
Proceedings of Machine Learning Research 288:1–14, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Logic Gate Neural Networks are Good for Verification

Fabian Kresse FABIAN.KRESSE@IST.AC.AT

Emily Yu EMILY.YU@IST.AC.AT

Christoph H. Lampert CHL@IST.AC.AT

Thomas A. Henzinger TAH@IST.AC.AT

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Learning-based systems are increasingly deployed across various domains, yet the complexity of
traditional neural networks poses significant challenges for formal verification. Unlike conven-
tional neural networks, learned Logic Gate Networks (LGNs) replace multiplications with Boolean
logic gates, yielding a sparse, netlist-like architecture that is inherently more amenable to sym-
bolic verification, while still delivering promising performance. In this paper, we introduce a SAT
encoding for verifying global robustness and fairness in LGNs. We evaluate our method on five
benchmark datasets, including a newly constructed 5-class variant, and find that LGNs are both
verification-friendly and maintain strong predictive performance.
Keywords: Formal Verification, Logic Gate Networks, Global Robustness.

1. Introduction

Neural networks are increasingly utilized in emerging safety-critical domains such as self-driving
cars, robotic systems, and healthcare devices, as they show great promise in solving complex real-
world tasks (Jumper et al., 2021; Fawzi et al., 2022). However, ensuring correctness and reliability
in these settings poses significant challenges, driven by the networks’ inherent opacity and high
complexity (Amodei et al., 2016). As a result, numerous verification methods have been put for-
ward to address these issues by formally proving the robustness and fairness of neural networks.
Among the commonly considered properties is local robustness, such that for a given input, a net-
work is robust to a set of specified perturbations (Katz et al., 2017; Gehr et al., 2018; Singh et al.,
2018). Another critical property is fairness, which requires that the network’s predictions be free
from bias with respect to attributes such as gender, ethnicity, and age. Extending these notions fur-
ther, global robustness and fairness are 2-safety hyperproperties demanding that a network maintain
robustness and fairness for all pairs of inputs (Athavale et al., 2024; Biswas and Rajan, 2023; Khedr
and Shoukry, 2023).

Verification methods for neural networks can be grouped into two main categories: complete and
incomplete. Incomplete approaches often employ semidefinite programming (Raghunathan et al.,
2018; Dathathri et al., 2020; Fazlyab et al., 2022) or bound-propagation techniques (Wang et al.,
2018a,b, 2021; Singh et al., 2019) to overapproximate the network’s behavior. Although this yields
efficient verification in practice, it may introduce approximation errors. In contrast, complete meth-
ods use mixed-integer linear programming (MILP) (Tjeng et al., 2019; Anderson et al., 2019) and
satisfiability modulo theories (SMT) (Wu et al., 2024; Pulina and Tacchella, 2012; Katz et al., 2019)
to provide definitive verdicts to verification queries by encoding the neural networks. However, the
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exhaustive nature of these techniques often results in higher computational overhead, particularly
for large-scale deep neural networks (DNNs).

Despite rapid advances in DNN verification, most efforts have focused on conventional neural
networks, for which the verification task still faces significant challenges. As an alternative, some
methods use quantized networks (Gholami et al., 2022; Lechner et al., 2023; Henzinger et al., 2021)
and binary neural networks (Qin et al., 2020), whose verification can be performed using SMT/SAT
solvers (Jia and Rinard, 2020). Recently, deep differentiable Logic Gate Networks (LGNs) have
attracted attention for their potential to deliver fast, efficient inference while exhibiting promising
performance (Petersen et al., 2022, 2024). Unlike binary neural networks, which discretize weights
and activations, LGNs use a differentiable relaxation to learn a mixture over basic logic gate op-
erators (e.g., NAND and XOR). LGNs can be directly deployed on FPGAs or ASICs, potentially
yielding significant energy savings over conventional architectures and making them especially at-
tractive for cyber-physical systems. Furthermore, due to their discrete and SAT-solving-friendly
architecture, LGNs and related variants have shown promise for formal verification, particularly in
the context of local robustness (Benamira et al., 2024).

In this paper, we take a first step toward SAT-based verification of learned logic gate networks
by focusing on two global properties: robustness and fairness. Global robustness and fairness say
that similar inputs should yield similar results; by comparing two input-output pairs, they are 2-
safety hyperproperties (Athavale et al., 2024). Specifically, we propose a symbolic encoding that
formalizes these hyperproperties in a confidence-based framework, enabling efficient verification
by a SAT solver. We then conduct an experimental evaluation on five datasets, illustrating the
promise of our approach for the practical verifiability and the competitive predictive performance of
LGNs. To the best of our knowledge, this is the first exploration of using SAT solving for 2-safety
hyperproperties such as global robustness and fairness in LGNs, and we hope that it will serve as an
inspiration for further research in this direction.

Related work. We now briefly review related approaches to DNN verification for robustness. For a
comprehensive overview, we refer to the survey paper of Liu et al. (2021). Most related to our work,
Athavale et al. (2024) present an SMT encoding for both global robustness and fairness. A similar
SMT-based approach for fairness has also been explored by Biswas and Rajan (2023) and Khedr
and Shoukry (2023), but without incorporating a confidence-based verification framework. Ruan
et al. (2019) propose a method for verifying global robustness by defining it as an expectation of the
maximal safe radius over a test dataset. The work of Kabaha and Drachsler-Cohen (2024) proposes
computing a minimal globally robust bound via solving a Mixed Integer Programming problem, and
Wang et al. (2022) similarly encode the verification task as an MILP problem. Different from them,
in this paper, we focus on verifying logic gate neural networks. The verification of LGN-related
networks has been addressed by Benamira et al. (2024), but only for local robustness.

2. Verifying Logic Gate Networks

In this section, we study the verification problem of logic gate networks. We begin by introducing
the notations for LGNs, and then present our SAT-based encoding for global robustness and fairness.
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2.1. Logic Gate Networks for Multi-Class Classification

LGNs offer an alternative to conventional neural networks by replacing neurons with discrete logic
gates. Formally, an LGN can be defined as a directed acyclic graph G = (V, E) whose vertices V are
grouped into layers. Each vertex v ∈ V in a layer corresponds to a two-input Boolean gate selected
from a fixed set of 16 possible Boolean operations (e.g., NAND, XOR, etc.); the inputs are ordered
since their positions affect non-commutative logic operations. The edges E define connections from
gates in one layer to gates in the next layer, resulting in a sparse, netlist-like architecture rather than
dense matrix multiplications. Note that each gate can have multiple outgoing edges, allowing its
output to be fed into several subsequent gates. The connectivity is randomly initialized and remains
fixed throughout training. During training, each gate is modeled as a continuous relaxation over the
possible Boolean operators, mixed via a softmax. LGNs are inherently non-linear and thus do not
rely on non-linear activation functions. Prior work has demonstrated the ability of LGNs to learn
tasks such as CIFAR-10 and MNIST (Petersen et al., 2022, 2024).

As in previous work, we employ LGNs for multi-class classification. Let X ⊆ Bd denote the
input space (with inputs binarized using thermometer encoding for numerical features and one-hot
encoding for categorical features), and let Y = {1, 2, . . . , C} be the set of class labels. We consider
a classification model f : X → Y , where each input x ∈ X is mapped to a predicted label f(x) ∈ Y .
For C-class classification, f(x) is obtained by an LGN’s final layer producing O Boolean outputs,
partitioned into C blocks of size L, where O = C × L. Let oj,k ∈ {0, 1} denote the k-th output bit
for class j. As in Petersen et al. (2022): score(j) =

∑L
k=1 oj,k, for j = 1, . . . , C. The predicted

label is the class with the highest score: f(x) = argmax 1≤j≤C score(j).
We define the confidence for f(x):

conf(f(x)) =
score(f(x))∑C
j=1 score(j)

. (1)

2.2. Global Fairness and Robustness

We define our notions of global fairness and robustness using a confidence-based approach inspired
by Athavale et al. (2024). Our setting assumes that inputs are discretized and encoded as binary
vectors. This discretization leads to slight modifications in our definitions. To capture the afore-
mentioned properties, we consider pairs of inputs, denoted x and x′. Comparing two inputs allows
us to formalize the idea that if the network predicts with high confidence on one input, then any
sufficiently similar input should receive the same label. This is also referred to as self-composition
(Barthe et al., 2011). For a given confidence threshold κ > 0 and a numerical tolerance ϵ, given as
an integer, we require that

∀x, x′ : Φ(x, x′, ϵ) ∧ conf(f(x)) > κ =⇒ f(x) = f(x′), (2)

where the definition of the similarity condition Φ(x, x′, ϵ) differs for global fairness and robustness.

Global Fairness. For fairness, we partition the input x into sensitive attributes and non-sensitive
attributes. Subscripts are used to denote the ith bit of the input x. In this case, we require that the
non-sensitive part satisfies the similarity condition, while the sensitive attributes differ. Formally,
we define

Φ(x, x′, ϵ) :=

( ∧
i∈Nn

d(xi, x
′
i) ≤ ϵ

)
∧

( ∧
j∈Cn

(xj = x′j)

)
∧

( ∧
k∈Cs

(xk ̸= x′k)

)
, (3)
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where Nn and Cn denote non-sensitive numerical and categorical features, respectively, and Cs in-
dexes sensitive attributes. For numerical features encoded using thermometer encoding, the distance
function d(·, ·) counts the number of differing bits.

Global Robustness. For global robustness, we require that each numerical feature differs by at
most ϵ and that the categorical features remain identical. Therefore, we can encode it like global
fairness, with the number of sensitive attributes Cs set to the empty set.

These formulations, which capture conditions over pairs of inputs, are examples of hyperprop-
erties (Clarkson and Schneider, 2010). More specifically, they are 2-safety properties. In the next
section, we detail a SAT encoding to verify these properties for LGNs.

2.3. SAT Encoding

In this section, we present a SAT-based encoding for verifying global robustness and fairness defined
above. As LGNs are fully discretized and operate on Boolean inputs and outputs, we can encode
both the network behavior and the property constraints as Boolean formulas. In the following, we
assume standard notations from classical Boolean logic. A literal is either a Boolean variable v or
its negation ¬v. A formula in conjunctive normal form (CNF) is a conjunction of clauses, with each
clause being a disjunction of literals. We write f(V ) to denote a formula over sets of variables V
and U, V denotes U ∪V . An assignment is a function that maps each variable to a Boolean value in
{⊥,⊤}. The satisfiability problem (SAT) is to determine, for a given CNF formula, whether there
exists an assignment under which the formula is true. For clarity, in the following we use “≃” to
denote syntactic equivalence between sets of variables, and “⇒” for semantic implication. We write
V [k] to denote the k-th variable in V .

First of all, we need to encode the network. Let Vin be the set of Boolean variables encoding
an input x ∈ X and Vout be the output Boolean variables representing f(x). Each logic gate in
the LGN is encoded by its corresponding Boolean clause, so that the network is represented as:
Vout ≃ network(Vin). For a second input x′, we define V ′

out and V ′
in symmetrically.

2.3.1. CONSTRAINTS ON INPUTS

Well-Formedness. We require that the assignments to Vin and V ′
in conform to our encoding:

numerical features must be correctly encoded using thermometer encoding, and categorical features
must be one-hot encoded. We refer to this condition as well formed(Vin) (and similarly for V ′

in).

Numerical Proximity. For each numerical feature i (with i ∈ N ), let V (i)
in and V

′(i)
in denote the

thermometer encodings (each with B bits). We enforce that the two encodings differ by at most ϵ
bit-flips. Formally, we define the proximity constraint for feature i as

proxϵ
(
V

(i)
in , V

′(i)
in

)
:=

B−1∧
k=ϵ

[(
V

(i)
in [k] ⇒ V

′(i)
in [k − ϵ]

)
∧
(
V

′(i)
in [k] ⇒ V

(i)
in [k − ϵ]

)]
. (4)

This ensures that the thermometer encodings for feature i in both inputs are within ϵ bit-flips.

Categorical. We enforce that categorical features remain identical across both inputs. This means
that for each categorical feature i, every bit in V

(i)
in and V

′(i)
in must be the same. We refer to this

condition as same cat(V
(i)
in , V

′(i)
in ).
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2.3.2. CONSTRAINTS ON OUTPUTS

The output variables Vout are partitioned into C blocks, one for each class. Each block consists of
a total of L bits. For class c (with c ∈ {1, . . . , C}), let V (c)

out denote its corresponding block. To
facilitate comparisons, we sort each block using a sorting network (Eén and Sörensson, 2006):

V
(c),sorted
out ≃ sort net

(
V

(c)
out

)
. (5)

The same procedure is applied to the corresponding block in the second output V ′
out. When the

superscript is omitted, we refer to sorting all output bits in order to encode the overall sum of ones.

Winning Condition. For each class c, we define a Boolean variable wc that encodes the condition
that class c is the winning (predicted) class. Specifically, we require that:

wc ⇒

(∧
d<c

L−1∧
k=0

(
V

(d),sorted
out [k] ⇒ V

(c),sorted
out [k]

)
︸ ︷︷ ︸
class c has confidence at least as high as classes d<c

∧
∧
d>c

L−1∨
k=0

(
V

(c),sorted
out [k] ∧ ¬V (d),sorted

out [k]
)

︸ ︷︷ ︸
class c has confidence higher than classes d>c

)

(6)
Similarly, we define w′

c for the primed output V ′
out. Then, to capture the constraint that two inputs

must be assigned different classes, we encode:

diff class(Vout, V
′
out) :=

C∧
c=1

(
wc ⇒ ¬w′

c

)
. (7)

Confidence. Finally, we define confidence>κ(V ) to require that the network’s output for input
V exceeds a specified confidence threshold κ. We can write:

confidence>κ(Vout) :=

C·L∧
i=1

(
V sorted
out [i− 1] ⇒

C∨
c=1

V
(c),sorted
out [⌊i · κ⌋]

)
. (8)

2.3.3. OVERALL VERIFICATION CONDITION

To prove the validity of a propositional formula, we check whether its negation is unsatisfiable. We
first define an overall formula:

Ψ := well formed(Vin) ∧ well formed(V ′
in) ∧ network(Vin) ∧ network(V ′

in)

∧ confidence>κ(Vout) ∧ diff class(Vout, V
′
out).

(9)

We then specialize Ψ for our two properties as follows. First, Ψfair augments Ψ with the re-
quirement that non-sensitive features are similar (numerically within ϵ and categorically identical),
while the sensitive features differ. Formally,

Ψfair := Ψ ∧

(( ∧
i∈Nn

proxϵ
(
V

(i)
in , V

′(i)
in

)
∧
∧

j∈Cn

same cat
(
V

(j)
in , V

′(j)
in

))

∧
( ∧
k∈Cs

¬same cat
(
V

(k)
in , V

′(k)
in

)))
.

(10)

Similarly, for Ψrobust, we use the same encoding as for Ψfair, with the set of sensitive attributes
Cs being empty. Verification then reduces to proving that Ψrobust or Ψfair is unsatisfiable.
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Table 1: Dataset (after preprocessing) showing the dataset size, total number of features including
the number of numeric features and the number of output classes.

Dataset #Samples #Features (Categorical/Numeric) #Classes

German Credit (Hofmann, 1994) 1,000 16 (12/4) 2
Adult (Becker and Kohavi, 1996) 46,033 7 (4/3) 2
Law School (Wightman, 1998) 21,982 9 (5/4) 2
COMPAS (Larson, 2017) 60,798 8 (7/1) 3
Adult-5 Class (Ding et al., 2021) 195,665 7 (4/3) 5

3. Experiments

In this section, we present experimental results demonstrating the effectiveness of our proposed
method for fairness and robustness verification of LGNs. We evaluate our approach on a range of
classification tasks derived from five different datasets.

3.1. Datasets and Model Training Setup

Datasets. In Table 1, we summarize the key attributes of each dataset (number of instances,
features, and classes). Four of these datasets—German Credit, Adult, Law School, and COM-
PAS—were used by prior work on DNN verification for global fairness and robustness verification
(Athavale et al., 2024; Biswas and Rajan, 2023). We also investigate a five-class variant of the Adult
dataset by partitioning annual income into five brackets, utilizing the Folktables dataset with data
from the 2018 California census (Ding et al., 2021).
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y

Layer Size vs. Accuracy (Test & Validation)

Adult Adult-5 COMPAS German
Law Test Validation

Figure 1: Validation and test accuracy achieved
for five different classification tasks as a function
of model layer size. Each point represents the
mean accuracy over five runs with different ran-
dom seeds. Error bars indicate standard deviation.

Data Splits and Encodings. All datasets are
split into 64% training, 16% validation, and
20% test sets. Numeric attributes are dis-
cretized via thermometer encoding into a max-
imum of 20 buckets (except for German Credit,
for which we use only 5 buckets due to a larger
number of features). If the range of valid val-
ues is less than the maximum, fewer buckets are
employed accordingly. Categorical features are
one-hot encoded.

LGN Model Training. We train LGNs
with three layers, each containing one of
{50, 100, 150, 200, 250, 300} gates to investi-
gate different model sizes and the impact on
verification runtime. Figure 1 illustrates the
validation and test accuracy of our models,
when hardened, across different layer sizes. For
COMPAS, we adjust the layer sizes to the clos-
est number divisible by 3 to accommodate ternary output blocks. For each layer size and dataset,
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Figure 2: Solving time and result vs. confidence value for two example models (COMPAS with 300
and German Credit with 50 gates per layer).

we run five different random seeds (shuffling both data splits and initial gate parameters). We use
the Adam optimizer with a constant learning rate of 0.01 for 200 epochs.

3.2. Verification Framework

In the experimental evaluation, we verify global fairness (GF) and global robustness (GR)—of LGN
networks, as described in Section 2. In all experiments, we use the award-winning SAT solver
Kissat (Biere et al., 2024) as the backend solver. All experiments are run on an AMD EPYC 9654
96-Core Processor. We conduct two types of experiments:

1. Fixed-threshold experiments: We perform queries at specific confidence thresholds (e.g.,
κ = 0.5, κ = 0.99) for GF. In these experiments, we measure the solver’s runtime and record
its outcome (UNSAT/SAT), corresponding to being globally fair or not, respectively.

2. Binary search over κ: For both GF and GR, we perform a binary search over κ (with a
convergence threshold of 0.05) to identify the smallest safe confidence threshold at which no
counterexample pair (x, x′) exists. For each trial κ, we query the SAT solver. We then report
the cumulative runtime across all queries as the total solving time.

3.3. Global Fairness Verification

For global fairness, we fix the allowed perturbation ϵ = 0 on the non-sensitive attributes, meaning
that only the sensitive attributes (gender, ethnicity, or age – for German Credit) may vary.

Solving time at fixed κ. Figure 2 shows solving times for one of our largest COMPAS models
with 300 gates per layer and one of our smallest German Credit models with 50 gates per layer. We
observe that solving time increase as we approach the globally robust boundary.
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Figure 3: Comparison of runtime and determined confidence thresholds for the sensitive attribute
ethnicity, as the number of gates per layer increases (standard deviation too small to see).

All verification queries for these two models are performed in under 10 seconds and, except
for German Credit with the sensitive attribute age, which is globally robust for any confidence
threshold, we find non-trivial confidence thresholds. We additionally verified that at least one input
example x exists that results in a higher confidence output than the found boundary.

Minimum Confidence for Global Fairness. For the sensitive attributes gender and ethnicity, we
perform a binary search over the confidence threshold κ to determine the smallest value at which
the model is globally fair. We set the timeout to 8 hours, and all our models, except German
Credit for layer sizes above 100, were successfully verified. In addition, for each found confidence
threshold, we confirm that at least one input x that attains the corresponding confidence value exits,
ensuring the threshold is not trivially satisfied. Figure 3 presents the cumulative runtime of the
binary search (on a logarithmic scale) and the corresponding minimal confidence thresholds for the
sensitive attribute ethnicity; results for gender are provided in the Appendix.
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Figure 4: Adult dataset, varying vs. constant out-
put layer size for 5 seeds. Either the output layer
size or the size of the other layers is kept constant
at 150 gates.

Our results suggest that two main factors
influence the solver’s performance. First, the
number of output classes appears to affect run-
time, with more classes generally leading to
faster verification, likely due to a coarser reso-
lution in the confidence computation. Second,
the size of the input encoding—particularly
the number of numerical features— impacts
solving time. Although the Law School
dataset has four numerical features, its values
are represented using fewer buckets because
the features have a limited range of integer val-
ues, which helps mitigate the expected slow-
down. Further investigations on the effects of
runtime are necessary in future work.

For all datasets the found confidence val-
ues tend to stay constant or decrease with increasing model capacity. However, this is not the case
for the sensitive attribute gender, see Appendix.

Solving Time vs. Confidence Granularity. As the confidence score is computed as the ratio of
activated gates in the winning class to the total number of activated gates, its granularity is limited
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Figure 5: Comparison of runtime and determined confidence values, as the number of gates per
layer increases (standard deviation too small to see).

by the number of output gates. For example, in a Adult configuration with 300 gates (i.e., 150 gates
per output class), the highest attainable non-1.0 confidence is 150

151 ≈ 0.99. Figure 4 compares two
experimental settings: one in which the output layer size is varied while all preceding layers are
fixed at 150 gates, and another in which the output layer size is held constant at 150 gates while
the sizes of the preceding layers are varied. It can be observed that increasing the output layer
size leads to a substantial increase in verification time, whereas maintaining a constant output layer
size results in only a small increase. With respect to the models used in Figure 4, scaling the output
layer yields a greater accuracy boost than adding gates earlier: the largest fixed output layer achieves
0.826± 0.001, versus 0.834± 0.003 when the final layer’s gates are expanded to 300.

3.4. Global Robustness Verification

For global robustness, we allow up to ϵ flips in each binarized numerical feature while keeping cate-
gorical features fixed. As with fairness, we perform a binary search over the confidence threshold κ
and record the cumulative solver runtime for all queries. Figure 5 shows the returned minimal con-
fidence thresholds and corresponding runtimes for various ϵ values on the Adult and Adult-5 tasks.
Results for other datasets are provided in the Appendix. In Figure 5, we annotate each confidence
threshold with markers indicating whether valid inputs x exist that yield the reported confidence. A
filled upward triangle (▲) denotes that all five model runs have at least one valid input resulting in
the confidence value returned, a downward triangle (▼) indicates that no input x can produce the
confidence value for any of the models, and a filled circle (•) signifies that valid inputs exist for
some, but not all, models. As expected, the runtime for ϵ = 1 is generally the highest, which is a
tighter constraint on the inputs compared with higher values of ϵ. For higher ϵ values (e.g., ϵ = 4
and ϵ = 5), no valid inputs exist for the Adult dataset; in contrast, for the Adult-5 class task, such
inputs exist, at least for some of our models.
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3.5. Comparison with previous work

In general, direct comparisons are challenging as our approach employs LGNs and a SAT-based
verification encoding, whereas the most closely related works Athavale et al. (2024) and Biswas
and Rajan (2023) verify conventional floating-point neural networks using SMT-based methods.

Comparison with Athavale et al. (2024). Even our smallest LGN models (with the exception
of COMPAS, which requires models with more than 100 gates) achieve classification accuracies
comparable to or higher than those reported by Athavale et al. (2024). Although they reported
verification times for most instances under 60 seconds, our reproduction attempts sometimes yield
runtimes on the order of minutes (despite substantial communication with the authors, we could not
reproduce their runtime numbers; possibly due to undocumented changes). Given these inconsis-
tencies, we omit an experimental comparison. In addition, their SMT-based verification relies on a
softmax approximation that results in potentially spurious counterexamples. This limits the num-
ber of output classes due to increasing errors, whereas our method scales to a multi-class setting,
as demonstrated by our 5-class variant of the Adult dataset. Lastly, Athavale et al. (2024) did not
verify the existence of an input x that satisfies the minimum confidence threshold.

Comparison with Biswas and Rajan (2023). As Biswas and Rajan (2023) consider only binary
classification and do not incorporate explicit confidence scores, hence operating at a confidence
threshold of 0.5. Their investigated networks for the Adult and German Credit tasks yield similar
accuracies to our LGNs. In contrast to our work, their experiments do not report any UNSAT
instances, only observing time-out or SAT. Furthermore, they report that only one network can be
verified with a straightforward SMT encoding (with a timeout of three days), necessitating the use
of both sound and heuristic pruning schemes; the latter however may compromise accuracy.

4. Conclusion

In this paper, we have taken a first step toward SAT-based verification of learned Logic Gate Net-
works (LGNs), focusing on the ease of verifying global fairness and robustness while retaining
favorable predictive performance. Our initial experiments, including a 5-class dataset, show that
LGNs can be verified efficiently using purely Boolean encodings, suggesting that such networks
are well-suited for applications requiring strong correctness guarantees. Looking ahead, we plan
to investigate more challenging datasets (e.g., complex image classification tasks) and tighten the
integration between SAT solving and the verification tasks, for example, exploring the use of in-
cremental SAT solving. In addition, we aim to explore real-world domains, such as neural network
controllers for cyber-physical systems, where both efficient inference and reliable verification are
critical. We hope this work will inspire further research into leveraging the inherently symbolic
structure of LGNs for broader verification scenarios.
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