MDP (Wang et al., 2023a) Moderate Moderate
WM2WM (Wong et al., 2023) Strong Moderate
MWM (Seo et al., 2023) Weak Weak
OccWorld (Zheng et al., 2023) Strong Strong Strong
RAP (Hao et al., 2023) Moderate
S4WM (Deng et al., 2023) Moderate
SWIM (Mendonca et al., 2023) Moderate Moderate Moderate
TWM (Robine et al., 2023) Weak Weak
UniWorld (Min et al., 2023) Strong Strong Strong
WorldCloner (Balloch et al., 2023) Strong Moderate Strong
THICK (Gumbsch et al., 2023) Weak Weak Weak
AVID (Rigter et al., 2024) Strong Moderate
CMIL (Kolev et al., 2024) Strong Weak
DreamerV3 (Hafner et al., 2024) Weak Weak Weak Weak
DriveWorld (Min et al., 2024) Strong Moderate Weak
DWM (Ding et al., 2024)
GaussianWorld (Zuo et al., 2024) Moderate Strong Strong Moderate
Genie (Bruce et al., 2024) Moderate Moderate
HarmonyWM (Ma et al., 2024) Weak Weak
OccWM (Zhang et al., 2024) Moderate Strong Strong Weak
CovWM (Popov et al., 2024) Weak Weak Weak Weak
NWM (Bar et al., 2024)
OccLLaMA (Wei et al., 2024) Strong Strong
PIWM (Mao and Ruchkin, 2024) Strong Strong Moderate Strong
R-AIF (Nguyen et al., 2024) Weak Weak Weak
RenderWorld (Yan et al., 2024) Strong Strong Strong
Think2Drive (Li et al., 2024) Weak Weak
TransDreamer (Chen et al., 2024) Weak Weak Weak
VisualPredicator (Liang et al., 2024) Strong Strong Moderate
WorldGPT (Ge et al., 2024) Moderate Moderate Moderate Moderate
Our future vision Strong Strong Strong Strong Strong Strong

Table 2: Review of notable and state-of-the-art world model architectures for adherence to the 4
principles and their dynamical/state interpretability.
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Figure 4: Observations and three reconstructed parts (Principle 4) for the cartpole and lunar lander
with λ = 0.2.

Figure 5: Imperfect reconstruction for the cart pole: the upper row corresponds to λ = 0.01, while
the bottom row corresponds to λ = 0.9.
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