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Abstract
It remains a challenge to provide safety guarantees for autonomous systems with neural perception
and control. A typical approach obtains symbolic bounds on perception error (e.g., using confor-
mal prediction) and performs verification under these bounds. However, these bounds can lead
to drastic conservatism in the resulting end-to-end safety guarantee. This paper proposes an ap-
proach to synthesize symbolic perception error bounds that serve as an optimal interface between
perception performance and control verification. The key idea is to consider our error bounds to be
heteroskedastic with respect to the system’s state — not time like in previous approaches. These
bounds can be obtained with two gradient-free optimization algorithms. We demonstrate that our
bounds lead to tighter safety guarantees than the state-of-the-art in a case study on a mountain car.
Keywords: Neural network verification, conformal prediction, gradient-free optimization

1. Introduction

Modern autonomous systems such as Waymo’s self-driving cars and VoloCity’s air taxis show im-
pressive capabilities of neural perception and control, but providing safety guarantees on such sys-
tems remains difficult. The primary obstacle in verifying safety is that the agents operate in complex,
stochastic environments perceived through high-dimensional measurements. Purely formal (sym-
bolic) verification techniques require realistic environmental models to make the verification result
meaningful in practice. Environmental models can be constructed from first principles (e.g. via a
pinhole camera model or by tracing LiDAR rays), but such models cannot easily account for un-
expected stochastic complexities of real systems such as LiDAR reflections (Ivanov et al. (2020a)).
Alternatively, environmental models could be learned via a generative network (Katz et al. (2022)),
but verification tools are difficult to scale to the individual pixel level, particularly for closed-loop
systems (Everett (2021)). Besides, the real-world validity of such neural models remains in ques-
tion. At the other extreme, purely statistical verification approaches are appealing because they cap-
ture statistical uncertainty — but cannot exploit the knowledge of the underlying system dynamics.

Many popular methods combine statistical and symbolic safety verification of systems with
neural perception. The general approach follows two steps: first, obtain high-confidence bounds
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on uncertain quantities (e.g., neural perception error) using a statistical tool such as conformal pre-
diction (CP); second, compute high-confidence reachable sets using a symbolic description of the
dynamics (Lin and Bansal (2024), Muthali et al. (2023), Jafarpour et al. (2024), Geng et al. (2024)).
A persistent challenge for these approaches, however, is overly conservative reachable sets, particu-
larly over long time horizons. In response, many methods aim to reduce conservatism in CP bounds
for a variety of settings (Romano et al. (2019), Sharma et al. (2024), Kiyani et al. (2024), Tumu et al.
(2024)). One particular approach by Cleaveland et al. (2024) reformulates the weighted conformity
scores to optimize for tighter bounds than the point-wise ones by Lindemann et al. (2023). In ef-
fect, it exploits the fact that the conformal errors are heteroskedastic over time. We observe that in
practice, however, error is often highly correlated with state (e.g., motion blur is increased at higher
speeds). Our key insight is that neural perception errors are heteroskedastic with respect to state,
and this heteroskedasticity can be utilized to reduce conservatism in symbolic reachability analysis.

In this work, we introduce state-dependent conformal bounds for neural perception error as
an “interface” between neural perception and symbolic verification. To do this, we propose two
methods to partition the state space into regions via gradient-free optimization methods. The regions
are optimized such that the regional perception errors contribute minimally to over-approximation
error in the symbolic reachability calculation. Our approach balances the number of regions (which
can decay our guarantee due to the union bound) and the size of the error in each region.

The proposed neuro-symbolic verification method opens the path to a new level of assurance for
autonomous systems. The high-level approach is to use symbolic techniques for well-understood
parts of the system (e.g., dynamics) and data-driven methods for high-dimensional and hard-to-
model aspects (e.g., perception). Specifically, we abstract the perception model and obtain high-
confidence data-driven bounds on the abstracted system, which are then used to construct tight, high-
confidence reachable sets using a symbolic verification tool by leveraging the system dynamics.
The ultimate output of our approach is a safety guarantee that provably holds with a user-specified
probability. Our contributions are as follows:

• A framework for providing statistical safety guarantees on neural perception and control sys-
tems that exploits heteroskedasticity in perception error over the state space.

• A method for finding state-dependent neural perception error bounds via conformal predic-
tion. The bounds and regions are selected with gradient-free optimization methods to reduce
overapproximation error in symbolic high-confidence reachability computations.

• A case study on mountain car demonstrating our conformal bounds lead to significantly
smaller reachable sets than the state-of-the-art time-based conformal prediction methods.

Related Work Conformal prediction, originally introduced by Vovk et al. (2005) and Shafer and
Vovk (2008), is an increasingly popular method for obtaining data-driven uncertainty bounds. As
conformal prediction has expanded to a variety of applications, safety of autonomous systems
has gained particular attention with recent examples including safe motion planning (Lindemann
et al. (2023)), safe controller design (Yang et al. (2023)), online safety monitoring (Zhang et al.
(2024), Zhao et al. (2024)), and integration into safety decision-making frameworks (Lekeufack
et al. (2024)). We refer the reader to Lindemann et al. (2024) and Angelopoulos et al. (2023b) for
detailed tutorials and a broader overview of the conformal prediction field.

Deterministic reachability for neural control systems is a well-developed area. Open-loop meth-
ods focus on verifying input-output properties of networks (Wang et al. (2021); Dutta et al. (2018);

2



Katz et al. (2017); Tran et al. (2020)), while closed-loop methods interleave neural networks with
symbolic dynamics to calculate reachable sets (Ivanov et al. (2019); Dutta et al. (2019); Huang et al.
(2019); Fan et al. (2020); Wang et al. (2023)).Recently, Chakraborty and Bansal (2023) used reach-
ability analysis on image-controlled systems to discover unsafe initial sets, but it requires exhaustive
querying of a simulator’s perception map for all states, preventing analysis of real systems.

In this work, we combine conformal prediction and neural network reachability to consider high-
probability reachable sets for neural perception and control systems with known dynamics. While
methods exist for reachability of stochastic systems with known or unknown dynamics (Abate et al.
(2007, 2008); Lin and Bansal (2023); Alanwar et al. (2023); Bortolussi and Sanguinetti (2014)),
they do not consider neural components for perception or control. One notable approach from
Hashemi et al. (2024) combines neural network reachability and conformal predictions but focuses
on high-confidence reachability for systems with unknown dynamics.

2. Problem Formulation

We consider dynamical systems with perception of the form

xk+1 = f(xk, uk); zk = p(xk); yk = nn(zk) ∶= g(xk) + vk; uk = h(yk), (1)

where xk ∈ X ⊂ Rn are the system states (e.g., position, velocity); zk ∈ Rmz are the measurements
(e.g., camera images) generated from an unknown perception map p; yk ∈ Rmy are the outputs of
a neural component nn trained to extract a desired function g of the states from images (e.g., state
estimates); vk is the unknown random noise introduced by the neural component nn; f is the known
plant dynamics model, and h is a known controller.1

Our reasoning for this model choice is as follows. First, note that (1) models a standard system
with neural perception where the neural component is trained to extract a low-dimensional symbolic
representation of the measurements (e.g., car location within the lane). As discussed in prior work
by Dean et al. (2020), this formulation enables a separation-principle-like control design where
the controller can be developed specifically for g (e.g., a linear measurement), while being robust
to high-probability bounds on vk (and thus abstracting away the unknown and complex map p).
Similarly, this formulation enables a high-confidence verification approach that abstracts away p
and verifies safety for the entire system, as long as high-confidence bounds on vk are known. Thus,
in the remainder of the paper, we will only focus on the following abstracted system:

xk+1 = f(xk, uk); yk = g(xk) + vk; uk = h(yk). (2)

Background: reachability analysis. Consider a system such as the one in (2), where we are
given a known initial set X0 and known bounds on the noise ∥vk∥ ≤ b. Reachability analysis aims
to calculate reachable sets X1, . . . ,XT that are guaranteed to contain the state xk at each time k
(e.g., so as to verify that no unsafe states are reached). The reachable sets are typically conserva-
tively approximated using computationally convenient shapes such as ellipsoids (Althoff (2015)) or
Taylor models (Chen et al. (2012)). Unfortunately, worst-case bounds on vk in (2) may be impossi-
ble to obtain without strong and often unrealistic assumptions. Thus, the problem considered in this
paper is to compute reachable sets that hold with high probability over random initial conditions and

1. While the proposed framework can handle the more general setting with the dynamics noise, for simplicity we assume
no dynamics noise in the problem statement.
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noise trajectories. These reachable sets are useful in a number of ways, e.g., for high-confidence
pre-deployment guarantees, online monitoring, or planning around other agents.

To obtain high-confidence reachable sets, we assume we are given a dataset of N trajectories
D = {(x1,0∶T , y1,0∶T ) . . . , (xN,0∶T , yN,0∶T )}, where xi,0∶T = (xi,0, . . . , xi,T ) is the full trajectory i of
states (same for measurements). To keep our notation simple, we assume all trajectories have the
same length. We also assume all trajectories are generated using controller h to ensure that they are
on-policy and independently identically distributed (IID), such that each x0 ∼ D0 is sampled from
an unknown distribution D0 over a known set X0. Finally, we also assume vk ∼ Vk∣k−1, i.e., the
noise at each step is sampled from an unknown conditional distribution, Vk∣k−1, given the previous
noise values and the initial state. As part of future work discussed in Section 5, we will investigate
the off-policy problem where trajectories are generated using an exploration controller.

Problem 1 (High-Confidence Reachability) Given the system in (2), a confidence level α, and a
calibration dataset of trajectories D, the goal is to construct a sequence of reachable setsX1, . . . ,XT

such that Px0∼D0,vk∼Vk∣k−1[∀k = 0..T ∶ xk ∈ Xk] ≥ 1 − α.

While Problem 1 can be solved using existing (purely statistical) time-series conformal predic-
tion, e.g., by Lindemann et al. (2023), the resulting sets would inevitably be conservative without
any knowledge of system dynamics. The main benefit of knowing the dynamics model f is that
it allows us to use reachability analysis to solve Problem 1, e.g., the authors’ tool Verisig (Ivanov
et al. (2019)) — as long as high-confidence bounds on perception noise vk are available.

Background: scalar conformal prediction. In the scalar CP setting by Angelopoulos et al.
(2023b), we are given a calibration dataset D = {z1, . . . , zN}, where the zi are realizations of
exchangeable random variables Z1, . . . , ZN , i.e., P[Zq(1) ≤ ⋅ ⋅ ⋅ ≤ Zq(N)] = P[Zr(1) ≤ ⋅ ⋅ ⋅ ≤ Zr(N)]
for any two re-ordering functions q and r. Consider a new random variable Ztest that is also
exchangeable with the Zi. Assuming the zi are sorted in increasing order, one can show that
P[Ztest ≤ z⌈(N+1)(1−α)⌉] ≥ 1 − α. In other words, the (normalized) 1 − α quantile, denoted by
Quantile(D,1 − α), is a high-confidence upper bound on a new exchangeable sample.

Background: conformal prediction for time-series data. The time-series CP setting, e.g., as
considered by Cleaveland et al. (2024), is more challenging. Here, D = {z1,0∶T , . . . , zN,0∶T }, and
the problem is to design a bound function η such that P[∀k = 0..T ∶ Ztest,k ≤ η(k)] ≥ 1−α, i.e., the
probability that the entire trajectory Ztest is within the η bounds is at least 1 −α. A straightforward
solution is to apply the scalar bounds for each time step and then obtain trajectory-wide guarantees
using the probability union bound; however, this approach results in overly conservative confidence.
To overcome this challenge, researchers, e.g., Cleaveland et al. (2024) and Angelopoulos et al.
(2023a), have proposed to re-weigh the bounds η(k) at each time step k to tighten up the bounds.

Novel setting: state-dependent conformal prediction. As noted above, we aim to obtain high-
confidence bounds on perception noise vk that would enable reachability analysis as a solution
to Problem 1. Although such bounds on vk can be directly obtained using time-series confor-
mal prediction, they tend to be conservative: existing works reduce conservativeness by exploiting
heteroskedasticity (i.e., varied uncertainty in vk) over time. In contrast, we put forward a more
effective approach to exploit heteroskedasticity over the state space. Since perception error likely
varies drastically within the state space, we expect state-dependent bounds to separate high-noise
from low-noise regions and result in much tighter reachable sets.
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Figure 1: An overview of our approach to high-confidence reachability.

To be precise, we propose to partition the state space into M disjoint regions: X = S1 ⊍⋯ ⊍ SM .
Each state x will correspond to a piecewise-constant perception error bound η(x) determined by the
region Si ∋ x, where η will be chosen to satisfy a high-confidence guarantee on the noise within each
region: P[∀k = 0..T ∶ (xk ∈ Si ⇒ ∥vk∥ ≤ η(xk))] ≥ 1 − (α/M). The per-region guarantees would
allow us to maintain the overall high-confidence guarantee from Problem 1 (proved in Section 3),
with the added benefit that the final reachable sets, Xi, may be much tighter than those obtained
through time-series CP. Of course, this approach requires a suitable partitioning of the state space,
which is the main problem of this paper.

Problem 2 (State-Dependent Conformal Prediction) Given the system in (2), a confidence level
α, and a calibration dataset D, the goal is to partition the state space into M disjoint regions, i.e.,
X = S1 ⊍ ⋯ ⊍ SM and compute a corresponding noise bound function η(x), so as to minimize a
loss function L(D,S1, . . . ,SM) correlated with tighter reachable sets Xi, as defined in Problem 1.

Remark Problem 2 has two parts: 1) identifying a suitable loss function L and 2) solving the
resulting optimization problem. Both of these parts are the main contributions of this paper.

3. Approach

This section presents the proposed approach, starting with the theoretical results that demonstrate its
soundness and followed by the algorithms to partition the state space and compute reachable tubes.

3.1. Approach Overview

At a high level, the proposed approach consists of two steps (corresponding to Problems 2 and 1, re-
spectively), illustrated in Figure 1. Step 1 is to partition the state space X = S1⊍⋅ ⋅ ⋅⊍SM and design
a region-based function η(x) such that Px0∼D0,vk∼Vk∣k−1[∀k = 0..T ∶ ∥yk − g(xk)∥ ≤ η(xk)] ≥ 1−α,
whereD0 and Vk∣k−1 are unknown, butD0 is assumed to have support over a known setX0. Step 2 is
to perform worst-case (deterministic) reachability analysis of the abstracted system in (2) from ini-
tial set X0. Here, vk is treated as bounded noise with state-dependent bounds η(x). The rest of this
subsection shows that the condition in Step 1 ensures the reachable sets in Step 2 solve Problem 1.
The following subsections provide a specific approach for each step, leading to tight reachable sets.

Step 1: region-based perception noise bounds. Before we discuss how to partition the state
space (in Section 3.2), we first outline the requirements for this partition. In particular, we aim to
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apply a union bound over all regions, so each region must satisfy the following upper bound on
perception error: Px0∼D0,vk∼Vk∣k−1[∃k = 0..T ∶ (xk ∈ Si ∧ ∥yk − g(xk)∥ > η(xk))] ≤ (α/M).2 The
next proposition shows how this guarantee leads to the overall guarantee over the entire state space.
All proofs are provided in the appendix.

Proposition 1 Consider the abstracted system in (2) with the state space partitioned into M re-
gions, X = S1 ⊍ ⋅ ⋅ ⋅ ⊍ SM , and assume a high-confidence bound within each region:

Px0∼D0,vk∼Vk∣k−1[∃k = 0..T ∶ (∥yk − g(xk)∥ > η(xk) ∧ xk ∈ Si)] ≤
α

M
.

Then the trajectory-wide bound holds: Px0∼D0,vk∼Vk∣k−1[∃k = 0..T ∶ ∥yk − g(xk)∥ > η(xk)] ≤ α.

Step 2: High-confidence reachability analysis. Given the trajectory-wide guarantee on vk, the
following theorem shows that performing worst-case reachability analysis using η bounds on vk
will produce reachable sets that satisfy the condition in Problem 1.

Theorem 2 Consider the abstracted system in (2), with x0 sampled from an unknown distribu-
tion D0 with support over a known set X0. Suppose we are given a bound function η such that
Px0∼D0,vk∼Vk∣k−1[∃k = 0..T ∶ ∥yk − g(xk)∥ > η(xk)] ≤ α. Suppose worst-case reachable sets
X1, . . . ,XT are computed for (2), with initial set X0 and noise bounds ∥vk∥ ≤ η(xk). Then:

Px0∼D0,vk∼Vk∣k−1[∀k = 0..T ∶ xk ∈ Xk] ≥ 1 − α.

3.2. State-Dependent Conformal Prediction

This subsection presents an optimization-based approach for partitioning the state space into regions
X = S1 ⊍ ⋅ ⋅ ⋅ ⊍ SM that 1) satisfy the condition in Proposition 1 and 2) reduce the approximation
error incurred by the subsequent reachability task. We first describe how to calculate trajectory-wide
guarantees per region for any partition. We define region-specific trajectory subsets:

DSi = {(x1,m1∶n1 , y1,m1∶n1), . . . , (xN,mN ∶nN
, yN,mN ∶nN

) ∣ xi,j ∈ Si},

where we consider the sub-trajectory of each xi,0∶T which is contained in Si; note that the time steps
in each sub-trajectory are the same as in the full one. Given DSi , the sub-trajectory non-conformity
scores are defined as the maximum sub-trajectory-wide perception error within each region,

δjSi = max
t=mj ..nj

∥xj,t − yj,t∥ for j = 1..N ; and δN+1Si =∞ (3)

Next, we apply scalar conformal prediction to these non-conformity scores to obtain the corre-
sponding perception error confident bound for each region for Proposition 1.

Proposition 3 (High-confidence region-based perception error bound) Given a confidence level
α and sub-trajectory error dataset ∆i = {δ1Si , . . . , δ

N+1
Si } for each region Si, the following percep-

tion error bound η(x) satisfies the conditions in Proposition 1:

η(x) = Quantile(∆i,1 −
α

M
) if x ∈ Si.

2. It is possible to require that different regions have different confidence bounds, as long as the overall guarantee of
1 − α is reached. For simplicity, however, we require all regions to have the same 1 − (α/M) guarantee.
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For conformal perception bounds in each region, two loss functions are applied to optimize
the partitioning: Experience Loss (EL) and Experience Time-Decay Loss (ETDL). EL is designed
to prioritize frequently visited regions by assigning higher weights. This strategy tightens confor-
mal error bounds in these areas, under the assumption that they are of greater significance for the
reachability analysis since we need to inflate reachable sets more frequently. Less frequently visited
regions receive lower weights to balance the optimization process. EL is defined as:

LEL =
M

∑
i=1

∑
xj,t∈DSi

wiη(xj,t), where the weights are wi =
∣DSi ∣

∑M
j=1 ∣DSj ∣

. (4)

ETDL extends EL by incorporating a time-decay weighting strategy. Since over-approximation
errors tend to accumulate over time, ETDL assigns larger weights to states earlier in the trajectory.
This helps avoid accumulating error early during verification. ETDL is defined below:

LETDL =
M

∑
i=1

∑
xj,t∈DSi

wiλtη(xj,t), (5)

where λt is a decreasing, time-dependent weight function; we use exponential decay in our exper-
iments: λt = 0.9t. We are now ready to state the region-based optimization problem considered in
this paper.
Definition 4 (Reachability-Informed Region Optimization) Given a calibration dataset of tra-
jectories D and a confidence bound α, the reachability-informed region optimization problem is to
select M regions that:

min
S1,...,SM

L, where L =
⎧⎪⎪⎨⎪⎪⎩

LEL, if EL is chosen
LETDL, if ETDL is chosen

s.t. X = S1 ⊍ ⋅ ⋅ ⋅ ⊍ SM ,

∆i = {δ1Si , . . . , δ
N+1
Si }, i = 1, . . . ,M, and

η(x) = Quantile(∆i,1 −
α

M
) if x ∈ Si, i = 1, . . . ,M.

(6)

Solving the optimization problem. The problem in (6) is ill-defined for arbitrary shapes for Si.
As a first step, we consider boxes for the regions and two gradient-free global search algorithms:
Genetic Algorithm (GA) (Mirjalili (2019)) and Simulated Annealing (SA) (van Laarhoven (1987)).
Both methods are well-suited for this problem because they do not require gradient information and
can effectively search for globally optimal partitions of the state space. GA explores the solution
through evolutionary computation: selection, crossover, and mutation to refine candidate region
solutions iteratively. In contrast, SA operates through stochastic perturbations of regions, using a
probabilistic criterion to escape local minima while gradually converging on an optimal solution.

3.3. Reachable Tube Computation

Given the state region partitions S1, . . . ,SM and perception bound function η, we have now obtained
high-confidence bounds for the unknown random noise vk in the abstracted system from (2). For
each region, we define the conformal error bound explicitly: ei = η(xk) if xk ∈ Si for i = 1, . . . ,M .
From Theorem 2, in the case of L∞ norm bounds on vk, we have that vk ∈ [−ei, ei]. Thus, the
system for which we need to compute reachable sets becomes:

xk+1 = f(xk, uk); yk = g(xk) + [−ei, ei] if xk ∈ Si; uk = h(yk). (7)
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To compute high-confidence reachable set analysis for our abstracted dynamical system as defined
in Problem 1, we can use any reachability tool for hybrid systems. One such tool is the authors’ tool
Verisig (Ivanov et al. (2021)). To encode the regional perception bounds in a hybrid system, we add
transitions between the plant f and controller h with guards determined by the regions (xk ∈ Si)
and resets that inflate the measurement model g(xk) with the corresponding error interval [−ei, ei].

Note that introducing additional transitions to a system can make scalability challenging: reach-
able sets that intersect with multiple regions must be considered separately. This leads to longer ver-
ification time as each “branch” must be verified separately. In highly-branching verification tasks,
individual branches are often strict subsets of other branches with larger reachable sets, leading to
redundant verification. Next, we describe our method to remove this redundancy in Verisig.

In Verisig, reachable sets are represented with Taylor Models (TMs), introduced by Makino and
Berz (2003). Informally, a TM encloses a function f over a specified domain. Formally, a TM for
a function f is an over-approximation for f containing a polynomial pf and worst-case error bound
If for a given domain D, such that f(x) ∈ {pf(x) + e ∣ e ∈ If} ∀x ∈ D. To remove redundant
branches, we aim to identify when one TM “parent” branch encloses another. In general, this is
not trivial because TM ranges are evaluated via interval arithmetic and produce boxes from their
symbolic and error components. Thus, a conservative method to check for inclusion is to transform
the “parent” into a box and check whether a conservative approximation of the “child” is fully
within this box. While this method may introduce additional error due to transforming “parent”
TMs, Verisig already implements shrink-wrapping of TMs to reduce long-term over-approximation
whenever remainders grow large (Ivanov et al. (2021)). Shrink-wrapping resets TMs to be fully-
symbolic and contain their original range with no remainder. Thus, we opportunistically check for
redundant subset branches whenever a branch is shrink-wrapped. Any subset branches of a newly
shrink-wrapped branch are removed from the verification, thus enhancing its scalability.

4. Case Study: Mountain Car

We evaluate the proposed neuro-symbolic verification method on Mountain Car (MC), a popular re-
inforcement learning benchmark from OpenAI’s Gymnasium. Consistently throughout, we measure
our results against the time-series approach from Cleaveland et al. (2024) and refer to this approach
as the “baseline”. As the baseline requires a fixed time horizon, we use T = 90. In all methods, we
set α = 0.05 so that computed reachable sets contain the real trajectory with 95% confidence.

Control and Perception Models. Per Section 2, we consider a modular control pipeline with
a low dimensional (i.e. state-based) neural controller and a perception model that extracts low-
dimensional representations from high-dimensional observations. In particular, we use a controller
h adopted from Ivanov et al. (2020b) that was pre-trained and pre-verified to be safe (i.e., reaching
the top of the hill with a reward of at least 90) when observing the ground-truth position and velocity
starting from the initial set p0 ∈ [−0.55,−0.45]. For the perception model, we use a state estimator
nn that predicts the position x of the car using a gray-scaled image from the MC simulator. Since
we cannot produce velocity estimates from single images, we provide the controller with ground
truth velocity and leave multi-image perception for future work. See Appendix B for details.

Data Collection. We generated a dataset D of 4,000 trajectories by simulating MC with the per-
ception model nn and controller h described above. The initial states X0 are sampled uniformly
from [−0.55,−0.45], and trajectories are terminated after reaching the goal state x = 0.45. We em-
phasize that while the perception model was trained on pre-deployment data with contrast noise, the
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(a) Perception Errors for all 4,000
trajectories in D showing hetero-
skedasticity over time and state.

.
(b) State-based regional conformal bounds for

M = 3 regions vs. the baseline bounds.

Figure 2: Perception errors and their respective bounds under our method and time-based baseline.

dataset D was generated by adding blur noise to image observations so as to demonstrate that the
proposed method can handle out-of-distribution deployment noise on the perception model (details
in Appendix B). The perception errors for this dataset are shown in Figure 2(a) – note the drastic
heteroskedasticity over the state space exposed by the added blur noise. We split D evenly into
2,000-trajectory calibration and test sets, Dcal and Dtest, respectively. Dcal is further split into two
disjoint sets: Dreg for determining region edges via (6) and Dconf for finding the regional conformal
bounds. Dtest is reserved for testing the conservativeness of the probabilistic guarantees.

Conformal Bound Computations. We compute regions and regional conformal bounds in three
ways. First, we use our state-based method with all combinations of optimization algorithms {SA,
GA}, loss functions {EL, ETDL}, and regions M ∈ {2, . . . ,7}. To solve for the regions via (6), we
randomly select 500 trajectories from Dcal and use the remaining 1,500 trajectories to find confor-
mal bounds. Second, as an ablation, we compute conformal bounds based on partitioning the state
space uniformly into M = {1, . . . ,7} equally sized regions, using all 2,000 trajectories in Dcal for
conformal bounds (as we do not need to synthesize regions). Third, we compute time-based confor-
mal bounds for the baseline comparison. Using the algorithm described by Cleaveland et al. (2024),
we randomly select 100 trajectories from Dcal to set the α values and use the remaining 1,900 to set
the conformal bounds. Figure 2(b) illustrates regions and conformal bounds for GA+ETDL (M = 3)
and the time-based conformal bounds for an example trajectory.

Reachable Set Size Evaluation. Table 1 summarizes the average verification time and maximal
reachable set sizes under each experiment. To compute reachable sets for our state-based methods,
we follow the approach described in Section 3.3 and encode the regional perception errors in Verisig
with M discrete jumps between the dynamics and controller, corresponding to each region. For
the time-based method, a different perception error bound is used at each time step, as per the
bounds shown in Figure 2(b). We compute reachable sets under each experimental condition from
a restricted initial position set of X0 = [−0.51,−0.49]. For each experiment, the verification for the
initial set X0 was carried out in parallel with 200 sub-intervals of size 0.0001. The average time to
compute reach sets for each of the 200 initial subsets is shown in Table 1. For further evaluation,
Figure 3 provides a visual comparison between the reachable sets produced by our best method (GA
+ ETDL, M = 7) and by the baseline for the entire initial set X0 = [−0.55,−0.45].
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Average Time to Compute 90 Steps [s] Max Reachable Set Size over 90 Steps

Algorithm
M 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Uniform 1,066 2,308 4,167 3,386 19,824 9,059 9,745 0.939 0.883 0.406 0.230 0.520 0.251 0.203
SA + EL - 2,356 2,674 3,855 5,318 6,021 7,195 - 0.458 0.225 0.226 0.213 0.218 0.210
SA + ETDL - 2,401 2,075 2,371 2,963 4,054 4,737 - 0.448 0.200 0.205 0.165 0.164 0.162
GA + EL - 2,490 2,871 3,970 9,580 12,231 9,601 - 0.458 0.225 0.207 0.167 0.167 0.145
GA + ETDL - 2,405 2,084 2,261 2,729 3,323 5,249 - 0.456 0.203 0.168 0.163 0.154 0.115

Time-based baseline
Cleaveland et al. (2024) 1,044 0.225

Table 1: Max reachable set size and average computation time per initial subset for our state-based
conformal bounds compared to the baseline time-series bounds from Cleaveland et al. (2024).

Results & Discussion. Overall, the genetic algorithm finds the smallest reachable set sizes. The
most notable improvements come from our timed-decayed loss function ETDL, which greatly im-
proves verification time and reduces reachable sets as compared to EL alone. This confirms the in-
tuition that incurring error early in the verification process disproportionately impacts the resulting
reachable sets. As compared to the baseline, our best-performing algorithm and loss combination
GA+ETDL produces smaller reachable set sizes for all M ≥ 3, though computing the reachable sets
is much slower due to reachable sets potentially intersecting multiple regions at the same time, as
noted in Section 3.3. See Appendix C for additional analysis of the subset merging optimization to
handle this scalability challenge.

5. Future Work and Conclusion

Figure 3: Reachable Sets for our
state-based conformal percep-
tion bounds (GA+ETDL, M =
7) vs. the time-based base-
line bounds. Our reachable sets
are tighter than the time-based
method at all timesteps.

In this paper, we presented a novel approach to finding state-
dependent conformal bounds for a neural perception model and
utilize knowledge of the system dynamics to produce high-
confidence reachable sets via a symbolic verification tool. Our
case study demonstrates our methods can produce dramatically
tighter reachable sets than the state-of-the-art conformal method
based on time series.

In future work, we plan to extend our methods to partition
more state dimensions. These additional dimensions will mo-
tivate scalability improvements for optimization methods, data
usage, and verification complexity. We also intend to investi-
gate the case where the perception data is collected off-policy,
i.e., using an exploratory controller. This would enable us to
use an adaptive controller at run-time which may navigate dy-
namical environments with high confidence. Furthermore, we
will investigate the off-model problem, where guarantees from
simulations or a lab-tested system are extended to the deployed
system. Such methods would allow us to bridge the simulation-
to-reality gap and enable the rapid and high-confidence development of safe autonomous systems.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Consider the event A = {∃k = 0..T ∶ ∥yk−g(xk)∥ > η(xk)}. Since the Si are disjoint, we can bound
the probability of A as follows:

Px0∼D0,vk∼Vk∣k−1[A] = Px0∼D0,vk∼Vk∣k−1 [
M

⋃
i=1
{∃k = 0..T ∶ (∥yk − g(xk)∥ > η(xk) ∧ xk ∈ Si)}] ≤ α,

where the inequality follows from the union bound.

A.2. Proof of Theorem 2

Consider the event A = {∃k = 0..T ∶ xk ∉ Xk}. Since the sets Xi are worst-case reachable sets, then
it must be the case that ∥vl∥ > η(xl) for some l ≤ k., i.e.,

A = {∃k = 0..T ∶ (xk ∉ Xk ∧ ∃l ≤ k ∶ ∥vl∥ > η(xl))}.

However, we know that the noise bounds hold with probability 1 − α over the entire trajectory, so
Px0∼D0,vk∼Vk∣k−1[A] ≤ α, and the result follows.

A.3. Proof of Proposition 3

Since each set ∆i contains the maximal errors per trajectory within the corresponding region Si, the
(normallized) 1 − (α/M) quantile provides a high-confidence bound on the trajectory-wide error
within Si.

Appendix B. Case Study Details

MC Background. Mountain Car is a common yet challenging reinforcement learning benchmark
in which an underpowered car must reach the top of the right hill as shown in Figure 4(a). Because
the car is underpowered, a successful controller must first utilize the left hill to gain momentum
before reaching the goal on the right side. The car dynamics are shown in (8) where p ∈ [−1.2,0.6]
is the position, v ∈ [−0.07,0.07] is the velocity, and u ∈ [−1.0,1.0] is the control thrust. The
initial position is the bottom of the mountain with p0 ∈ [−0.55,−0.45] and at rest with v0 = 0. The
dynamics for the standard system are as follows:

pk+1 = pk + vk
vk+1 = vk + 0.0015uk − 0.0025 cos (3pk)

(8)

Case Study System & Environment. For our case study, we use neural networks for both the
state-based controller h ∶ p × v ↦ u and an image-based perception model nn ∶ z ↦ p̂ that observes
images z of the MC environment and produces a state estimate p̂. We use the simulator as the
canonical perception map s ∶ p ↦ z to map positions to 400 × 600 pixel gray-scaled images of the
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(a) Canonical Environment (b) Low Contrast Environment

(c) High Contrast Environment (d) Blurred Environment

Figure 4: Images of the mountain car environment

environment. Thus, our case study system is as follows:

zk = s(pk)
p̂k = nn(zk)
uk = h(p̂k, vk)

vk+1 = vk + 0.0015uk − 0.0025 cos (3pk)
pk+1 = pk + vk

(9)

We add contrast and blur noise to images for training and deployment, respectively, of the perception
model. In particular, we consider modified perception maps and noise parameters α and δ. For
contrast, the modified perception map sc ∶ p × α ↦ zc creates a contrasted image zc. Contrast is
added using the Python Image Library (PIL) ImageEnhance module where α = 0 produces a solid
gray image, α = 1 produces the original image, and α > 1 produces a higher contrast version of the
original image (Clark (2015)). The blur perception map sb ∶ p × δ ↦ zb creates a blurred image zb.
Blur is added as follows: zb = sb(p, δ) = 0.5s(p − δ) + s(p) + 0.5s(p + δ), i.e., a canonical image
with a lighter overlay of left and right shifted images. Blurred images are then normalized to [0, 1].

Controller. The controller, h, is a neural network that takes position and velocity as inputs, has
two hidden layers of 16 neurons with sigmoid activations, and has one output neuron with tanh
activation. This controller was pre-trained and pre-verified to be safe by Ivanov et al. (2019), i.e.,
it reaches the goal with a reward of at least 90 when starting in the initial set p0 ∈ [−0.59,−0.4]
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when observing ground truth position and velocity. For this case study, we consider the initial set
p0 ∈ [−0.55,−0.45] for which the controller is more robust.

Perception Model. The state estimator nn is a convolutional neural network (CNN). The input is
a single channel (gray-scaled) 400 × 600 pixel image followed by 2 (convolutional + max pooling)
layers with 16 internal channels followed by 2 hidden linear layers or 100 neurons and a single
output neuron. The convolutional layers have kernels of 32 and 24, and the pooling kernel is size
16. Stride is 2 for both convolution and pooling. All internal activations functions are ReLU, and the
output is a scaled and shifted Tanh such that outputs are in the range of the MC position: [−1.2,0.6].
The model is trained on contrasted and canonical images (see Figures 4(a)-4(c)) generated from 100
equally-spaced positions and 9 contrast levels from α ∈ [0.1,2.0] for a total of 1000 samples. The
model was trained for 1000 epochs with MSE Loss.

Trajectory Data Collection. During data collection, we added out-of-distribution blur noise to
images with δ = 0.005. See Figure 4(b) for for an example image.

Appendix C. Reachability Computation Optimizations

Average Time to Compute 90 Steps [s] Max Reachable Set Size over 90 Steps

Algo
M

1 2 3 4 5 6 7 1 2 3 4 5 6 7

G + ETDL (Greedy Merge) - 1,471 1,815 1,617 1,819 2,130 3,096 - 0.606 0.287 0.246 0.237 0.219 0.154
G + ETDL (OPP Merge) - 2,405 2,084 2,261 2,729 3,323 5,249 - 0.456 0.203 0.168 0.163 0.154 0.115
G + ETDL (No Merge) - 3,260 2,508 2,822 4,463 5,687 11,605 - 0.456 0.203 0.168 0.163 0.154 0.115

Table 2: Comparison of time to compute reachable sets and reachable sets sizes based for different
subset merging algorithms.

As described in Section 3.3, shrink-wrapping in the verification tool allows to remove or merge
redundant branches with existing branches opportunistically. Table 2 shows how this opportunistic
method (OPP Merge) reduces verification time while not introducing additional over-approximation
error as compared to not removing redundant branches (No Merge). As an extension, we could
additionally allow increased approximation error in the interest of time. One way is to greedily
shrink-wrap branches whenever they would have children to be removed. This method (Greedy
Merge) is shown in Table 2, and the results demonstrate the the corresponding time decrease and
over-approximation increase. Future work will consider other optimizations for this scalability
challenge, particularly as the number of regions increase with additional state dimensions.
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