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Abstract
Safety is essential in autonomous navigation, especially as autonomous systems deploy to new
environments where collision avoidance is critical. Neurosymbolic reinforcement learning (NeSy
RL) approaches show promise for advancing long-term navigation by using symbolic planners to
compute high-level waypoints and goal-conditioned RL for low-level control. However, ensur-
ing safety within these frameworks remains a challenge, particularly in new environments that the
agent was not optimized for. Current safe RL based navigation techniques offer robust frame-
works for ensuring safety. However, these approaches are not adapted for NeSy RL and also
present challenges: they can be computationally intensive or constrained by conservative control.
To overcome these limitations, we propose a novel approach to safely and efficiently navigate a
NeSy RL agent in new environments. The proposed method uses real-time reachability analysis
to select subgoals between waypoints and safeguard the actions of a goal-conditioned RL policy.
We implement the approach in Rust and develop a software package, RusTReach, for real-time
reachability analysis. We deploy our approach on an embedded device and compare against four
approaches in a long-term quadcopter navigation task in a new environment. Our evaluation re-
veals that our approach is at least 1.7 times faster at navigating than a state-of-the-art alterna-
tive while maintaining safety and real-time constraint compliance. Code and videos available at
https://github.com/npotteig/rustreach.
Keywords: neurosymbolic AI, autonomous navigation, collision avoidance, hierarchical reinforce-
ment learning, real-time reachability, autonomous ground vehicle, unmanned aerial vehicle

1. Introduction

Ensuring safety is critical in autonomous navigation, as these systems are deployed in real-life
environments, ranging from delivery services, public transportation, and search and rescue missions.
Autonomous agents must operate efficiently to achieve long-term objectives in often unpredictable
or new environments, increasing uncertainty and the potential for collision with static and dynamic
obstacles. Collision with obstacles can cause significant physical, financial, and reputational losses,
underscoring the need for robust safety mechanisms.

Recent autonomous navigation approaches leverage symbolic reasoning and reinforcement learn-
ing (RL), each with distinct advantages. Symbolic methods excel in structured decision-making and
planning, Zhou et al. (2019); Rocamora et al. (2024), but they rely on accurate domain knowledge,
making them less effective in unpredictable settings. RL, in contrast, learns behaviors through trial
and error, offering adaptability in Nachum et al. (2018); Kim et al. (2021), yet it struggles with sam-
ple inefficiency and lacks interpretability. Neurosymbolic RL (NeSy RL) combines these strengths,
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integrating RL’s adaptability with symbolic systems’ logical reasoning , Acharya et al. (2024); Cai
et al. (2024), enabling agents to learn flexibly while ensuring interpretability and verifiability.

One category of NeSy RL is learning for reasoning, where RL supports symbolic components,
Acharya et al. (2024). Toward learning for reasoning in navigation, a goal-conditioned RL policy
can be integrated with symbolic planning, guiding agents through waypoint subgoals generated by
planners likeA∗ or RRT, Xiong et al. (2022). However, these planners ignore system dynamics, and
RL lacks safety guarantees. Toward safety, the RL policy learned in a training environment may
not be robust to a new environment with new and dynamic obstacles. For reliable deployment in
new dynamic environments, goal-conditioned RL must incorporate safety mechanisms that address
disturbances and obstacles, ensuring robust, real-time navigation.

Existing approaches for safeguarding RL components focus on minimizing safety violations
during runtime or providing theoretical guarantees at design-time. Design-time methods approxi-
mate the reachable states for goal navigation, Huang et al. (2022); Lopez et al. (2023); Bogomolov
et al. (2019); Wang et al. (2023), but they lack robustness when deployed in unfamiliar environ-
ments and suffer from high computational costs. Runtime shielding switches to a safety controller
or modifies unsafe actions during deployment, Alshiekh et al. (2018); Thomas et al. (2021); Roza
et al. (2023); Musau et al. (2022); Potteiger and Koutsoukos (2024). Musau et al. (2022) and John-
son et al. (2016) use real-time reachability analysis to compute tight over-approximations of reach-
able states, considering fixed control over a receding finite-time horizon, to decide when to switch
to a safe controller. While shielding protects against unsafe states, it becomes challenging to de-
fine optimal switching conditions and controllers as system dynamics become more complex. Safe
certificate learning learns safety properties alongside the RL policy, Bansal and Tomlin (2021), Xia
et al. (2024), Dawson et al. (2023); Peruffo et al. (2021); Singh et al. (2021). Xiong et al. (2022)
combines a neural Lyapunov certificate with an RL policy for safe navigation between waypoints,
using a runtime monitor to select safe subgoals. While this approach adapts to new environments,
its conservative over-approximation can lead to inefficient navigation and there are no safety guar-
antees around the neural certificate itself. Related work in Appendix A.

Building on insights from previous works, we develop an approach for safe and efficient nav-
igation of a NeSy RL agent in new environments that satisfies real-time constraints and does not
require an external verified safe controller. Our approach is an algorithm that selects subgoals to
compute safe control using real-time reachability analysis. Given a symbolic planner, a set of obsta-
cles, system dynamics, and model parameters learned via goal-conditioned RL our approach selects
safe sugboals in real-time where the set of reachable states does not intersect with obstacles. This
reduces the need to switch to an external verified safe controller as safety is ensured through sub-
goal selection at each control period. To compute the set of reachable states, we develop an anytime
reachability algorithm that will run up until a prescribed runtime deadline. The reachability algo-
rithm, building on our previous work in Johnson et al. (2016), directly incorporates control from the
RL policy over a receding finite-time horizon, allowing for more accurate tracking of the agent’s
future trajectory, compared to using fixed control, improving detection of potential future collisions.
The main technical contributions of this work are:

A safe subgoal selection algorithm to construct goal-conditioned RL policies to navigate with-
out collision between waypoints, generated from a symbolic planner, such as A∗. The subgoals
are selected from candidates generated between waypoints using an anytime reachability algorithm,
which calculates reachable states within a receding finite-time horizon and meets real-time dead-
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Figure 1: Trajectories for an autonomous navigation scenario between two waypoints with two
obstacles. Using a goal-conditioned policy conditioned on the next waypointWj leads to a collision,
whereas considering a subgoal leads to a safe trajectory.

lines. Safety and efficiency are achieved by selecting candidates with reachable sets that avoid
obstacles while minimizing distance to the next waypoint.

We develop a reachability algorithm, which computes a sequence of discrete hyper-rectangles
(”boxes”) as the reachable states over a receding finite time horizon using control from an RL policy.
The RL policy inputs the centroid of each hyper-rectangle to compute the next hyper-rectangle,
enabling more accurate tracking of future trajectories. Additionally, we developed RusTReach, a
Rust-based software package that computes reachable states in real-time, benefiting from Rust’s
memory safety, speed, and embedded systems compatibility.

We evaluated our approach on an NVIDIA Jetson Nano embedded device in a large neighbor-
hood environment, not encountered during training, using a quadcopter model. We conducted two
experiments in the neighborhood with static and dynamic obstacles and concluded that our approach
navigates to final waypoints at least 1.7 times faster than a state-of-the-art method while minimizing
failures (collisions, timeouts, and irrecoverable states) and adhering to real-time constraints. The
results further highlight the importance of RL-based control in reachable set computations, as fixed
control leads to increased navigation failures. We further evaluate generalization of our approach for
vehicles with non-holonomic constraints by testing it on a car-like system in Appendix J. Addition-
ally, we assess both the quadcopter and the car in a corridor environment with a narrow passageway
in Appendix I. In the car and corridor experiments, we find that our method continues to outperform
the state-of-the-art in navigation efficiency and minimizing navigation failures.

2. Safe Autonomous Navigation

Autonomous agents must navigate efficiently and safely toward long-term objectives when they
deploy to new environments. NeSy RL agents combine symbolic reasoning with reinforcement
learning and are effective in generalizable navigation.

One NeSy RL approach is to combine symbolic planning algorithms and hierarchical reinforce-
ment learning (HRL) to navigate to long-term goals. The subset of HRL known as goal-conditioned
reinforcement learning, Kim et al. (2021); Zhang et al. (2020); Nachum et al. (2018) trains model
parameters η to construct a goal-conditioned policy of the form πg := π(x; g, η) that inputs state
x conditioned on a goal g and outputs control u to navigate a system with dynamics ẋ = f(x, u)
to goal g. The goal g is typically selected as an intermediate short-term goal, also referred to a
subgoal, helping to break down the long-term goal into adjacent subgoals.
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Figure 2: Subgoal selection algorithm. ncand = 5 candidates are generated between waypoints Wi

and Wj . The subgoal, g2, selected minimizes the distance to Wj , while satisfying the constraint
that the reachable set for a time horizon 2.0s from state st conditioned on g2 does not intersect with
obstacles o0 and o1.

Subgoals are selected using a symbolic planning algorithm like A∗ or a sampling-based planner
like RRT. A∗ and RRT compute a sequence of p waypoints as subgoals Ω = [W1, W2, ..., Wi,
Wj , ..., Wp−1, Wp] given a set of obstacles Λ, start position, and goal position. The line of sight
between each waypoint (Wi,Wj) is guaranteed to not intersect with obstacles at the beginning of
simulation with a buffer for the dimensions of the vehicle. π(x;Wi, η) can then be constructed
on each waypoint Wi to traverse to each subsequent waypoints and ultimately the goal. These are
efficient algorithms for generating waypoint plans in a new environment without needing to know
obstacles Λ during training η.

Challenging factors to consider for subgoal selection are uncertainty in the environment due to
disturbances, control from πg, dynamical constraints, and dynamic obstacles. These factors can
cause the system trajectory to deviate from (Wi,Wj) leading to a potential collision. Dynamic
obstacles that intersect (Wi,Wj) during a period of simulation need to be considered, else even
following the line exactly could cause a collision. Since the control of the vehicle is tied to the
conditioned subgoal, we must consider safe subgoals and track the waypoints to the goal based on
the current state of the system during deployment. There must be consideration of more points than
the next waypoint Wj when computing the next subgoal.

Therefore, the problem is to develop a subgoal selection algorithm that safeguards a NeSy RL
agent containing: a symbolic planner to generate a sequence of waypoints Ω and model parameters
η optimized using goal-conditioned RL. The subgoal selection algorithm should minimize collisions
with obstacles during navigation to a goal given: the NeSy RL agent, vehicle dynamics ẋ, and a set
of obstacles Λ with dynamics Λ̇. The algorithm must execute in real-time to adapt to the current state
of the system during deployment while navigating a sequence of waypoints and avoiding collision.
The set of obstacles during deployment will be different from design-time, so the approach must bet
generalizable.

3. Safe Subgoal Selection using Real-Time Reachability Analysis

We develop an approach for safe autonomous navigation of NeSy RL agent using reachability anal-
ysis for the selection of subgoals. At each control step, a subgoal is selected, and a corresponding
policy is constructed to compute a safe control action. The approach chooses subgoals based on
the system state, a set of obstacles, system dynamics modeled using ordinary differential equations
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(ODEs), waypoints derived from a symbolic planner such as A ∗ /RRT , and reachable states mod-
eled as hyper-rectangles (”boxes”) to construct goal-conditioned policies, using model parameters
optimized via goal-conditioned RL, for safe control.

Before outlining our subgoal selection algorithm, we define key terms:

Definition 1 REACHTIME, RUNTIME, and REACHABLE SET. The reachtime Treach is the finite
time horizon for computing reachable states, while the runtime Truntime is the wall-clock time
allotted for this computation. The reachable set, denoted R[0,Treach], represents the set of states a
system can reach within the time interval [0, Treach] under control policy π, given initial state x0

and input u, satisfying the system dynamics ẋ = f(x,u):

R[0,Treach] =
{
q(x0,ut, t) | x0,xt ∈ X , ut = π(xt), ut ∈ U , t ∈ [0, Treach]

}
where q(x0,ut, t) is the solution of the system’s ODEs at time t with control ut.

Definition 2 SAFETY. A system is considered safe with respect to a set of obstacles Λ0 (initial
positions) and a dynamics function Λ̇ = f(Λ0, t) over a finite time horizon Treach if:

∀t ∈ [0, Treach], f(Λ0, t) ∩Rt = ∅

where Rt is the reachable set at time t. This ensures that the reachable set at each time step does
not intersect with any obstacle state over the entire time horizon.

During navigation, we assume that the system will always be traversing between two adjacent
waypoints, within line-of-sight, in a sequence of p waypoints Ω, Wi,Wj ∈ Ω. A subgoal g, from
a set of goal points G, is selected between Wi,Wj such that the Definition 2 is satisfied and the
distance between g and Wj is minimized to encourage time-efficient navigation. This is formulated
as the optimizing for the optimal subgoal g∗:

g∗ = argming ||g −Wj ||2
where, ∀t ∈ [0, Treach], f(Λ0, t) ∩Rt = ∅, g ∈ G

Our approach for selecting a subgoal given the system state xt at time t approximates the op-
timal subgoal ĝ∗ within a runtime deadline of TsgT ime. First, a set of ncand subgoal candidates
[g1, g2, ..., gncand

] where gi ∈ G are generated in priority order, where candidates closer in dis-
tance to Wj have higher priority. Next, each candidate is assigned an equal budget for runtime
Truntime based on ncand and the maximum runtime allowed to compute a subgoal TsgMax. Then,
for each candidate gi a goal-conditioned policy is constructed πgi given pre-trained model parame-
ters η trained via goal-conditioned RL. πgi is then used to construct a reachable set R[0,Treach]. If
Definition 2 is satisfied then gi is returned, else the process is repeated for gi+1. This occurs until
either a subgoal is returned or no subgoals are deemed safe. In this case, the state is irrecoverable
and external intervention is needed. An example of the subgoal selection algorithm is illustrated in
Figure 2.

The subgoal returned ĝ∗ is used to construct πĝ∗ and generate control u to produce the next state
xt+1. Subgoal selection and control is repeated between Wi and Wj until the system has navigated
within a distance ϵ of Wj . The next adjacent waypoints e.g. Wj ,Wk ∈ Ω will then be selected and
repeat until the final waypoint Wp has been reached. Algorithm details are in Appendix B.1.
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3.1. Generation of Subgoal Candidates

The set of ncand subgoal candidates [g1, g2, ..., gncand
] are generated on a segment of the line

(Wi,Wj) given: state xt, Wi, Wj , and ncand. First, xt is projected onto the line (Wi,Wj) as
projd(xt), where the direction vector is d = Wj −Wi. Then, the endpoints (eprev, enext) of the
segment are calculated from projd(xt) a distance dprev to the previous Wi and distance dnext to-
wards the next waypoint Wj . This is calculated as follows:

(ui, uj) =

(
Wi − projd(xt)
||Wi − projd(xt)||

,
Wj − projd(xt)
||Wj − projd(xt)||

)
(eprev, enext) = (projd(xt)− dprev · ui, projd(xt) + dnext · uj)

(eprev, enext) are further clipped to be bounded between Wi and Wj . The segment (eprev, enext)
is equally divided into ncand candidate points as presented in Appendix B.2. The candidates are
ordered by prioritizing candidates closer to Wj first.

3.2. Anytime Computation of Reachable Sets with Reinforcement Learning Control

For each subgoal candidate gi a respective goal-conditioned policy is constructed πgi := π(x; gi, η)
given model parameters η pre-trained through goal-conditioned reinforcement learning in an en-
vironment with no obstacles. Using πgi , state xt, dynamics ẋ, and a step size h, a tight over-
approximation of the set of reachable states R[0,Treach] over Treach can be computed using a mixed-
face lifting approach Johnson et al. (2016) assuming fixed control. We build on this approach to
consider RL control, where control is predicted using a RL policy πgi over Treach. Appendix G
demonstrates that considering RL control leads to reachable sets that more accurately track the
ground truth future states of a vehicle. Furthermore, h is used to tune the over-approximation er-
ror from R[0,Treach], where smaller h is more accurate but more expensive to compute. To tune h
to abide by real-time constraints, an anytime extension was developed in Johnson et al. (2016) to
incrementally decrease h and re-compute R[0,Treach] until a runtime budget of Truntime has elapsed.

3.2.1. REACHABLE SET COMPUTATION USING REINFORCEMENT LEARNING CONTROL

The exact reachable set R[0,Treach],g cannot be computed for general nonlinear systems. Therefore,
methods seek to compute a tight over-approximation of the set of states and set of control such
that the ground truth system behavior is contained within the set at time t. However, depending
on the complexity of the dynamics and control policy, computing approximations of the control set
given a set of states becomes expensive and infeasible in real-time. This can be computed offline
during design-time, but design-time approaches may not capture fully the uncertainties faced in an
environment unknown during design-time. Therefore, in our approach, to reduce computational
complexity, we opt to compute a point estimate of the control set given an over-approximated set of
states at time t.

In our approach we consider a mixed-face lifting method from Johnson et al. (2016), that is
part of a set of methods for computing the reachable set through flow-pipe construction given: state
xt, RL policy π, dynamics ẋ, time-horizon Treach, and fixed step size h. The method constructs a
sequence of discrete snapshots of the set of reachable states over Treach. We construct each subse-
quent snapshot by computing point estimates of control using π given the current snapshot. Point
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estimates allow us to construct a computationally efficient algorithm that can execute in real-time.
We observe the point estimate for control tracks reasonably well for a goal-conditioned controller.

The snapshots of the flow-pipe are represented symbolically as hyper-rectangles (”boxes”) for
efficiency to compute the set of reachable states. For short reach times Treach this representation is
effective, but one must consider the over-approximation error as it increases for long reach times if
the set of reachable states is not a box.

The initial hyper-rectangle is initialized, using state x0 with 0 width for each dimension (i.e. a
hyper-line) and added to the reach set. Our extension to the original approach is each subsequent
hyper-rectangle is calculated first by computing the control given the current hyper-rectangle. In
our approach, we compute the centroid of the hyper-rectangle producing a point estimate that is
inputted as the state to policy π. The centroid of a D-dimensional hyper-rectangle r is defined as
follows:

centroid(r) =

{
rd,max + rd,min

2
| 0 < d ≤ D

}
where rd,max and rd,min are the maximum and minimum face values at dimension d. The

mixed-face algorithm from Johnson et al. (2016) is continued and repeated using RL control until
each hyper-rectangle up to Treach is computed and stored in the reach set. Algorithm details are in
Appendix B.3.

3.2.2. EXTENSION TO ANYTIME COMPUTATION

The computation of the reachable set is amended to an anytime algorithm. The algorithm includes
an extra parameter for runtime Truntime specifying that R[0,Treach] must be returned when Truntime

has elapsed. We leverage the step size h to make the algorithm amenable to anytime computation.
The reachable set R[0,Treach] is computed for initial step size h. Then an estimate of the remaining
runtime Tremaining is computed and determined if the step size can be halved allowing R[0,Treach]

to be recomputed to decrease over-approximation error. A decreased over-approximation error can
lead to a reduction in scenarios where the over-approximation error is large, where navigation to
a goal g is deemed unsafe when in fact it is safe if computed with a smaller step size h (error).
R[0,Treach] is returned when Tremaining is less than or equal to zero or the current step size is too
small (hcur < 1e−7). Algorithm details are in Appendix B.4.

3.3. RusTReach: Reachable Set Computation in Rust

To improve computational efficiency and satisfy real-time constraints, we develop a software pack-
age, RusTReach, for anytime reachable set computation in Rust. We choose Rust due to its memory
safety and security benefits, comparable execution time to C, package management, and its spread to
embedded real-time applications Sharma et al. (2023). In addition, shared libraries can be compiled
from Rust packages that can seamlessly integrate with existing C/C++ code. Furthermore, since
autonomous vehicle software is typically deployed to an embedded system on a compact hardware
testbed, Rust is an ideal candidate for development and maintenance. We release our code publicly
for repeatability of our results.
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4. Evaluation

We perform an evaluation of our safe subgoal selection approach, using RusTReach to generate
reachable sets, in a Neighborhood environment, with static and dynamic obstacles, using a quad-
copter vehicle. We compare safety, navigation, and time efficiency against multiple subgoal selec-
tion approaches. Our experiments are conducted on an embedded system, NVIDIA Jetson Nano
(Quad-core ARM Cortex-A57, 4 GB 64-bit LPDDR4), to study realistic deployment. An additional
experiments with and a Corridor environment, described in Appendix C, is in Appendix I for the
quadcopter. Further, we evaluate the generalization of our approach to a non-holonomic car vehicle
in both environments in Appendix J.

4.1. Experimental Setup

Quadcopter: We consider a quadcopter aerial vehicle. The quadcopter considers realistic model
parameters and the dynamics have been demonstrated in previous work, Sabatino (2015), to track
well with complex systems. The quadcopter is represented as a two-dimensional rectangle. The
quadcopter has a 12-dimensional state (position, orientation, linear and angular velocities) with
four-dimensional control (thrust, xyz torques) and measures 0.32 meters on each side. More details
on vehicle dimensions, dynamics, and parameters are in Appendix E.

Neighborhood: The Neighborhood environment is a two-dimensional representation, shown in
Appendix D, of a neighborhood in Microsoft AirSim, Shah et al. (2017): a simulation platform for
quadcopter simulation. The grid representation is discrete. The size of the environment is [−50, 50]2
meters, where the origin is in the center (0, 0). There are 1634 of 10K grid cells marked as obstacles.

We conduct two experiments to evaluate long-term navigation in the Neighborhood environ-
ment: one with static obstacles and another with dynamic obstacles. For both, we generate 1000
start positions p0 and goal positions pf with respective paths represented as sequences of waypoints
computed using theA∗/RRT planning algorithm, considering a obstacle buffer of 1 meter for vehi-
cle feasibility. The vehicle start location is p0 as well as the initial waypoint. The distance threshold
to reach each waypoint in the sequence is ϵ = 1.0. For the static obstacle experiment, the obsta-
cles are fixed for the duration of simulation. For the dynamic obstacle experiment, obstacles are
spawned between two waypoints in the path, if the distance between the two is sufficiently large
> 2.9 meters. The obstacle dynamics translate the obstacle position perpendicular to the path at 0.5
m/s, creating a challenging navigation scenario.

Simulation Parameters: The control period is dt = 0.1 seconds, with a maximum of Tmax =
1000 timesteps. A subgoal is selected every TsgMax = 100ms, and the reach time is Treach = 1.0s.
The initial step size is h = 0.1. We use ncand = 5 subgoal candidates with distances dprev = 5 and
dnext = 5 meters. The simulation terminates when the target is reached, a collision occurs, Tmax

timesteps are reached, or no safe subgoal is found.
Optimizing Goal-Conditioned Policies: To avoid confounding factors related to differences

in training algorithms, we use the same goal-conditioned RL algorithm to optimize a single set of
model parameters, ηi, for each vehicle i. We use the training algorithm Model-Free Neural Lya-
punov Control (MFNLC) from Xiong et al. (2022) to stably and efficiently navigate to a short-term
subgoal through the joint optimization of a neural Lyapunov function and a neural network con-
troller in a reinforcement learning update loop. This learning approach was shown to be more
efficient in learning to navigate to a goal in an environment without obstacles than standard re-
inforcement techniques such as PPO and TD3. Training occurs in Python using PyTorch, Paszke

8



RTREACH FOR NESY RL-BASED SAFE NAVIGATION

et al. (2019), then model parameters are transferred to Rust via ONNX (2024) for evaluation. More
details on the architecture and learning algorithm can be found in F.

Subgoal Selection Methods: Waypoints are generated using either A∗ or RRT . In the RRT
path, selected waypoints are spaced 3 meters apart, whereas A∗ waypoints can have arbitrary spac-
ing. Unless otherwise specified,A∗ is used for waypoint generation. The approaches share the same
set of model parameters to construct goal-conditioned RL policies. The approaches are described
as follows: The Waypoint Only (WO) method does not consider safe navigation during runtime.
The subgoal selected is fixed to the next waypoint Wj and repeated for subsequent waypoints. We
consider two variants: one that follows the A∗ waypoints and another that follows RRT waypoints.
The Model-Free Neural Lyapunov Control (MFNLC) approach, based on the state-of-the-art
method from Xiong et al. (2022), uses a neural Lyapunov function to build a runtime monitor that
generates infinite-time reachable sets. These reachable sets are over-approximated as circles, and
a safe subgoal is selected if its reachable set (circle) does not intersect with obstacles. The Rus-
TReach Fixed Control (RR FC) method selects safe subgoals using anytime reachability analysis,
where reachable sets are computed using fixed control over a finite-time horizon Treach. The fixed
control value u is generated using π, based on the current state xt, and is inputted to Algorithm 2,
which has been modified to replace centroid calculation with a constant control output u := π(xt).
Finally, the RusTReach RL Control (RR RLC) (Ours) method, which we propose, selects safe
subgoals using anytime reachability analysis, where reachable sets are computed using control from
an RL policy π over a finite-time horizon Treach.

Metrics: The approaches are evaluated for success using the following metrics computed over
1000 simulations (episodes): Mean Time-to-goal (TTG), representing the average time (in seconds)
for the vehicle to reach within a distance ϵ of the final waypoint, considering only simulations
that end upon reaching the final waypoint; Failure ratio, measuring instances where the simulation
either reaches Tmax, terminates early due to failure to identify a safe subgoal (irrecoverable), or
collides with an obstacle (unsafe), limited to one per simulation and calculated as (timeouts + no sg
+ collisions)/1000; Mean Subgoal (SG) Selection Time, the average time (in milliseconds) to select
the next subgoal at each timestep; and Missed Deadline Ratio, which is the ratio of timesteps where
the SG selection time exceeds TsgMax = 100 ms, out of a total of over 30K timesteps.

4.2. Experimental Results

The results in Table 1 show that the WO (A∗) approach achieves the fastest mean TTG but suffers
from a high failure rate, primarily due to collisions. For WO (RRT ), reducing waypoint spacing
decreases failures, but still results in a significant number, while also leading to more conservative
travel. Our approach, RR RLC, minimizes failures while achieving a mean TTG that is > 1.7 times
faster than MFNLC and WO (RRT ). Both RR RLC and MFNLC experience increased failures
in the presence of dynamic obstacles; however, MFNLC exhibits more than twice the number of
failures compared to RR RLC. We attribute this to MFNLC’s conservative nature, which reduces
navigation efficiency and often results in timeouts or oscillations near obstacles. This issue is fur-
ther highlighted in Appendix C, where MFNLC struggles to navigate paths in close proximity to
obstacles. We seek to mitigate the number of failures from RR RLC considering dynamic obsta-
cles in future work for increased safety. Additionally, RR RLC exhibits fewer failures than RR FC
with dynamic obstacles, likely due to its improved ability to track future states accurately. This is
further exacerbated in the Corridor environment in Appendix C. Notably, RR RLC has a slightly
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Obstacles Method Mean TTG
(s)

Failure Ratio Mean SG
Selection
Time (ms)

Missed
Deadline

Ratio

Static

WO (A∗) 13.531 0.338 - -
WO (RRT ) 33.731 0.133 - -

MFNLC 30.538 0.004 - -
RR FC 18.001 0.001 10.403 0.000

RR RLC (Ours) 18.013 0.000 8.391 0.000

Dynamic

WO (A∗) 12.876 0.570 - -
WO (RRT ) 33.655 0.155 - -

MFNLC 40.232 0.163 - -
RR FC 18.895 0.149 12.019 0.000

RR RLC (Ours) 19.718 0.066 11.363 0.000

Table 1: Quadcopter-Neighborhood Experiment Results. We evaluate 1000 start and goal position
pairs each with a sequence of waypoints. The task is to navigate starting from the first waypoint
(start position) through the sequence of waypoints to the final waypoint (goal position), while avoid-
ing static or dynamic obstacles. The best value for each metric is highlighted in bold.

lower mean subgoal selection time compared to RR FC. This may be due to RR RLC computing
reachable sets for fewer subgoal candidates in cases where RR FC inaccurately predicts a subgoal
as unsafe, leading to extra subgoal candidate computations. Finally, we note that both RR RLC and
RR FC minimized deadline violations to satisfy real-time constraints.

5. Conclusion

We propose an approach for safe autonomous navigation of a NeSy RL agent between waypoints
in new environments with obstacles. Our method employs a safe subgoal selection algorithm using
reachability analysis to construct goal-conditioned RL policies for collision-free control. The al-
gorithm considers waypoints from a symbolic planner, system dynamics, and hyper-rectangles for
reachable states—alongside a RL component that learns model parameters through goal-conditioned
RL. Subgoals are selected from candidates whose reachable sets are computed, ensuring obstacle-
free navigation while minimizing distance to the next waypoint. Reachable states over a finite-time
horizon are computed in an anytime manner using RL-based control for real-time compliance. We
implement our algorithm in Rust and develop RusTReach, an open-source software package for
real-time reachability analysis. We evaluate against four approaches in a long-term quadcopter nav-
igation task, our method is > 1.7 faster at traversing through waypoints on average while being
more robust to static and dynamic obstacles than a state-of-the-art safe navigation approach while
reducing navigation failures (collisions, timeouts, and irrecoverable states) and minimizing deadline
violations. However, there are still a high amount of failures when considering dynamic obstacles
that we seek to mitigate in future work. Results further highlight the necessity of RL-based control,
as fixed control increases navigation failures.

10
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Appendix A. Related Work

Several existing approaches for autonomous agents with RL components have been developed to
satisfy safety constraints during deployment.

Design-time approaches seek to provide strong theoretical guarantees to the system, so the sys-
tem performs as expected during deployment. Methods seek to compute over-approximations of
the control output from a neural network controller to construct a set of reachable states. The set
of reachable states can then be used to verify that safety violations do not occur. There are two
types of over-approximations: output range approximations and functional over-approximations.
In Lopez et al. (2023) and Bogomolov et al. (2019) they estimate the output of a neural network
using an approximated range and, while efficient, can lead to large over-approximation errors in
complex nonlinear systems. Huang et al. (2022) demonstrate that a functional approximation more
accurately models the full input-output dependencies by using Taylor models as function approxi-
mations. Functional approximations can successfully construct the reachable set for complex tasks
with nonlinear dynamics, but there is a tradeoff of higher computational cost. This computational
cost was reduced in Wang et al. (2023) through parallelization, increasing time efficiency, but still
has relatively high computational demand making it infeasible to compute in real-time.

Towards safety during deployment, a class of methods known as shielding or intervention can
be employed to guard the system from making unsafe actions. Some methods such as Johnson et al.
(2016) and Musau et al. (2022) predict potentially unsafe control output from a neural network
controller and will switch to a verified safe controller if needed. Both approaches use real-time
reachability to determine the switching condition. Instead of switching to a safe controller, other
methods, such as Roza et al. (2023) and Potteiger and Koutsoukos (2024), optimize an auxiliary
policy to perturb the raw control output to satisfy safety constraints. These two approaches also use
goal-conditioned reinforcement learning to optimize for safe navigation to long-term goals. Shield-
ing is effective when designed carefully but it becomes increasingly difficult to create a verified safe
controller or optimally perturb control in complex nonlinear systems.

Furthermore, safety can be incorporated into the training algorithm of the neural network through
learning safety certificates. Safety certificates such as Lyapunov, Hamilton-Jacobi reachability anal-
ysis, barrier, and contraction functions are approximated and optimized with a neural network con-
troller to learn safety properties towards stability, safety, and trajectory tracking. Neural Lyapunov
functions, such as in Xiong et al. (2022), can be jointly optimized with learning-enabling the con-
troller to certify stability properties are satisfied. DeepReach, Bansal and Tomlin (2021), proposes a
neural PDE solver, to address scalability issues with traditional methods, in Hamilton-Jacobi reach-
ability analysis for analyzing the stability of high-dimensional systems. Xia et al. (2024) extend
DeepReach to stabilize gait switching in a bipedal locomotion robot. Neural barrier functions in
Dawson et al. (2023) and Peruffo et al. (2021) certify that a system remains within a specified safe
region. Contraction methods, such as in Dawson et al. (2023) and Singh et al. (2021), certify the
ability of a system to track a given trajectory. These methods are beneficial for efficiently learning
properties to minimize safety violations for robustness at deployment but lack the guarantees of
design-time approaches.

Xiong et al. (2022) is the most similar to our approach. The authors jointly optimize, via re-
inforcement learning, a neural Lyapunov function with a goal-conditioned reinforcement learning
policies to navigate to short-term subgoals. The neural Lyapunov function is used in a runtime mon-
itor to over-approximate the set of reachable states, over infinite-time, as a circle conditioned on an
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intermediate subgoal as a sink. The monitor selects a subgoal on an A∗ path at each control period,
where the reachable set (circle) does not intersect with obstacles. The evaluation of their method
demonstrated safety and effectiveness in navigating to the target goal. However, the representation
of the set of reachable states as a circle may lead to a large over-approximation error leading to
conservative navigation. We seek to make our navigation less conservative, while still maintaining
safety in our approach.

Appendix B. Algorithm Details

In our algorithm, safe subgoals are selected in real-time by using an anytime reachability algo-
rithm to determine which subgoals will lead to future states that do not intersect with obstacles
and minimize the distance to desired waypoints. The anytime reachability algorithm is based on
the algorithm in Johnson et al. (2016), that constructs the set of reachable states, represented as
hyper-rectangles, over a finite-time horizon in real-time assuming fixed control. The anytime prop-
erty bounds the reachability computation to execute below a specified runtime budget aiding in
constraining subgoal selection execution to real-time. Furthermore, to more accurately model the
set of reachable states, we extend their algorithm to use control from a RL policy over a receding
finite-time horizon.

B.1. Safe Subgoal Selection Algorithm

Algorithm 1: Safe Subgoal Selection using Real-Time Reachability
Inputs : state xt, start Wi, end Wj , subgoal candidate number ncand, model parameters η,

vehicle dynamics ẋ = f(x, u), reachtime Treach, step size h, maximum runtime
TsgMax, obstacles Λ0, obstacle dynamics Λ̇ = f(Λ0, t)

Outputs: Bool subgoalFound, Goal subgoal
subgoal← null;
subgoalFound← false;
Goal[] sgs← generateSubgoalCands(xt,Wi,Wj , ncand); // Generate in priority
order, closest to Wj first
Truntime ← TsgMax/ncand;
for g ∈ sgs do

πg ← π(x; g, η); // Construct policy πg from g and η
R[0,Treach] ← anytimeReach(xt, πg, ẋ, Treach, h, Truntime); // Execute

Algorithm 3
if ∀t ∈ [0, Treach], f(Λ0, t) ∩Rt == ∅ then

subgoal← g;
subgoalFound← true;
return subgoalFound, subgoal;

end
end
return subgoalFound, subgoal;
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B.2. Generation of Subgoal Candidates

xt

WjWi

eprev enext
projd(xt)

Figure 3: ncand = 5 subgoal candidates (blue) generated and divided equally on the segment (gray)
on the line (Wi,Wj). The endpoints (eprev, enext) of the segment are distances dprev and dnext
from the projection, projd(xt), of state xt onto the vector with direction d =Wj −Wi.

B.3. Reachable Set Computation Algorithm

Algorithm 2: Reachable Set Computation using RL Control
Inputs : state xt, policy π, dynamics ẋ = f(x, u), reachtime Treach, step size h
Outputs: Box[] reachSet
Box[] reachSet;
D ← length(xt);
Box currentRect← initialRect(xt); // Initialize with 0 width
reachSet.add(currentRect);
TreachRemain ← Treach;
while TreachRemain > 0 do

u← π(centroid(currentRect));
Box[D × 2] nebs← nbds(currentRect, h, d(r, i | u, ẋ));
crt← minCrossReachTime(nebs, d(r, i | u, ẋ));
advReachTime← min(crt, TreachRemain);
currentRect← advR(nebs, advReachTime, d(r, i | u, ẋ));
TreachRemain ← TreachRemain − advReachTime;
reachSet.add(currentRect);

end
return reachSet;

We follow the algorithm from Johnson et al. (2016), by constructing neighborhoods, in the
nbds function, for each face in currentRect considering the expansion and translation of currentRect
based on the derivative . For a hyper-rectangle, there are two faces per dimension and thus there
are two neighborhoods that are constructed based on the reach timestep h and derivative bounds
along each face index i, given the current hyper-rectangle currentRect and control u. The derivative
bounds are computed using a user-defined function der(r, i | u, ẋ) that inputs a hyper-rectangle r
and face index i given control u and dynamics ẋ. The function outputs the derivative scaler-value
for face index i.

Then the minimum reach-time, crt, for any point to travel across any of the neighborhoods in
the corresponding direction is computed in the minCrossReachTime function. This is computed
by looking at the minimum and maximum derivative within the hyper-rectangle for each neighbor-
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hood, utilizing the user-defined derivative bounds function and the width of the neighborhood at the
corresponding dimension.

Finally, the next currentRect is computed based on the neighborhoods and computed reach-time
to advance in the advR function, calculated as advReachTime using crt but may be reduced if it
exceeds the remaining reach-time TreachRemain. This is computed by advancing each face by the
maximum derivative in the outward direction (expansion of the hyper-rectangle) in its neighbor-
hood, using the user-defined derivative bounds function, then multiplying by advReachTime. The
next currentRect is computed and added to the existing sequence of hyper-rectangles reachSet until
the desired reach-time Treach has been advanced (TreachRemain < 0).

B.4. Anytime Reachable Set Computation Algorithm

Algorithm 3: Anytime Reachable Set Computation
Inputs : state xt, policy π, dynamics ẋ = f(x, u), reachtime Treach, step size h, runtime

Truntime

Outputs: R[0,Treach]

R[0,Treach] ← ∅;
elapsedTime← 0;
Tremaining ← Truntime;
startTime← now();
hcur ← h;
nextIterEstimate← 0;
while Tremaining > 0 or hcur < 1e−7 do

R[0,Treach] ← reachSet(xt, π, ẋ, Treach, h); // Execute Algorithm 2

elapsedPrev← elapsedTime;
elapsedTime← now()− startTime;
prevIterEstimate← elapsedTime− elapsedPrev;
if prevIterEstimate× 2 + 1 < nextIterEstimate then

nextIterEstimate← nextIterEstimate× 2;
end
else

nextIterEstimate← prevIterEstimate× 2 + 1;
end
Tremaining ← Truntime − elapsedTime− nextIterEstimate;
hcur ← hcur/2;

end
return R[0,Treach];

B.5. Collision Avoidance & Safe Subgoal Selection

Safety is achieved by ensuring that the system will not collide with a set of static obstacles Λ.
Static obstacles are represented as rectangles to trivially check for collisions. Avoiding collisions
requires that the reachable set R[0,Treach] for the subgoal selected ĝ∗ at each control period must
not intersect with obstacles to satisfy Definition 2. To select the safe subgoal, in Algorithm 1, the
set of ncand subgoal candidates are iterated through. For each subgoal candidate gi, the reachable
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set R[0,Treach] is computed as a sequence hyper-rectangles. Each hyper-rectangle ri in R[0,Treach] is
checked for intersection with any obstacle in Λ. If no hyper-rectangle intersects with the obstacles,
then Definition 2 is satisfied and the subgoal gi is returned. If no subgoal satisfies the condition,
then the state is irrecoverable and the algorithm returns that a subgoal was not found and external
control should take over.

Appendix C. Corridor Environment

The Corridor environment is designed to evaluate traversal through a narrow space between obsta-
cles. The two-dimensional environment in Figure 4(b) contains four obstacles at [2, 0.7], [2,−0.7],
[2, 1.4], [2,−1.4]. A vehicle starts on the left side of the obstacles and the objective is to navigate to
a waypoint on the right side.

The Corridor experiments are designed to evaluate navigation through narrow passageways in
the Corridor environment considering static and dynamic obstacles. We generate 1000 start way-
point, end waypoint, and vehicle start position triplets (Wstart,Wend, p0). p0 can be different from
Wstart to consider the position error from navigating to Wstart from a previous waypoint. Wstart

is selected on the left-side bounded by [−0.5, 0.5]2, Wend is selected on the right side bounded by
[3.5, 4.5]2, and p0 is selected on the left-side bounded by [−0.75, 0.75]2. We estimate if the path is
feasible for the vehicle to navigate without collision by checking that the line (Wstart,Wend) with
a buffer for the vehicle size does not intersect with the two obstacles. If the line intersects with
obstacles then we discard this triplet and re-compute until 1000 triplets have been generated. The
distance threshold to reach the waypoint Wend is ϵ = 0.2 meters.

In the static obstacle experiment the obstacle are fixed throughout simulation. In the dynamic
obstacle experiment, the interior obstacles ([2, 0.7], [2,−0.7]) swap positions by moving inward at
0.5m/s until they switch positions.

Appendix D. Obstacle Maps
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Figure 4: Two environment maps for experiments, each with square obstacles (0.5 meters wide, in
blue). The first is a Neighborhood environment, a 100 × 100 grid with 685 obstacle cells. The
second is a Corridor environment with four obstacles forming a narrow passage.
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Appendix E. Quadcopter Dynamical Model

The aerial vehicle is a linearized quadcopter model from Sabatino (2015). The quadcopter model
was linearized, but still shown to track well with the full nonlinear dynamics. The size of the vehi-
cle is 0.32 meters in width and length. The 12-dimensional state x contains the linear and angular
positions[
x y z ϕ θ ψ

]
and the linear and angular velocities[

u v w p q r
]
. When conditioned on a goal g, the state is transformed to x =

[
g − x0:3, x3:12

]
.

The quadcopter is controlled using vertical thrust and linear torques
[
ft τx τy τz

]
. The sys-

tem is simulated using the following linear dynamics: Parameters for the quadcopter are: g =

ẋ = u u̇ = −gθ
ẏ = v v̇ = gϕ

ż = w ẇ = −ft
m

ϕ̇ = p ṗ = τx
Ix

θ̇ = q q̇ =
τy
Iy

ψ̇ = r ṙ = τz
Iz

9.81 m/s2, m = 1.2 kg, Ix = 0.0123 kgm2, Iy = 0.0123 kgm2, Iz = 0.0224 kgm2. The
parameters were set to match a rough estimate of a DJI F450 quadcopter in Bobzwik (2024).

Appendix F. Optimizing Goal-Conditioned Policies

The goal-conditioned reinforcement learning approach we use is Model-Free Neural Lyapunov Con-
trol (MFNLC) from Xiong et al. (2022) that jointly optmizes a neural Lyapunov function and neural
network controller. The controller is a neural network is defined with parameters η to construct a
goal-conditioned policy π(x; g, η). The state x is transformed to be conditioned on goal g. The
controller has two hidden layer of size 32 with ReLU activation functions. The input size is the state
size. The output size is 2 for the desired velocity at, bounded between [−0.5, 0.5]2]m/s by scaling
the output of a TanH activation function. at is then inputted to a pre-configured PID controller to
compute the control. In the case of the car, this is steering angle δ and thrust input u. Using an
abstraction of the control such as desired velocity allows the neural network to be compatible with
external interfaces in realistic simulation such as Microsoft AirSim Shah et al. (2017) that supports
desired velocity input, but may not directly support our particular control input.

The Lyapunov function V (x) is also a neural network where the input size is the state size,
output size is 1, and two hidden layers of size 64. The Lyapunov function is optimized towards
properties that when incorporated into the update step in the loss computation of πgc increases
stabilization and training efficiency for navigation to a goal position. The properties are as follows:

V (xo) = 0

V (xt) > 0

V (xt+1)− V (xt) < 0

The properties ensure that at a sink xo, in this case the goal position, the output of the Lyapunov
funciton is zero and for all other states the value is strictly positive. The third property ensures
that the values decreases between two timesteps encouraging the system to stabilize at the sink.
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Intuitively, this means the vehicle would travel closer to the goal (sink) for each subsequent timestep
eventually converging to the goal (sink).

For each vehicle i, a set of parameters ηi is trained for a neural network controller. The pa-
rameters are optimized for 1000 simulation episodes, where there are 100 timesteps per episode.
Each episode is initialized with a randomized start and fixed goal in a 6 × 6 meter space with no
obstacles. ηi is trained to minimize the distance to the target and ensure that the desired velocity
at := π(xt; gt, ηi) aligns with the goal gt relative to the position of vehicle i (pt) from the state xt.
More formally, the reward function is:

rew(pt, at) = ||at − (gt − pt)||2 − ||gt − pt||2
The joint training of the Lyapunov function V (st) is incorporated into the loss function to update ηi
to provide stability.

Appendix G. Improving tracking of reachable states using RL control
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Figure 5: Set of reachable states over a finite-time horizon Treach = 2.0s and step size h = 0.1 for
the autonomous car, given a goal-conditioned policy πg where g = [1, 1]. Two control methods for
the reachable set computation algorithm are compared, fixed control (FC) in orange where control
is constant (original approach, Johnson et al. (2016)) and RL control (RLC) in green, our extension,
where the control is predicted over the finite-time horizon. We find FC stops tracking the ground
truth trajectory a short time after the initial state, while RLC tracks for the entire time-horizon.

Appendix H. Simulation Parameters

The control period for each vehicle is a timestep of dt = 0.1 seconds (100 milliseconds), during
which a subgoal is selected, and control inputs are generated. There is a maximum of Tmax = 200
timesteps (20s) in Corridor and Tmax = 1000 timesteps (100s) in Neighborhood.

At each timestep, there is a deadline of TsgMax = 100ms to compute the next subgoal. We set
the reach time Treach = 2.0s for Corridor and Treach = 1.0s for Neighborhood to allow sufficient
time to correct potentially unsafe actions before reaching an irrecoverable state, where a collision
is unavoidable. The initial step size is h = 0.1 to reflect the control period, but can decrease if the
anytime reachability algorithm has excess runtime to re-compute the reachable set. The number of
subgoal candidates we choose is ncand = 5 for Corridor, where distances for constructing the line
segment for selection are dprev = 4, dnext = 4 meters, and ncand = 5 for Neighborhood, where
distances dprev = 5, dnext = 5 meters.

20



RTREACH FOR NESY RL-BASED SAFE NAVIGATION

A simulation (episode) terminates if the target/final waypoint is reached, a collision has oc-
curred, Tmax timesteps have elapsed, or the subgoal selection algorithm cannot find a safe subgoal
due to all of the ncand sugboals violating the safety condition in Definition 2.

Appendix I. Quadcopter Corridor Experiment

In the results in Table 2 for the quadcopter, the Waypoint-Only (WO) approach has the fastest TTG,
but suffers from an excessive number of failures. Our approach (RR RLC) minimizes navigation
failures and has a mean TTG that is more than two times faster than MFNLC. The conservative
over-approximation of the reachable set in MFNLC leads to a degradation in navigation efficiency.
Also, we find more failures from MFNLC in Corridor than the Neighborhood because of the close
proximity to obstacles. The vehicle slows to a halt resulting in a timeout or drift near the passageway
between the two obstacles leading to a low-speed collision. We find that RR RLC also exhibits
more failures than the Neighborhood, but not to the same extent. Future work should investigate
improvements to further reduce navigation failures in tight navigation spaces. Additionally, the
inclusion of RL control in RR RLC was shown to have fewer navigation failures than fixed control
where RR FC tends to raise false negatives that there is no safe subgoal. The reduced conservatism
and increased accuracy of RR RLC reachable sets results in safer and faster navigation in this narrow
passageway environment.

Obstacles Method Mean TTG
(s)

Failure Ratio Mean SG
Selection
Time (ms)

Missed
Deadline

Ratio

Static

WO 3.574 0.264 - -
MFNLC 17.721 0.820 - -
RR FC 3.473 0.539 31.694 0.000

RR RLC (Ours) 4.064 0.118 24.278 <0.001

Dynamic

WO 2.700 0.999 - -
MFNLC 17.725 0.819 - -
RR FC 5.741 0.988 69.764 0.000

RR RLC (Ours) 5.429 0.183 40.133 <0.001

Table 2: Quadcopter-Corridor Experiment Results. 1000 triplets (start waypoint, end waypoint,
vehicle start position) are generated and checked for feasibility. The task is to navigate to the end
waypoint from the vehicle start position, while avoiding static or dynamic obstacles. The best value
for each metric is highlighted in bold.

Appendix J. Experiments with Car Vehicle

We conduct additional experiments with a ground vehicle that has nonholonomic constraints to eval-
uate the generalization of our approach to different types of vehicles. The vehicle is an autonomous
car modeled with bicycle dynamics.

J.1. Car Dynamical Model

The ground vehicle is a kinematic bicycle model set to track an autonomous car in the F1/10 plat-
form O’Kelly et al. (2019): an autonomous vehicle simulation platform. The size of the vehicle is
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0.5 meters in length and 0.25 in width. The four-dimensional state x contains the position, speed,
and heading angle

[
x y v θ

]
. When conditioned on a goal g, the state is transformed to x =[

g − x0:2, x2:4
]

to consider the goal g relative to the global position x0:2. The F1/10 car is controlled
using a steering and thrust input

[
δ u

]
The system is simulated using the following nonlinear dy-

namics: Parameters for the F1/10 car are: ca = 1.9569, cm = 0.0342, ch = −37.1967, lf = 0.225,

ẋ = vcos(θ), θ̇ = v
lf+lr

tan(δ),

ẏ = vsin(θ), v̇ = −cav + cacm(u− ch),

lr = 0.225. The parameters were estimated using MATLAB’s Grey-Box System Identification Tool
in Musau et al. (2022).

J.2. Neighborhood Experiment

The results in Table 3 are similar to the Quadcopter-Neighborhood experiment. We find that RR
RLC minimizes navigation failures with low subgoal selection time. We note that while MFNLC
and RR RLC increase in failures for dynamic obstacles, the MFNLC has more failures with the car
more than the quadcopter. We suspect this is due to the slow turning rate of the car vehicle making
it more challenging to compute adaptive control near obstacles.

Obstacles Method Mean TTG
(s)

Failure Ratio Mean SG
Selection
Time (ms)

Missed
Deadline

Ratio

Static

WO (A∗) 9.566 0.361 - -
WO (RRT ) 18.598 0.161 - -

MFNLC 23.627 0.018 - -
RR FC 13.172 0.020 10.796 0.000

RR RLC (Ours) 12.491 0.000 9.373 0.000

Dynamic

WO (A∗) 9.306 0.579 - -
WO (RRT ) 18.342 0.366 - -

MFNLC 20.816 0.794 - -
RR FC 13.839 0.215 13.153 0.000

RR RLC (Ours) 13.737 0.043 9.768 0.000

Table 3: Car-Neighborhood Experiment Results. We evaluate 1000 start and goal position pairs
each with a sequence of waypoints generated from A∗. The task is to navigate starting from the first
waypoint (start position) through the sequence of waypoints to the final waypoint (goal position),
while avoiding static or dynamic obstacles. The best value for each metric is highlighted in bold.

J.3. Corridor Experiment

The success of RR RLC is shown in the car vehicle, similar to the quadcopter, in Table 4. We
observe a faster mean TTG and fewer failures across all approaches, suggesting that navigating
the narrow passageway was easier with the car than with the quadcopter. The quadcopter’s rapid
movement and lack of friction may introduce challenges when maneuvering through tight spaces.
From this experiment, we conclude that RR RLC is both efficient and safe for traversing narrow
corridors.
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Obstacles Method Mean TTG
(s)

Failure Ratio Mean SG
Selection
Time (ms)

Missed
Deadline

Ratio

Static

WO 2.200 0.228 - -
MFNLC 5.915 0.570 - -
RR FC 2.564 0.111 16.169 0.000

RR RLC (Ours) 2.498 0.045 12.647 <0.001

Dynamic

WO 2.200 0.999 - -
MFNLC 6.042 0.609 - -
RR FC 5.191 0.483 32.462 <0.001

RR RLC (Ours) 5.014 0.056 29.818 <0.001

Table 4: Car-Corridor Experiment Results. 1000 triplets (start waypoint, end waypoint, vehicle start
position) are generated and checked for feasibility. The task is to navigate to the end waypoint from
the vehicle start position, while avoiding static or dynamic obstacles. The best value for each metric
is highlighted in bold.
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