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Abstract
Multimodal large language models (LLMs), such as vision language models (VLMs), are powerful
reasoning tools that have been shown to be capable of solving non-trivial tasks such as image and
video reasoning, translation, and text generation. Alternatively, LLMs have also regularly been
shown to have difficulties with trivial tasks like performing elementary mathematical reasoning
problems and arithmetic. Significant effort has since gone towards directly addressing these tasks
in order to show reasoning in LLMs. Despite extensive training regimen that include state-of-
the-art hardware support and copious amounts of data, it is still straightforward to modify a, now,
relatively trivial task such that the LLM again experiences a great deal of difficulty in solving the
task. In this work, we propose two new tasks, image-based string acceptance and image-based
arithmetic evaluation, for VLMs to solve that involve non-trivial multimodal reasoning and intro-
duce a new neurosymbolic-based model of computation that can significantly outperform VLMs on
the two tasks. We define two classes of neurosymbolic automata to address this problem, namely
neurosymbolic finite automata (NSFA) and neurosymbolic pushdown automata (NSPDA). These
neurosymbolic automata are able to model the image-based string acceptance and arithmetic eval-
uation tasks well, given their derivation from finite and pushdown automata for string acceptance
and arithmetic evaluation. We show that state-of-the-art LLMs with multimodal reasoning capa-
bilities are not only outperformed by neurosymbolic automata, but often fail to reason about the
tasks altogether with the VLMs getting zero correct in the arithmetic evaluation task while the
NSPDA demonstrates 88% accuracy with 2 operands and a steady decline as the complexity of the
expressions increased, as expected.
Keywords: automaton, multimodal, mathematical reasoning

1. Introduction

Recent works showcasing the reasoning capabilities of large language models (LLMs) have moti-
vated a paradigm shift in deep learning towards multimodal reasoning Zhang et al. (2024); Wang
et al. (2024); Mitra et al. (2024). This, in turn, has led to the development of numerous benchmarks,
training techniques, and architectures for improving and evaluating multimodal models on complex
tasks such as visual question answering Antol et al. (2015); Li et al. (2022), image captioning Zhou
et al. (2020); Radford et al. (2021); Nguyen et al. (2023), image-text retrieval Cao et al. (2022),
and text-to-image generation Ramesh et al. (2021); Tan et al. (2025). Despite showing remarkable
performance on difficult tasks, LLMs have also been thought to be mimicking critical thinking, an
argument that has been defended by numerous examples of LLMs hallucinating or failing at tasks
that are trivial in comparison to the previously mentioned tasks where they have demonstrated re-
markable success Bender et al. (2021); Gendron et al. (2024). Mathematical reasoning is one area
in particular where there have been clear demonstrations of LLMs’ inability to reason Yuan et al.
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(2023); Panas et al. (2024); Mirzadeh et al. (2024). However, in recent times, clever engineer-
ing and an emphasis on addressing the weaknesses in LLMs’ reasoning capabilities, specifically
mathematically, have seemingly made it impossible to trick industry-backed models–such as Ope-
nAI’s ChatGPT–with a simple arithmetic evaluation or mathematical reasoning problem OpenAI
(a); Lightman et al. (2024); OpenAI (b). Indeed, early evaluation of LLMs highlighted arithmetic
accuracy as functions of model size and digit length Brown et al. (2020), as part of the basis of claims
for being few-shot learners, and subsequent approaches like chain-of-thought reasoning improved
these Wei et al. (2022). While there has been some consideration of regular language acceptance
and related tasks with various neural architectures Weiss et al. (2018); Bhattamishra et al. (2020);
Merrill et al. (2021), this has not arisen as a significant evaluation task yet for LLMs or VLMs.
However, we hypothesize that these limitations are still present for multimodal tasks.

In this work, we direct attention toward the reasoning capabilities of multimodal models, specif-
ically vision language models (VLMs). We modify the regular language acceptance and arithmetic
evaluation tasks to take as input images (or sequences thereof) instead of text or numerical values.
In doing so, the tasks become multimodal, with the VLM being first responsible for correctly map-
ping from the image space (either as a sequence or a single image) to the space of strings defined
over the alphabet (i.e., all combinations of individual valid characters) via classification, optical
character recognition (OCR), or some type of visual reasoning on the image(s). Explicitly, these
two tasks are image classification and basic reasoning in the form of pattern matching and simple
arithmetic–two individual tasks that LLMs have been shown capable of solving with a considerable
degree of success. However, we show that this small change to the input space drastically affects
the performance of the models. In response to this, we propose neurosymbolic finite and pushdown
automaton. The traditional analog to the conceptualized multimodal reasoning tasks can be trivially
solved with finite and pushdown automata, respectively. We show that transferring the structure of
finite and pushdown automaton to create a neurosymbolic framework for these tasks outperforms
the VLMs by a significant margin.

In summary, the contributions of this work are:

• the formulation of two multimodal tasks and corresponding benchmarks suited for VLMs in
image-based string acceptance and image-based arithmetic evaluation,

• the proposition of neurosymbolic finite and pushdown automaton as a novel framework for
improving on the multimodal reasoning capabilities of VLMs requiring significantly less re-
sources, and

• an empirical evaluation of neurosymbolic automata and VLMs on image-based string ac-
ceptance and image-based arithmetic solving illustrating the benefit of neurosymbolic ap-
proaches.

2. Related Works

Related to our proposed neuroysymbolic automata, several neurosymbolic programming languages
and computational models have been developed of varying expressiveness and capabilities. Scallop
and Pylon are such neurosymbolic programming languages Ahmed et al. (2022); Li et al. (2023),
and DeepProbLog is another based on logic programming Manhaeve et al. (2018). Other related
neurosymbolic formalisms include logic tensor networks (LTNs) Badreddine et al. (2022).
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There have been several considerations of combining automata and neural networks in various
ways, many of which have explored the relationship between recurrent neural networks (RNNs) and
automata Siegelmann (1996). For example, the neural state pushdown automaton is a related for-
malism, but not the same as what we propose Mali et al. (2020). Sälzer et al. (2024) explore neural
network verification with Buchi automata. The neurosymbolic automata (NeSyA) of Manginas et al.
(2024) are also similar, but focus on a probabilistic representation. Many such works focusing on
learning these representations, and other related approaches include grammar learning Bastani et al.
(2017) and automata learning Raffelt et al. (2005); Bollig et al. (2010); Muškardin et al. (2022).

Combining LLMs with code generation and subsequent evaluation to solve similar problems
would be a more general purpose neurosymbolic approach than what we propose Gao et al. (2023),
but that requires vastly more training and inference time resources than the method we present.
Others are also exploring how to integrate automata-based reasoning with LLMs, such as with
automaton augmented generation Alon et al. (2022), similar in spirit to automaton-guided reward
shaping and reinforcement learning Velasquez et al. (2021); Shukla et al. (2023).

3. Preliminaries

In this section, we discuss finite and pushdown automata. We use them as the basis for the neu-
rosymbolic framework proposed in this work. We show that the structure of the automaton is well-
suited for better reasoning about the arithmetic evaluation and string acceptance problems that we
will formally describe later.

Automata and Language Background. In this work, we focus on two kinds of automata: (deter-
ministic) finite automata and pushdown automata. These two types of automata, as we will show,
are closely related to the tasks we use to evaluate VLMs multimodal reasoning capabilities thereby
making them suitable for structuring a neurosymbolic solution to the novel multimodal reasoning
tasks that we introduce. We refer to Sipser (2012) for further details on finite and pushdown au-
tomata. The next paragraphs provide formal definitions for finite and pushdown automata based on
Sisper. Let Σ be a finite set of symbols, known as an alphabet. Recall Σ∗ is the Kleene closure of Σ,
and is the set of all possible strings over Σ, i.e., all finite length strings over Σ including the empty
string ε. A language L over Σ is any subset of the set of possible strings over Σ, so L ⊆ Σ∗.

A finite automaton is used to recognize regular languages. Formally, a finite automaton is
defined as the tuple A = (Q,Σ, δ, q0, F ) such that Q is a finite set of states, Σ is the alphabet the
regular language is defined over, δ : Q × Σ → Q is the transition function, q0 ∈ Q is some initial
state, and F ⊆ Q is a set of accepting states. A string s = s1s2 . . . sn ∈ Σ∗ is accepted by A
if there exists a sequence of states p0, p1, . . . , pn such that p0 = q0, for each i ∈ {1, . . . , n} we
have pi = δ(pi−1, si) and pn ∈ F . By Kleene’s Theorem, a regular language is any that has a
corresponding finite automaton that recognizes it.

A pushdown automaton is an extension of finite automaton that uses a stack to maintain memory.
Through this extension of finite automata, every context-free language has an equivalent pushdown
automaton. We formally define a pushdown automaton as the tuple (Q,Σ,Γ, δ, q0, Z0, F ) where
Q,Σ, q0, and F follow from the definition of a finite automaton. The definition of pushdown au-
tomata introduces Γ, the stack alphabet. The stack alphabet is the set of symbols that can be pushed
to or popped from the stack. We must also modify the definition of the transition function δ to ac-
count for the stack. Therefore, we define the transition function δ : Q× (Σ ∪ {ε})×Γ → Q×Γ∗.
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Instead of mapping from a state and input character pair to a new state, the transition relation ac-
counts for the current state, input character (or lack thereof), and the current state of the stack to
move to a new state and make any modifications to the stack along the way. In addition, the defi-
nition includes the initial stack symbol Z0 that is used to mark the bottom of the stack. Pushdown
automata accept context-free languages and are often described via context-free grammars (CFGs).

Neural Networks and Image Classification. A neural network is some function f : X → Y
such that, for a NN with n layers, the output of the NN is defined by

y = Ln(Ln−1(. . . (L1(x)))), x ∈ X

where Li(·) is the ith layer of the NN.
A well-studied task for NNs is image classification. In this work, we modify two tasks such

that their input domains become the space of images with a given dimensions, i.e. RH×W×C where
H,W,C are the height, width, and number of color channels for the image respectively. As a
result, one of the subtasks of the problems we examine is to, as best as possible, correctly classify
images to corresponding classes. Formally, image classification is the task of mapping an image
with dimensions H ×W × C to some set of predefined classes K. In other words, we want to find
a function f : RH×W×C → K.

4. Problem Formulation

In this work, we look at two problems that can be effectively modeled using some variation of fi-
nite automata with neural network component(s). Finite automata are machines that can be used
for string acceptance of regular languages. However, what if we wanted to do string acceptance
defined by some regular expression in which our target alphabet include all letters of the English
alphabet, but our input domain is of grayscale 28× 28 images? In other words, given a sequence of
images containing characters included in our target alphabet, how can we perform language accep-
tance? With current models of computation or deep learning techniques, we either lack perceptive
capabilities or there is a lack of formal structure for solving the desired task.

Definition 1 (Image-based Regular String Acceptance) Given a regular language R and a finite
set of n ∈ N input image symbols I = {I1, . . . , In} such that Ii ∈ RH×W×C for all i = 1, . . . , n
where H,W,C are the height, width, and number of color channels of Ii, determine whether or not
the given set of input image symbols I represents a string accepted by the language.

Additionally, we consider a slightly more complex task in arithmetic evaluation. It has already
been shown that LLMs struggle with mathematical reasoning resulting in a surge in techniques to
resolve these issues, particularly simple mathematics such as counting the number of consonants
in a vowel or elementary arithmetic. However, what happens when we change the input domain
of the task to make it more complex? We modify the input domain to use image(s) capturing the
arithmetic expression for the model to decipher and then evaluate.

Definition 2 (Image-based Arithmetic Evaluation) Given a set of n ∈ N operands and n − 1
arithmetic operators I = {I1, . . . , I2n−1} where n > 1, Ii ∈ RH×W×C for all i = 1, . . . , n, and
H,W,C are the height, width, and number of color channels of Ii, correctly evaluate the given
arithmetic expression.
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Figure 1: An example NSFA for accepting strings in the regular language defined by all strings
ending with “k” over the English alphabet. At q1, we highlight the NN component that classifies the
input image to be one of the classes determined by Σ and how that impacts the transition function δ.
The NSFA takes as input a sequence of images representing characters “p”, “k”, “k”. By following
this sequence, and assuming that the NN classifies the images correctly, we remain in q1 after
following transition corresponding to input “p”, then go to q2 after first “k” and remain in q2 after
last “k”.

Both of these tasks can be decomposed into two parts. The first part is that which can be solved
with provable guarantees via an automaton, e.g. regular expression acceptance and finite arithmetic.
The second part pertains to the deep learning aspect of the problem where we are classifying the
given inputs to one of the given classes. In this case, we have presented two very simple image
classification tasks that can be solved with very high accuracy. Additionally, we have two problems
in string acceptance and elementary arithmetic that can be trivially modeled through use of finite or
pushdown automata. In other words, each of the individual tasks on its own is trivial with current
methods. We show that the congregation of these tasks results in two novel tasks that are beyond the
reasoning capabilities of most VLMs. We also demonstrate that taking a neurosymbolic approach
by using the structure of automata with the perceptive capabilities of NNs inexpensively makes the
tasks more attainable.

4.1. Neurosymbolic Automata

In this section, we introduce two kinds of neurosymbolic automata to provide better structure for
solving image-based simple machine problems beginning first with neurosymbolic finite automaton
(NSFA). Like how the finite automaton is used for regular language acceptance, we present the neu-
rosymbolic finite automaton (NSFA) as a framework to solve image-based regular string acceptance
tasks.

Definition 3 (Neurosymbolic Finite Automaton) An NSFA is a tuple (Q,Σ, N, δ, ℓ, q0, F ) where
Q is a finite set of states, Σ is the alphabet that the corresponding regular language is defined over,
N is the set of NNs available for use, δ : Q × Σ → Q is the transition function, ℓ : Q → N is
a labeling function that defines a one-to-one mapping1 between each NN and state in the NSFA,
q0 ∈ Q is some initial state, and F ⊆ Q is a set of accepting states.

1. We assume bijection for convenience of presentation, but there could be fewer neural networks than states, the same
network could be used in different states, etc.
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Figure 2: An example NSPDA for accepting valid arithmetic expressions and evaluating them.
We let Σ = {0, . . . , 9,+,−,×, /} and enforce that the expressions match the regular expression:
[0-9]+([+,-,\/,*]+[0-9]+)+, which ensures that there are n− 1 operators for n operands
in the expression and they are composed in an alternating fashion. We use the stack to store the
arithmetic expression after validation and have some other component to evaluate it.

Each NN f ∈ N is a function mapping one of the input images Ii to a valid character in
the alphabet c ∈ Σ, i.e. N : Ii ∈ RH×W×C → Σ. The transition function δ, then, no longer
directly uses the inputs to determine its transition–rather, it relies on the outputs of the NN(s). This
also means that Σ no longer defines input domain for the machine. The input domain is the space
RH×W×C and instead Σ is a refinement of the input domain to a set of classes we care about in
the context of the task. String acceptance generalizes to a sequence of images being accepted.
For defining language acceptance, assume there is one neural network f ∈ N that classifies any
input image.2 Given a sequence of images I0, I1, . . . , In, the NSFA accepts the sequence if there
exist a sequence of states p0, p1, . . . , pn such that p0 = q0, for each i ∈ {1, . . . , n} we have pi =
δ(pi−1, si) where fx(Ii−1) = si when fx = ℓ(pi−1), and pn ∈ F . Note that in the event the network
does not correctly classify the image, the corresponding symbol may be invalid and hence the string
may not be accepted.

Figure 1 is a visualization of an example NSFA for the image-based string acceptance task where
the alphabet is all letters of the English alphabet and the given regular expression is [a-zA-Z]*k,
i.e. all strings that end with ”k”.

Definition 4 (Neurosymbolic Pushdown Automaton (NSPDA)) We define a neurosymbolic push-
down automaton (NSPDA) as the tuple (Q,Σ,Γ, N, δ, ℓ, q0, Z0, F ) where each of Q,Σ,Γ, δ, q0, Z0,
and F follow from the definition of pushdown automata. Like with neurosymbolic finite automata,
we introduce N , the set of NNs responsible for mapping the input image to one of the defined char-
acters in our alphabet Σ and ℓ, the labeling function used to map each NN to a state in the NSPDA.

Figure 2 is a visualization of an NSPDA being used for image-based arithmetic evaluation. In
this case, we experiment with the problem statement such that operator precedence is followed in
a left-to-right fashion as opposed to respecting proper order of operations. That said, it is straight-
forward to modify the shown NSPDA to respect operator precedence and match parentheses, as is
possible for pushdown automata, for a slightly more complex example of image-based arithmetic
evaluation. For our purposes, left-to-right operator precedence is sufficient for challening VLMs
reasoning capabilities.

2. This assumption is reasonable if all images come from the same dataset, e.g., EMNIST.
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5. Experimental Setup

In this section, we discuss all the metrics and qualities per experiment. More specifically, we focus
on the datasets, models, hardware, model training time, number of parameters, and model testing
accuracy in order to provide a comprehensive analysis of the two methods in the next section.

5.1. Vision Language Models (VLMs)

Before discussing the task setup through commentary on the datasets, samples used, model training
time, etc., we first introduce the VLMs that the neurosymbolic automata are compared against. Be-
cause the VLMs are not trained on exactly the same tasks as the models used in the neurosymbolic
automata, we focus on the number of parameters and training time for each when available. The
first model is the LLaVA model Liu et al. (2024) which contains 7B parameters and required ap-
proximately a day of GPU training hours with an A100 GPU. The next model is LLaVA-LLaMA3,
which is an 8B parameter LLaVA model trained from LLaMA3. Next, BakLLaVA is an open-source
multi-modal model based on the Mistral 7B parameter model augmented with LLaVA 1.5. Finally,
Moondream is a small 1.8B parameter VLM.

In the remainder of this section, we discuss the specific model architectures, training details of
the NNs used in the neurosymbolic automata for each respective task as well as the details pertaining
to generating testing samples and other metrics about the evaluation process specific to each task.

5.2. Task #1: Image-based String Acceptance

Dataset. For the image-based string acceptance task, we relied on the EMNIST Cohen et al. (2017)
dataset for generating image sequences. This dataset is an extension of the MNIST dataset to con-
tain handwritten letters from the English alphabet in the same style. Altogether, the dataset contains
190,998 samples with 12,000 of them reserved for the test set. Each sample is a 28× 28 grayscale
image. To generate the image sequences, we began by first randomly generating 10 regular expres-
sions over the English alphabet to create the testing set of regular expressions. Once created, we
then randomly generated 5 accepted and 5 rejected regular expressions for each regular expression–
resulting in 100 samples to evaluate each of methods/models on. After generating the test strings,
we sampled images of the characters for each string and sequenced them together to create the input.

Model Architecture and Training. The model used in the NSFA for classifying the input
images was a simple convolutional neural network (CNN) with 2 convolutional blocks, rectified
linear unit (ReLU) activation functions, dropout layers, and two linear layers, which, altogether,
mapped from the input space R28×28 → {1, . . . , 26}. In total, the model had approximately 423,000
parameters and achieved an accuracy of 93.6% on the testing set. To achieve this, the model was
trained using an A100 GPU for 10 epochs, which took approximately 5 minutes.

5.3. Task #2: Image-based Arithmetic Evaluation

Dataset. For the image-based arithmetic evaluation task, we used the Handwritten Digits and Op-
erators dataset Heusser (2020). This dataset contains 300,000 images of all digits, {0, . . . , 9}, and
operators, {+,−, ∗, /} across the training, validation, and testing splits. It is constructed from ap-
proximately 500 handwritten samples of each class being manipulated by various combinations of
rotations and translations. The process for constructing the test samples was similar to that de-
scribed for the previous task. For the arithmetic task, we made conscious choices to vary the length
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Table 1: The classification accuracy (CA) and task accuracy (TA) for the NSFA on the image-based
string acceptance task. For the experiment, we vary the length of the regular expressions and the
test strings that are evaluated against the regular expressions.

Regular Expression CA (%) TA (%)

u+[j-r][h-t][a-z][a-z]l[a-z] 4/10 8/10
[a-f]ml[d-z][A-Za-z]cf 6/10 8/10
[A-Za-z][A-Za-z]w 6/10 10/10
le+s[a-w]b+[x-z]u* 4/10 6/10
[e-t]oz 6/10 8/10
[q-t][b-l] 8/10 10/10
au*[A-Za-z][b-s][m-w] 5/10 7/10
h[p-u]er[A-Za-z][f-k] 7/10 9/10
[A-Za-z][A-Za-z][A-Za-z]o* 4/10 7/10
hc[e-w] 7/10 9/10

of the expressions as well as the length of the operands themselves in order to challenge the methods
at different levels of complexity. We used arithmetic expressions with number of operands rang-
ing from 2-10. For each given number of operands, each model evaluated 25 randomly generated
expressions.

Model Architecture and Training. The model used in the NSPDA for classifying the hand-
written digits and operators in the expressions was similar to the previously described architecture
with 2 convolutional blocks such that each block has a 2D convolutional layer, ReLU activation, and
2D max pooling. There is also a linear layer mapping to the number of classes, which in this case is
14. In total, the model has approximately 62,700 parameters resulting in an accuracy of 98.1% on
the testing set. The model was trained using an A100 GPU for 5 epochs in about 2 minutes.

6. Results

To evaluate the different methods for the string acceptance task, we use a couple of different met-
rics. First looking at the NSFA’s performance on the string acceptance task, we use the classification
accuracy (CA) and task accuracy (TA). The classification accuracy measures the accuracy of the
image classifier to completely and correctly extract the the string from the image. The task accu-
racy is a measure of how well the NSFA performed on the task, noting that just because the exact
classification of the string is incorrect does guarantee that the NSFA will incorrectly determine an
accept/reject decision for that perceived string.

In Table 1, there is a clear correlation between the classification accuracy and length of the
strings as all of the regular expressions that allow for variable length through * and + have signif-
icantly lower classification accuracy. To go along with these, we observe relatively strong perfor-
mance in the task accuracy by the NSFA, which signals that the image classification was performant
enough to capture enough relevant information to still accurately make a decision about the string
relative to the regular expression. Meanwhile, as shown in Table 2, the VLMs offer fairly poor
performance in this task. The LLaMA3-7B model offers decent performance, but a deeper look into
the actual outputs of the VLM show that, even with better performance than the others, the model
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Table 2: The task accuracy and running time of the VLMs on the image-based string acceptance
task. Columns labeled L7B are referring to the results of LLaMA3-7B, LL3 to LLaVA-LLaMA3,
MD to Moondream, and BL to BakLLaVA.

VLMs
RE #

Task Accuracy (%) Running Time (s)

L7B LL3 MD BL L7B LL3 MD BL
1 5/10 1/10 1/10 0/10 10.70 17.00 10.29 14.17
2 5/10 2/10 0/10 0/10 9.60 14.70 94.02 11.92
3 3/10 5/10 0/10 0/10 9.05 12.42 32.03 10.26
4 5/10 3/10 0/10 0/10 12.51 29.76 11.04 14.32
5 7/10 4/10 3/10 0/10 38.43 43.31 5.37 9.35
6 2/10 0/10 5/10 0/10 10.68 38.50 31.63 35.43
7 5/10 5/10 0/10 0/10 38.36 28.75 10.25 13.74
8 5/10 1/10 0/10 0/10 13.85 16.37 6.76 13.94
9 4/10 1/10 2/10 0/10 13.34 27.70 11.04 15.23
10 3/10 2/10 0/10 0/10 9.11 10.68 5.02 9.00

does not reason about the actual input sequence well, but is coherent enough to throw out a guess
regarding whether or not the string should be accepted by the regular expression.

The arithmetic evaluation task is where the benefit of neurosymbolic automata becomes appar-
ent. The results for this experiment are in Table 3. For every single combination of arithmetic
samples given to the various VLMs, not a single one could produce a valid solution. Not only did
the VLMs struggle heavily with parsing the expression from the images, but they also struggled to
provide the output in the desired format, a necessary requirement defined in the prompt, and often
times hallucinated extremely long expressions of nonsense that they did not bother to evaluate. On
the otherhand, the NSPDA was able to efficiently get strong results on the task with the caveat being
an expected drop in accuracy as the length of the expressions increases.

In addition, the NSPDA is far, far more efficient than any of the VLMs. The inference for the
model used in the NSPDA is significantly cheaper than what the VLMs can afford, while being
better suited to the task and letting the structure of the automaton do some of the heavy lifting as far
as the rest of the task, i.e. the non-perception-based part of the task, is concerned.

7. Future Work

While we present positive results showing our neurosymbolic approach outperforms LLMs and
VLMs, there are many interesting directions for future work, both in potential applications and
theoretical foundations.

For possible applications, an immediate use case is in education, akin to various autograding
methods that have been developed for automata Alur et al. (2013); D’Antoni et al. (2015, 2020)
and broader domains. Other possible applications would be in video classification problems, or
specifying the temporal behavior of such temporal data Jin et al. (2022); Choi et al. (2025).

For theoretical foundations, while this neurosymbolic approach relies on learning the neural
networks from data, the symbolic portions are generated with more classic methods, e.g., with
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Table 3: The accuracy and running time of the NSPDA and VLMs on the arithmetic expression
evaluation task organized by the number of operands in the expression. Columns labeled NA are
referring to the results of the NSPDA, L7B to the results of LLaMA3-7B, LL3 to LLaVA-LLaMA3,
MD to Moondream, and BL to BakLLaVA.

VLMs
# Ops

Accuracy (%) Running Time (s)

NA L7B LL3 MD BL NA L7B LL3 MD BL
2 88 0.0 0.0 0.0 0.0 0.003 3.85 20.07 1.41 1.98
3 82 0.0 0.0 0.0 0.0 0.005 10.11 20.37 16.48 14.43
4 68 0.0 0.0 0.0 0.0 0.007 12.34 30.52 21.79 15.22
5 66 0.0 0.0 0.0 0.0 0.009 12.96 25.72 27.23 15.90
6 59 0.0 0.0 0.0 0.0 0.010 13.06 23.57 32.65 16.83
7 51 0.0 0.0 0.0 0.0 0.011 13.80 20.30 37.65 17.85
8 50 0.0 0.0 0.0 0.0 0.012 15.63 23.26 43.14 18.57
9 52 0.0 0.0 0.0 0.0 0.015 15.28 22.86 48.42 19.53
10 47 0.0 0.0 0.0 0.0 0.016 16.98 23.88 53.86 20.65

symbolic algorithms for conversion of expressions to automata that accept these. One can imagine
however attempting to learn the overall neurosymbolic automata purely from data (examples) akin
to sketching Solar-Lezama et al. (2006); Solar-Lezama (2013); Murali et al. (2018); Nye et al.
(2019), or by combining the neural learning with automata learning Raffelt et al. (2005); Bollig
et al. (2010); Muškardin et al. (2022). For learning purely from data, differentiable automata of
various classes is one possible approach Balakrishnan and Deshmukh (2024), where perhaps the
entire neurosymbolic automata could be learned via gradient descent. This direction would have
connections with various classes of weighted automata, and one could imagine instead of using the
network for a classification task as done here, to utilize the network output as logits to create a
weighted automaton Chatterjee et al. (2009); Rabusseau et al. (2019). Related, given each step of
the neurosymbolic automaton could yield an error, such as an image in the input sequence being
misclassified, the probability of success could be analyzed with such weighted automata semantics
incorporating the accuracy of the neural networks for such tasks.

8. Conclusions

This paper introduces two multimodal reasoning tasks and two classes of neurosymbolic automata
for solving these tasks, namely neurosymbolic finite automata (NSFA) and neurosymbolic push-
down automata (NSPDA). For the image-based regular language acceptance task, we show NSFAs
outperform existing VLMs and LLMs, in spite of significantly less training and inference require-
ments. For image-based arithmetic evaluation, we show NSPDAs outperform existing VLMs and
LLMs as well, emphasizing the inability of the VLMs to reason about these kinds of multimodal,
complex reasoning tasks. This initial investigation highlights the benefits of neurosymbolic ap-
proaches versus LLMs and VLMs, but as discussed, there are many further directions to explore.
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powered textual representation. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Gül Varol, editors, Computer Vision – ECCV 2024, pages 472–489, Cham,
2025. Springer Nature Switzerland. ISBN 978-3-031-72989-8.

Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer, and
George Atia. Dynamic automaton-guided reward shaping for monte carlo tree search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 12015–12023, 2021.

Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin, Haiteng Zhao, Yongfei Liu, Bohan Zhai,
Jianbo Yuan, Quanzeng You, and Hongxia Yang. Exploring the reasoning abilities of multimodal
large language models (mllms): A comprehensive survey on emerging trends in multimodal rea-
soning, 2024. URL https://arxiv.org/abs/2401.06805.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite preci-
sion rnns for language recognition. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 740–745, 2018.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large lan-
guage models perform in arithmetic tasks?, 2023. URL https://arxiv.org/abs/2304.
02015.

15

https://books.google.com/books?id=4J1ZMAEACAAJ
https://books.google.com/books?id=4J1ZMAEACAAJ
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://arxiv.org/abs/2401.06805
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015


SASAKI LOPEZ JOHNSON

Zhuosheng Zhang, Aston Zhang, Mu Li, hai zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=y1pPWFVfvR.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified
vision-language pre-training for image captioning and vqa. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(07):13041–13049, Apr. 2020. doi: 10.1609/aaai.v34i07.7005. URL
https://ojs.aaai.org/index.php/AAAI/article/view/7005.

16

https://openreview.net/forum?id=y1pPWFVfvR
https://ojs.aaai.org/index.php/AAAI/article/view/7005


NEUROSYMBOLIC AUTOMATA

Appendix

A. Example Arithmetic Evaluation on ChatGPT-4o and Claude Sonnet 3.7

An example of the image-based arithmetic evaluation task for the expression 34 + 82− 5 provided
to both OpenAI’s ChatGPT-4o and Anthropic’s Claude Sonnet 3.7. The prompt (left) contains
both textual and image components making it a multimodal task. The textual component mirrors
the same one used in experimentation and the output responses (right) of each ChatGPT-4o (top)
and Claude Sonnet 3.7 (bottom) are shown. Despite impressive performance on related tasks such
as mathematical reasoning and visual question answering, we observe that the LLMs struggle to
accurately identify the arithmetic expression in the image and perform its evaluation.

B. Image-based String Acceptance VLM Prompt

You will be provided a sequence of input images. Contained
in each image will be a letter of the English alphabet. For
this problem we ignore case, so we have only 26 classes.
For each image in the sequence, classify it as a letter in
the alphabet and then join all of your predictions together
to make a string. Remember that only lowercase letters
are allowed. You are also given the regular expression
<regex>. Now, tell me "accept" if the string that you read
should be accepted by the regular expression and "reject"
if not. I expect the output in the form <predicted string,
accept/reject> and ONLY in this form. You will be marked
incorrect if you provide any other outputs or it the output
is not in the desired format.
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C. Image-based Arithmetic Evaluation VLM Prompt

You will be provided a sequence of input images. Contained
in each image will be either a digit (0-9) or an operator
(+, -, /, *). Read these together to make an arithmetic
expression. You need to solve these left to right, i.e.
keep a running total of the value as you read in each image
to make valid arithmetic expressions. For example, given a
sequence of images like [’5’, ’+’, ’1’, ’*’, ’2], you would
first read the valid expression ’5+1’ and evaluate it to
6. Then, you would read the next operator and operand to
get the valid expression ’6*2’, which is evaluated to 12.
The output must be in the format <numerical expression in
image>=<solution>. DO NOT give me any other output. Also,
DO NOT use LaTeX. These are simple expressions and can be
expressed without the use of LaTeX.
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