
Proceedings of Machine Learning Research 288:1–18, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Learning Subject to Constraints via Abstract Gradient Descent

Shiwen Yu, Wanwei Liu, Zengyu Liu, Liqian Chen, Ting Wang YUSHIWEN14@NUDT.EDU.CN
College of Computer Science and Technology, National University of Defense Technology, China

Naijun Zhan NJZHAN@PKU.EDU.CN
School of Computer Science, Peking University, China

Ji Wang* WJ@NUDT.EDU.CN

College of Computer Science and Technology, National University of Defense Technology, China

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Deep learning has made significant advancements and has been successfully used in different areas.
However, current deep learning models are based on theories of probability and statistics, thus suf-
fer from adhering to constraints and ensuring assurances. In contrast, symbolic methods inherently
own rigidity but with low efficiency and high cost. In this paper, we propose a novel symbolic
learning architecture which can deal with data fitting and the logic satisfaction uniformly. The key
idea is to treat logic formulas as discrete functions that can be optimized through Abstract Gradient
Descent, a discrete optimization method based on backward abstract interpretation. The efficiency
of our approach is illustrated by training a symbolic neural network with 8,542 parameters that can
accurately recognize 70,000 handwritten digits. Experiments indicate that the trained model not
only fits the data well but also adheres to key properties such as robustness, invariance to zooming,
translation, resistance to noise background, and so on.
Keywords: Deep Learning, Formal Method, Abstract Interpretation, Neurosymbolic, Optimization

1. Introduction

Deep learning, as a pivotal innovation in artificial intelligence, has significantly altered the landscape
of computational learning as well as data processing and is evident through groundbreaking accom-
plishments in diverse areas. Despite these big successes, deep learning still faces many intrinsic
challenges, e.g., predictability, consistency, susceptibility to min-max attacks, and generalization,
just to name a few.

The classical deep learning problem aims at data-fitting tasks. Given a function (i.e., a neural
network) F (x, p) with parameters p and input x, as well as a data set D, where each record is
denoted as ⟨x, y⟩ ∈ D with y as the label, the task of data fitting is to find p∗ such that the trained
model fits as many records ⟨x, y⟩ ∈ D as possible. It can be typically formalized as the following
optimization problem:

min
p

∑
⟨x,y⟩∈D

loss(F (x, p), y) (1)

where the function loss(a, b) measures the “difference” between a and b, the bigger the more dif-
ferent, and loss(a, b) = 0 indicates a = b. A typical instance of loss(a, b) is the mean square
loss.

* Corresponding Author.

© 2025 S. Yu, W. Liu, Z. Liu, L. Chen, T. Wang, N. Zhan & J. Wang.

YU LIU LIU CHEN WANG ZHAN WANG

In safety or mission-critical applications, the learning components are required to not only fit
the data as accurately as possible but also satisfy certain critical properties often represented by a
first-order logic formula, such as ∀x. C(x, p). By introducing the constraint ∀x. C(x, p) on the
parameters, the learning task becomes the following constraint optimization problem:

min
p s.t. ∀x. C(x,p)

∑
⟨x,y⟩∈D

loss(F (x, p), y) (2)

The above learning problem plays an important role in trustworthy machine learning. For example,
the robustness property can be specified as ∀x. (||x, x0|| < t)→ (F (x, p) = F (x0, p)), where || · ||
stands for the L2 Norm, x0 for the original input, and x for the actual input subject to a disturbance
within the norm ball centered at x0.

Solving the problem in Equation (2) is challenging and unsolvable in general. Existing ap-
proaches (e.g., Petersen et al. (2022); Li et al. (2023)) use relaxation to transform the logic formula
C into a continuous loss function Lc such that C(p) is satisfied iff Lc(p) = 0. Hence, the problem
in Equation (2) can be reduced to the following non-constraint optimization problem:

min
p

∑
⟨x,y⟩∈D

loss(F (x, p), y) + Lc(p) (3)

However, the above relaxation of discrete logic formulas to continuous loss functions gives rise to
many problems, such as approximation error and non-convexity, making gradient descent powerless.
Consequently, the logic constraints seem to play auxiliary enhancements of the generalization and
anti-attacking abilities of the trained models rather than the assurance.

To avoid the aforementioned problems, we utilize abstract gradient descent (AGD) Yu et al.
(2024) to tackle optimization of discrete functions. It combines efficient gradient descent with
formal search in an backward abstract interpretation way Peled et al. (2023). Instead of relaxation,
we can transform Equation (2) as a min-max optimization problem as follows:

min
p

max
x

(
¬C(p, x) +

∑
⟨x′,y⟩∈D

loss(F (x′, p), y)
)

(4)

where ¬C(p, x) in this equation is treated as a discrete boolean function with p and x as input
parameter. The optimum of the objective function being 0 implies that there exists p∗ not only
satisfying the constraint but also perfectly fitting the dataset.

However, if the optimum is not 0, C(p) is not guaranteed to be satisfied. In this paper, we argue
that satisfying the logic constraint is more critical than fitting the dataset. Therefore, we designed a
trade-off optimization strategy that iteratively find the ‘legal sub-optimal’ values of the parameters
p.

Instead of being caught up in cumbersome details (which is in Section 4.3), we use an example
to illustrate this process.

Example 1 (A Motivating Example) Consider the constraint optimization problem:

min
p s.t. ∀x. (0.4<x<0.75)→ (0.5<x∗p<1)

(
2

p
+ p) (5)

2

LEARNING SUBJECT TO CONSTRAINTS

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10

p0=2

(1)
2/p+p
S+(1)

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10
(2)

2/p+p
S+(1)
S-(1)

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10
(3)

2/p+p
S+(2)

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10
(4)

2/p+p
S+(2)
S-(2)

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10
(5)

2/p+p
S+(n)
S-(n)

3 2 1 0 1 2 3
10
8
6
4
2
0
2
4
6
8

10

p*=1.32

(6)
2/p+p
S+(n+m)
S-(n)

Figure 1: The min-max optimization process of the motivating example, where the pink range rep-
resents S−, the green range represents S+, the X-axis represents the value of p, and the
Y-axis denotes the minimization objective value.

It can be transformed to the following discrete min-max optimization using our approach:

min
p

max
x

(
2

p
+ p) + (¬(0.4 < x < 0.75 → 0.5 < x ∗ p < 1)) (6)

We show how to solve it using our approach step by step as follows (also see Figure 1):

1. At the beginning step, we set an empty set S−
(0) to include the values that p is forbidden to

be, at step i. Suppose the initial value of p is p = 2, the initial objective value of the left part
(2p + p) is: 3.

2. The minimization objective (2p + p) can be broken into a sequence of descending steps. The
next step, solved by AGD Yu et al. (2024), is p ∈ [−∞,−0.01] ∪ [1.01, 1.99] (one can see
this through the Figure 1.(1)). We use a set S+

(1) to record [−∞,−0.01] ∪ [1.01, 1.99], which
includes the values that we wish p to be in the next step. For any p ∈ S+

(1), we have 2
p +p < 3,

descending the objective.

3. The maximization of the discrete constraint ¬(0.4 < x < 0.75 → 0.5 < x ∗ p < 1) results
in x ∈ [0.41, 0.74] ∧ p ∈ [−∞,−0.01] by AGD (i.e. any x and p in this range can make the
target value maximum). We let S−

(1) = S−
(0) ∪ [−∞,−0.01], since we do not wish p in this

range.

4. We redo the minimization by AGD with p not be in S−
(1) = [−∞,−0.01], and obtain S+

(2) =

[1.02, 1.98] (Figure 1.(3)). Then, we redo the maximization with p be in S+
(2), and obtain

x ∈ [0.67, 0.74] ∧ p ∈ [1.51, 1.98]. So, S−
(2) is assigned as [−∞,−0.01] ∪ [1.51, 1.98]

(Figure 1.(4)).

3

YU LIU LIU CHEN WANG ZHAN WANG

5. We repeat the above process till the optimum of maxx(¬(0.4 < x < 0.75 → 0.5 < x ∗ p <
1)) when p ∈ S+

(n) is 0, where S−
(n) = [−∞,−0.01]∪ [1.02, 1.25]∪ [1.33, 1.98] (Figure 1.(5)).

6. We continue minp (
2
p + p) with p ∈ S+

(n) till the sub-optimum: p∗ = 1.32 (Figure 1.(6)).

As a comparison, if we apply gradient descent initialized with p = 2, we will end up with p =
√
2,

which fails to satisfy the constraint.
With AGD, the objective function F does not require continuity, which gives more flexible ar-

chitecture for the model, e.g., allowing logic connectives and predicates, unifying the neural network
structure of F and the symbolic expression, and so on. This largely generalizes deep neural net-
works and their training methods. We name the proposed general learning framework as Symbolic
Neural Network (SNN). Its overall architecture is depicted in Figure 2.

Training

Set

Symbolic Neural
Network (initialized)

Logic Properties

Symbolic Neural
Network (optimized)

Fitting

Satisfying

Soft

Constraint

Hard
Constraint

Figure 2: The first step is to construct a parameterized symbolic neural network F (x, p0). The
dataset fitting task is transformed into a soft constraint optimization, and the logical con-
straint is transformed into a hard constraint optimization. The two optimizations proceed
interactively until we can only find an empty range of x to negate the hard constraint,
we obtain the optimal value of p in the range and output the resulting symbolic neural
network F (x, p∗).

The rest of this paper is organized as follows: Section 2 introduces the related work; Section 3
recaps basic notions and gives a brief introduction of AGD. Section 4 presents the novel symbolic
learning framework of SNN. Section 5 reports experiments. We conclude this work in Section 6.

2. Related Work

The verification of deep learning models Gehr et al. (2018); Wang et al. (2021); Katz et al. (2017);
Wong and Kolter (2018) becomes increasingly vital as these models are applied in more and more
safety-critical domains. A seminar work in Gehr et al. (2018) proposes a scalable approach using
abstract interpretation to certify neural network safety. Wang et al. introduces an efficient method
for robustness verification, addressing scalability challenges Wang et al. (2021). Additionally, Katz
et al. presents an SMT-based verification for neural networks with ReLU activations, which is a
significant step towards handling the verification complexity of nonlinear models Katz et al. (2017).
Despite the progress in verification of the trained models, the state of the art needs to scale up for
practical deep learning models.

Since the verification of the trained model is difficult, recent works Petersen et al. (2022); Crop-
per and Dumancic (2022); Wong and Kolter (2018); Li et al. (2023); Giannini et al. (2019); van

4

LEARNING SUBJECT TO CONSTRAINTS

Krieken et al. (2022) investigate to integrate verification into training process as an alternative. The
basic idea is to construct an extra target other than the original fitting target, and integrate them as
one single gradient descent optimization task. Wong et al. presents how to construct a robust loss
function by building a convex outer approximation Wong and Kolter (2018). Furthermore, some
recent works consider more general constraints specified in first order logic language. For example,
to exploit fuzzy logic to relax the logic constraint to a differential function and combine it with the
original data fitting loss function van Krieken et al. (2022); Li et al. (2023). However, relaxation
error and non-convexity keep them from learning verified models. Thus, these integrated methods
seem more like a constraint-enhancement to improve the ability of trained models for generalization
and anti-attacking. In the experiments, we will compare our method with these methods proposed
in Wong and Kolter (2018); Li et al. (2023).

There are other optimization algorithms, known as solving algorithms or search algorithms
Barrett et al. (2016, 2021); Krishnan et al. (2020); Cai et al. (2023). SMT solvingBarrett et al. (2016)
is able to tackle this optimization but with an extremely expensive computing cost, especially for
the cases of nonlinear operations and a large number of variables (both are necessary for general
learning tasks). As a result, SMT solving is not suitable for this optimization. Moreover, random
search methods, such as Monte Carlo Tree Descent Zhai and Gao (2022), try to use a random input
sampling process to find the descent direction in a black box style. In contrast, AGD optimization
proposed in this work is a white-box method based on abstraction interpretation, that provides the
guarantee of the given logical constraints.

Abstraction is an efficient strategy for handling a large amount of concrete states. A famous
theoretic framework is abstract interpretation Cousot (1996); Cousot and Cousot (1977); Bertrane
et al. (2015); Yin et al. (2020); Miné (2014), which aims to approximate the program semantics in a
general way. In order to make the inference process determinable, as well as balance the precision of
abstraction and computing cost, a number of abstract domains have been proposed, such as Intervals
Brauer et al. (2010), Boxes Gurfinkel and Chaki (2010), Octagons Miné (2006); Chen et al. (2014),
and Polyhedra Sankaranarayanan et al. (2006), and so on. In this paper, we leverage Boxes as the
abstract domain with lower/upper forward/backward rules that are implemented with GPU support.

3. Preliminaries

3.1. Notations

We consider three simple data types in this paper, i.e., Boolean B, Integer I, and Real R. Conven-
tionally, we treat Boolean type B as a subtype of Integer I, i.e. only with 0 and 1, and Integer type I
as a subtype of Real R. Further, we use X to represent one of the three types: X ∈ {B, I,R}.

For a vector x ∈ Xn, x[i] ∈ X represents its ith component. Projecting a set V ∈ 2X
n

onto
the ith dimension is denoted by V [i :] ∈ 2X, i.e., V [i :] = {x[i]|x ∈ V }. Similarly, for a vector
of function f : Xn → Xm, projecting f onto the ith dimension is denoted as fi : Xn → X, i.e.,
∀x ∈ Xn. f(x)[i] = fi(x).

3.2. Abstract Gradient Descent

Like gradient descent, abstract gradient descent (AGD) can be regarded as a local-search-based
optimization algorithm. This subsection introduces the basic idea of AGD, and we refer readers to
Yu et al. (2024) for more detailed introduction.

5

YU LIU LIU CHEN WANG ZHAN WANG

Basically, AGD is trying to calculate the preimage (aka. inverse image) of a given function f
with a given image:

Definition 1 For a function f : Xn → X with input α ∈ Xn, the abstract gradient is a boolean
function ∇̂f : Xn → 2X

n
such that

∇̂f(α) = {∆α|f(α−∆α) < f(α)} (7)

In other words, AGD tries to find all possible descending directions (∆α) to the minimization
of F . However, computing the exact abstract gradient is generally infeasible. Therefore, we use
lower ∇̂▼ (upper ∇̂▲) abstract gradients instead. In practice, the former is used for efficiency and
the latter for guarantees. Luckily, computing lower or upper abstract gradients can be carried out
efficiently based on rules in an abstract domain, with the help of backward abstraction interpretation
Miné (2014). We listed an example of how backward abstraction interpretation works to calculate
the abstract gradient in Appendix 6.1.

3.3. The Abstract Domain of Boxes

The abstract domain of Boxes (boxes) has been widely used in abstract interpretation for program
analysis. The advantages of boxes lie in: i) most operators, such as union or intersection of sets, are
closed in boxes; ii) Elements in boxes can be represented in matrix, thus operations over them can
be done efficiently on GPU.

Definition 2 A set V ∈ 2X
n

is a box-set if there exists l1, ..., ln, u1, ..., un ∈ X∪{−∞,+∞} such
that ∀x ∈ Xn. x ∈ V ↔

∧n
i=1(li ≤ x[i] ≤ ui), where−∞ and +∞ stand for negative and positive

infinity, respectively.
A set V ∈ 2X

n
is called a k-boxes-set if there exists k box-sets V1, V2,...,Vk such that V =⋃k

j=1 Vj . Conventionally, we denote a one dimension boxes-set as [a, b] = {a ≤ x ≤ b} and two
dimension boxes-set as [a, b]× [c, d] = {a ≤ x[0] ≤ b ∧ c ≤ x[1] ≤ d}, and so on.

4. Our Method

The symbolic learning framework we propose is an iterative step-by-step optimization process be-
tween learning and verification. Its main framework includes 3 phases: i) Construction of the
symbolic neural network (SNN) (i.e., the F function in Equation (4)) based on the composition of
primitive functions; ii) Generation of the min-max discrete optimization problem from the training
set D and the constraint C; iii) The abstract gradient descent process for this min-max optimization.

4.1. Primitive Functions

We only consider the primitive functions, predicates, and logic connectives occurring in NIA (Non-
linear Integer Arithmetic) and NRA (Nonlinear Real Arithmetic), which can be well solved by SMT
solvers Barrett et al. (2016). They are summarized in Table 1.

Similar to neural networks, we can construct a composed function F as a symbolic neural net-
work in terms of the listed primitive functions. For example, an affine layer of the traditional
neural network, f(x) = w · x + b, where w ∈ Rn, x ∈ Rn, b ∈ R, can be written as: f(x) =

6

LEARNING SUBJECT TO CONSTRAINTS

Symbol Discrete Function Domain Description
¬ Not B → B Logic negation.
∧ And B2 → B Logic conjunction.
∨ Or B2 → B Logic disjunction.

·?· : · Ite B× X2 → X If-Then-Else operation
≤ Le X2 → B Linear order: ‘less than or equal to’.
= Eq X2 → B Linear order: ‘equal to’.
< Lt X2 → B Linear order: ‘less than’.
+ Add X2 → X Addition.
× Mul X2 → X Multiplication.
÷ Div X× X/0 → X Division.
% Mod I× I+ → I+ Modulo operation.
[·] Rnd X → I Rounding.

Table 1: The involved operations in a mixed theory of NIA and NRA.

…

……

……

……

……

……

…… …………
……

……

Common Module (8,382 pars)

Specific Module (16 pars each)

……

……

Figure 3: The Symbolic Neural Network for Hand-written Digit Recognition.

Add(Add(...Add(Mul(w[0], x[0]),Mul(w[1], x[1]))...), b), where x[i], w[i] ∈ R. SNN does not re-
quire the F to be differential anymore. Therefore, we can build more intuitive structures with pred-
icates and logic connectives in the symbolic neural network with much fewer parameters to achieve
the data fitting task (LeNet5 LeCun et al. (1989), which contains 7 layers with 59,654 learnable
parameters, can achieve 99. 9% fitting accuracy on MINST. For comparison, the inner construction
of the symbolic neural network F for this task, depicted in Figure 3, contains only 8,542 parameters
and achieves a fitting error of 99. 8%).

4.2. Architecture Design of SNN for MNIST

Figure 3 depicts the SNN model to fulfill the hand-written digit recognition task. The outermost
layer of function is a series of 10 Ite functions, where the last Ite function can output a special
label: −1, denoting that the input picture is predicted to be non-digit. The former 9 Ite functions

7

YU LIU LIU CHEN WANG ZHAN WANG

are composed with a Boolean function (i.e. a predicate denoted as Pi), a constant function (0 to 9),
and a succeeding Ite function.

Each Pi is constructed with two modules: a common module to extract features of the pixel
matrix, and a specific module expected to run certain logic decisions with the extracted feature to
predict the specific label. The common module is shared by the 10 Ite functions, while the 10
specific modules are monopoly to each Ite function.

The common module is formed of 4 layers, each of which consists a linear layer and an nonlinear
layer. The linear layers are the same to traditional neural network: 784 × 10, 18 × 10, 18 × 10,
18× 8 affine layers. The nonlinear layers multiplies and divides the adjacent pairs of the 10 output
of linear layers, producing 18 outcomes.

The specific module first rounds the 8 real values output from the common module to integers,
then apply Mod function with learnable parameters pmj on these integers. The resulting value will
be compared with other learnable parameters pej , resulting in 8 Boolean values. The last three
layers are constructed as a Conjunctive Normal Form to produce the final Boolean value, deciding
whether to predict this input as the corresponding label or not. The whole model contains 8,542
parameters, with an inference time of less than 100ms.

Besides the symbolic neural network, we can also specify constraints uniformly. For example,
∀x. F (x, p) = F (−x, p) can be represented as ∀x. Eq(F (x, p), F (Mul(x,−1), p)).

4.3. Min-max Optimization

We use fsoft and fhard to denote the soft constraint
∑

⟨x′,y⟩∈D loss(F (x′, p), y) and the hard con-
straint ¬C(p, x) in Equation (4), respectively, i.e.,

fsoft(p) =
∑

⟨x,y⟩∈D

Ite(Eq(F (x, p), y), 0, 1) and fhard(x, p) = C(x, p) (8)

where
∑

stands for the composition of a sequence of Add functions; C(x, p) is a quantifier-free
first-order logic formula only with free variables p and x, the output of F (x, p) and y are scalars.

Because of the non-convexity and discontinuity of C and F , we do not expect to find a ground-
optimized p∗, which is impractical. The primary target is to find the value of p such that C(x, p) is
valid (i.e. C(x, p) ≥ 1), and the second target is to minimize the fitting error. Thus, the above goal
is formalized as the following min-max optimization:

min
p/∈S−

fsoft(p) max
p∈S+,x

Not(fhard(x, p)) (9)

Let pi ∈ Xn be the values of parameters p after the (i− 1)-th iteration (it can be any sampled value
in S+

(i−1)), then S−
(i) and S+

(i) are:

S+
(i) = ∇̂

▼fsoft(pi) s.t. S+
(i) ∩

i−1⋃
j=1

S−
(j) = ∅

S−
(i) = ∇̂

▼(fhard = 1)[p :] s.t. S−
(i) ∩ S+

(i) ̸= ∅

(10)

where ∇̂▼(fhard = 1) denotes the lower approximated preimage of fhard with the imgae {0}; V [p :]
is the projection of the set V on the dimensions of parameters p; and

⋃i
j=1 S

−
(j) represents the union

of all S− in previous iterations.
The min-max optimization works as follows:

8

LEARNING SUBJECT TO CONSTRAINTS

1. Initialize S−
(0) as an empty set, and i := 1.

2. Compute S+
(i) according to (10).

If S+
(i) is not empty, go to step 3.

If S+
(i) is empty, set S+

(i) = (
⋃i−1

j=1 S
−
(j))

c (that is to give up the soft optimization target for
this time). If S+

(i) is not empty, then go to step 3. If S+
(i) is still empty, then it indicates that the

hard constraint is unsatisfiable.

3. Compute S−
(i) according to (10).

If S−
(i) is not empty, go to step 2.

If S−
(i) is empty, go to step 4.

4. Compute ∇̂▲(fhard = 1) with pi ∈ S+
(i)(the upper approximated preimage of fhard with the

imgae {0}).
If ∇̂▲(fhard = 1) ̸= ∅, then go to step 3.

If ∇̂▲(fhard = 1) = ∅, then the optimization terminates with S− = (S+
(i))

c, and repeat
computing S+

i+1, S+
i+2,..., until S+

k is empty.

Upon termination, any p ∈ S+
k provides an optimal solution p∗.

The above min-max optimization is sound but incomplete. If it terminates, we can get the p∗

that both satisfies the hard constraint and fits the dataset well. However, it may not terminate due
to precision loss of abstraction. In the experiments, if the number of iterations between the two
optimizations is more than 50, we give up the hard constraint and only run optimization on the soft
constraint. If the refinement iterations between step 3 and step 4 are more than 100, we also give up
the hard constraint.

5. Evaluation

This section evaluates the effectiveness of our method on the task of hand-written digits recognition
Dataset MINIST Deng (2012). We are interested in whether our method can produce a model
that can not only recognize the hand-written digits, but also satisfy logical constraint such as norm
robustness, zooming, translation, rotation, fading, frame annotation, contrast of pixel, thresholding,
and symmetry. We compare our method with two SOTA methods, named Logic Constraint Learning
Li et al. (2023) (LogicCL) and Robust Learning Wong and Kolter (2018) (RobustL), and a data
augmented deep learning (Data+L) as the baseline.

A brief introduction of the dataset (soft constraint), together with the formal definition of the
interested properties (hard constraint), and the experiment settings, can all be checked in Ap-
pendix 6.21.

We summarize the results in Table 2. As can be seen, 9 out of the 11 hard constraints are
successfully satisfied by the learned SNN. The attack errors of SNN on the 9 hard constraints are all
0. The unsatisfied properties are both about rotation, in the optimization process of which we drop

1. The repository is at https://doi.org/10.5281/zenodo.15425225

9

https://doi.org/10.5281/zenodo.15425225

YU LIU LIU CHEN WANG ZHAN WANG

the hard constraints after 50 interactions in the min-max learning. Further, if SNN fails to satisfy
a hard constraint, it will be as vulnerable as the data-augmented learning to the attacking. On the
contrary, once a constraint is verified, SNN is immune to attacks from this property.

Property (Verified?) Training Error % Test Error % Attack Error %
Data+L LogicCL RobustL SNN Data+L LogicCL RobustL SNN Data+L LogicCL RobustL SNN

Fading (!) 0.6 0.8 - 1.5 3.1 2.6 - 1.5 12.6 10.4 - 0
Zooming (!) 1.1 1.9 - 5.2 7.1 6.5 - 5.0 41.6 20.2 - 0

Translation (!) 2.5 3.4 - 5.3 4.8 4.1 - 5.9 11.9 8.2 - 0
Rotation (%) 2.9 3.3 - 3.5 8.1 6.2 - 3.7 46.2 33.1 - 37.4

Frame (!) 0.1 0.4 - 0.5 1.7 0.9 - 0.5 7.7 2.1 - 0
Contrast Pixel (!) 1.4 1.4 - 1.1 5.8 4.0 - 1.1 18.6 11.5 - 0

Threshold (!) 0.0 0.2 - 0.4 0.9 0.8 - 0.5 2.2 1.8 - 0
Symmetry (!) 0.7 1.8 - 10.4 2.5 2.7 - 10.5 10.4 8.3 - 0

180◦ Rotation (%) 0.2 0.5 - 1.7 2.7 1.2 - 2.2 10.6 2.3 - 8.1

Robust(ϵ0.1)(!) 0.0 0.3 0.1 2.1 1.1 1.4 1.8 2.2 8.1 4.5 3.9 0
Robust(ϵ1)(!) 0.4 1.8 0.7 4.1 4.8 2.5 2.1 4.7 20.9 8.0 9.3 0

Table 2: The first column lists the 11 properties (hard constraints). The mark within the parentheses
indicates if this hard constraint is verified successfully by SNN. The second column shows
the Training Error, the rate of unfitted data on the training set. The third column shows
the error rate on the original test set, named Test Error. Test Error indicates the usual
performance of models. The last column shows the predict error of models on the attack
set, generated by applying the constraint on correctly predicted instance in the test set. The
last error reveals the anti-attack ability of models.

The cost of SNN to satisfy a hard constraint is intuitive. SNN cannot fit the soft constraint
(the training data) as well as other learning methods, as it has the highest training error in most
properties’ training sets. Specifically, SNN has a training error as high as 10.4% in the property
Symmetry’s training set, one order of magnitude higher than the other two methods. Another draw-
back of SNN is that it takes extensive training time cost. The other three methods can finish 100
epochs of training within 5 minutes, while SNN has to take 5 to 12 hours to finish one epoch of
training. The inference process, on the other hand, is equally fast, as SNN is a tiny model compared
to others.

Nevertheless, we notice that the training errors and the test error of SNN on all properties are
very close, while the other methods’ training error are always distinctively lower than the test error.
This indicates that SNN does not over-fit the training set. The reason behind is that SNN has
only 8,542 parameters, comparing to the 59,654 parameters in LeNet5. And the much longer and
exquisite learning process also keeps SNN from over-fitting, although with the risk of under-fitting.

In summary, SNN learning can gain the guarantee of certain properties, which are ever lacking
in current deep learning methods, with the cost of much longer learning time and the risk of under-
fitting.

6. Conclusion

In this paper, we present a novel neurosymbolic framework, named Symbolic Neural Network,
for guarantee needed learning tasks. The distinguished feature of such tasks is that the desired
properties of a learned model are represented in logic constraint, which can be regarded as a discrete
function.

While current works aim to approximate the logic constraint as a continuous function and add
it into the loss function, problems such as approximation error and local optimum keep them from
giving sound guarantees. In a different view, SNN adopts abstract gradient descent with the abstract

10

LEARNING SUBJECT TO CONSTRAINTS

domain of Boxes to directly optimize discrete functions. It regards the target of data fitting as
a soft constraint and treats the logical constraint as a hard constraint. By carrying an min-max
optimization scheme, SNN tries to train a learning model that not only satisfies the constraints but
also fits the data as well as possible. The soundness of this method is given by theory of AGD, and
the computational cost on abstraction inference can be accelerated by GPU power. Experiments
on the MNIST task also demonstrate its advantages in generalization-ability, anti-attacking, and the
ability to give assurance, which is previously lacking in current deep learning models.

Acknowledgments

This work is supported by the Key Program of National Natural Science Foundation of China (Grant
Nos. 62032024).

References

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 1267–1329. IOS Press, 2021. doi: 10.3233/FAIA201017. URL https://doi.org/
10.3233/FAIA201017.

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
and Xavier Rival. Static analysis and verification of aerospace software by abstract interpretation.
Found. Trends Program. Lang., 2(2-3):71–190, 2015. doi: 10.1561/2500000002. URL https:
//doi.org/10.1561/2500000002.

Jörg Brauer, Thomas Noll, and Bastian Schlich. Interval analysis of microcontroller code using ab-
stract interpretation of hardware and software. In Proceedings of the 13th International Workshop
on Software & Compilers for Embedded Systems, pages 1–10, 2010.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res., 21:
42:1–42:39, 2020. URL http://jmlr.org/papers/v21/19-468.html.

Shaowei Cai, Bohan Li, and Xindi Zhang. Local search for satisfiability modulo integer arithmetic
theories. ACM Trans. Comput. Logic, 24(4), jul 2023. ISSN 1529-3785. doi: 10.1145/3597495.
URL https://doi.org/10.1145/3597495.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, pages 39–57. IEEE Computer Society, 2017. doi: 10.1109/SP.2017.49. URL https:
//doi.org/10.1109/SP.2017.49.

Liqian Chen, Jiangchao Liu, Antoine Miné, Deepak Kapur, and Ji Wang. An abstract domain
to infer octagonal constraints with absolute value. In Markus Müller-Olm and Helmut Seidl,

11

https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1561/2500000002
https://doi.org/10.1561/2500000002
http://jmlr.org/papers/v21/19-468.html
https://doi.org/10.1145/3597495
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49

YU LIU LIU CHEN WANG ZHAN WANG

editors, Static Analysis, pages 101–117, Cham, 2014. Springer International Publishing. ISBN
978-3-319-10936-7.

Patrick Cousot. Abstract interpretation. ACM Computing Surveys (CSUR), 28(2):324–328, 1996.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252, 1977.

Andrew Cropper and Sebastijan Dumancic. Inductive logic programming at 30: A new introduction.
J. Artif. Intell. Res., 74:765–850, 2022. doi: 10.1613/JAIR.1.13507. URL https://doi.
org/10.1613/jair.1.13507.

Li Deng. The MNIST database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Process. Mag., 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.
URL https://doi.org/10.1109/MSP.2012.2211477.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: safety and robustness certification of neural networks with abstract in-
terpretation. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23
May 2018, San Francisco, California, USA, pages 3–18. IEEE Computer Society, 2018. doi:
10.1109/SP.2018.00058. URL https://doi.org/10.1109/SP.2018.00058.

Francesco Giannini, Giuseppe Marra, Michelangelo Diligenti, Marco Maggini, and Marco Gori.
On the relation between loss functions and t-norms. In Dimitar Kazakov and Can Erten, editors,
Inductive Logic Programming - 29th International Conference, ILP 2019, Plovdiv, Bulgaria,
September 3-5, 2019, Proceedings, volume 11770 of Lecture Notes in Computer Science, pages
36–45. Springer, 2019. doi: 10.1007/978-3-030-49210-6_4. URL https://doi.org/10.
1007/978-3-030-49210-6_4.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1412.6572.

Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes. In Radhia Cousot
and Matthieu Martel, editors, Static Analysis - 17th International Symposium, SAS 2010, Per-
pignan, France, September 14-16, 2010. Proceedings, volume 6337 of Lecture Notes in Com-
puter Science, pages 287–303. Springer, 2010. doi: 10.1007/978-3-642-15769-1_18. URL
https://doi.org/10.1007/978-3-642-15769-1_18.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kuncak,
editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in Computer
Science, pages 97–117. Springer, 2017. doi: 10.1007/978-3-319-63387-9_5. URL https:
//doi.org/10.1007/978-3-319-63387-9_5.

12

https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-030-49210-6_4
https://doi.org/10.1007/978-3-030-49210-6_4
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

LEARNING SUBJECT TO CONSTRAINTS

Hari Govind Vediramana Krishnan, Yuting Chen, Sharon Shoham, and Arie Gurfinkel. Global
guidance for local generalization in model checking. In Shuvendu K. Lahiri and Chao Wang,
editors, Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer
Science, pages 101–125. Springer, 2020. doi: 10.1007/978-3-030-53291-8_7. URL https:
//doi.org/10.1007/978-3-030-53291-8_7.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a back-
propagation network. In David S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30, 1989],
pages 396–404. Morgan Kaufmann, 1989. URL http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.

Zenan Li, Zehua Liu, Yuan Yao, Jingwei Xu, Taolue Chen, Xiaoxing Ma, and Jian Lü. Learning with
logical constraints but without shortcut satisfaction. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=M2unceRvqhh.

Antoine Miné. The octagon abstract domain. Higher-order and symbolic computation, 19:31–100,
2006.

Antoine Miné. Backward under-approximations in numeric abstract domains to automatically infer
sufficient program conditions. Sci. Comput. Program., 93:154–182, 2014. doi: 10.1016/j.scico.
2013.09.014. URL https://doi.org/10.1016/j.scico.2013.09.014.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2574–2582.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.282. URL https://doi.org/10.
1109/CVPR.2016.282.

Matan Peled, Bat-Chen Rothenberg, and Shachar Itzhaky. SMT sampling via model-guided approx-
imation. In Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker, editors, Formal Methods
- 25th International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings,
volume 14000 of Lecture Notes in Computer Science, pages 74–91. Springer, 2023. doi: 10.1007/
978-3-031-27481-7_6. URL https://doi.org/10.1007/978-3-031-27481-7_6.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic gate
networks. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.
html.

Sriram Sankaranarayanan, Michael A Colón, Henny Sipma, and Zohar Manna. Efficient strongly
relational polyhedral analysis. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 111–125. Springer, 2006.

13

https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1007/978-3-030-53291-8_7
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
https://openreview.net/pdf?id=M2unceRvqhh
https://doi.org/10.1016/j.scico.2013.09.014
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1007/978-3-031-27481-7_6
http://papers.nips.cc/paper_files/paper/2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.html

YU LIU LIU CHEN WANG ZHAN WANG

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic
operators. Artif. Intell., 302:103602, 2022. doi: 10.1016/J.ARTINT.2021.103602. URL https:
//doi.org/10.1016/j.artint.2021.103602.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico
Kolter. Beta-crown: Efficient bound propagation with per-neuron split constraints for
neural network robustness verification. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 29909–
29921, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
fac7fead96dafceaf80c1daffeae82a4-Abstract.html.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5283–
5292. PMLR, 2018. URL http://proceedings.mlr.press/v80/wong18a.html.

Banghu Yin, Liqian Chen, Jiangchao Liu, and Ji Wang. Hierarchical analysis of loops with relaxed
abstract transformers. IEEE Transactions on Reliability, 69(1):203–215, 2020. doi: 10.1109/TR.
2019.2925037.

Shiwen Yu, Zengyu Liu, Ting Wang, and Ji Wang. Neural solving uninterpreted predicates with
abstract gradient descent. ACM Trans. Softw. Eng. Methodol., 33(8), December 2024. ISSN
1049-331X. doi: 10.1145/3675394. URL https://doi.org/10.1145/3675394.

Yaoguang Zhai and Sicun Gao. Monte carlo tree descent for black-box optimization. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
5185aa776fd64ae3b4c6dae1af1066b1-Abstract-Conference.html.

Appendix

6.1. An example of Abstract Gradient Calculation on boxes

In this section, we take the rule of Add as an example to illustrate the inference process of primitive
functions. And the abstractions of a compositional function on boxes can be constructed from the
abstractions of its component primitive functions.

Definition 3 An abstraction rule Rf for a function y = f(x) is in a form of Cs(x)
Es(y)

, where Cs and
Es are logic predicates with s as the coefficients and x and y as the variables. Cs is called condition
and Es is called conclusion respectively. If Cs and Es are in the form of a box-set, we say Rf is a
rule on boxes domain.

14

https://doi.org/10.1016/j.artint.2021.103602
https://doi.org/10.1016/j.artint.2021.103602
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
http://proceedings.mlr.press/v80/wong18a.html
https://doi.org/10.1145/3675394
http://papers.nips.cc/paper_files/paper/2022/hash/5185aa776fd64ae3b4c6dae1af1066b1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5185aa776fd64ae3b4c6dae1af1066b1-Abstract-Conference.html

LEARNING SUBJECT TO CONSTRAINTS

The abstraction rules for all primitive functions in Table 1 are proposed by Yu et al. (2024).

Rule [Add]

(sl ≤ x1 ≤ su) ∧ (l − sl ≤ x2 ≤ u− su)

l ≤ Add(x1, x2) ≤ u
(11)

The variables other than x, such as sl, su, l, and u, are coefficients. It is easy to see this rule is
sound: ((sl ≤ x1 ≤ su) ∧ (l − sl ≤ x2 ≤ u − su)) ⇒ (l ≤ Add(x1, x2) ≤ u). This rule
is also complete: once there exist a pair of (x1, x2) such that l ≤ x1 + x2 ≤ u, the condition
(sl ≤ x1 ≤ su)∧ (l− sl ≤ x2 ≤ u− su) is satisfiable. Further, this rule is tight under the condition
(−∞ < l ≤ u < ∞) since no other box-set abstraction is more precise than (super set of lower/
subset of upper) the constructed ones.

Now, consider we have an image set Y = [3, 6], and we need calculate its lower approximated
preimage (denoted as

←−−
Add▼(Y)). The solving query is:

∃x ∈ R2. [3, 6] = [l, u] ∧ ((sl ≤ x[0] ≤ su) ∧ (l − sl ≤ x[1] ≤ u− su))

It is easy to see that the above query is a set of linear inequalities, which can be solved by linear
programming. One valid answer is l = 3, u = 6, sl = 2, su = 4, and hence

←−−
Add▼(Y) = [2, 4] ×

[1, 2].

6.1.1. ABSTRACTION PROPAGATION

The above example shows how to produce backward or forward abstractions for one primitive func-
tion. For an arbitrarily composed function f : Xn → Xm, we first decompose it into w layers of
functions: f = g(w) ◦ g(w−1) ◦ ... ◦ g(1), where g(j) : Xdj−1 → Xdj and d0 = n, dw = m. Each
layer function g(j)’s each projection function g

(j)
i is a primitive function in Table 1. We denote the

abstraction inference rule for a primitive function as R
g
(j)
i

:
C

g
(j)
i

E
g
(j)
i

, with the condition as C
g
(j)
i

and

conclusion as E
g
(j)
i

.

It is easy to see that we can construct a rule for the layer function g as: Rg(j) :

∧dj
i=1 Cg

(j)
i∧dj

i=1 Eg
(j)
i

.

Coefficients in different rules are independent.
Three things should be noted:

1. If each C
g
(j)
i

and E
g
(j)
i

are in the form of box-set, then the constructed Rg(j)’s condition and
conclusion are also in the form of box-set.

2. If the solving query of coefficients of each C
g
(j)
i

and E
g
(j)
i

during inference is a disjunctive
of linear inequalities, then the solving query of coefficients of Rg(j) during inference is also
a disjunctive of linear inequalities.

3. If eachR
g
(j)
i

is sound and complete, thenRg(j) constructed above is also sound and complete.

The propagation process is similar to back-propagation of gradient: calculate the outmost layer
function and then propagate to the inner layers. We refer readers to Yu et al. (2024) for more
detailed introduction.

15

YU LIU LIU CHEN WANG ZHAN WANG

6.2. Detail of Experiments

6.2.1. TASK AND DATASET

The MNIST dataset contains 60,000 instances of hand-written digits for training and 10,000 in-
stances for testing. In the experiment, we will build a soft constraint learning target function only
on the 60,000 instances in the training set. The rest 10,000 instances will be unseen to the learned
model, and are used to test the model’s performance.

Each instance can be regarded as an input-output pairs: ⟨x, y⟩, where x ∈ R784 and y ∈
{0, 1, ..., 9}. This task is challenging to traditional formal methods in two aspects: First, the vari-
able space is a very high-dimensional space, where most solving techniques such as SMT methods
(DPLL-T Barrett et al. (2021) and CDCL-T Krishnan et al. (2020)), are exponential to the number
of dimensions. In addition, although the high dimensional space seems not a problem for gradient-
descent-based deep learning methods, it will bring great trouble for verification of certain properties
for a learned deep learning model, where the computing cost is also exponential (e.g., Branch-and-
Bound methods Bunel et al. (2020)). Second, the digits recognition task needs complex nonlinear
operations to tackle, which not only bring complexity but also further increase the computing cost.

6.2.2. CONSTRAINTS

Although the existing deep learning models for the MNIST dataset have already reached a predi-
cation accuracy as 99.9%, there are still many bottlenecks keeping the current methods from safe-
critical applications. For example, one can still easily find min-max counterexample to misleading
the prediction of deep learning models that have a perfect accuracy on the test set Goodfellow et al.
(2015); Carlini and Wagner (2017); Moosavi-Dezfooli et al. (2016).

We present SNN to provide the guarantee of properties, including but not limited to robust-
ness, zooming, translation, rotation, fading, frame annotation, contrast of pixel, thresholding, and
symmetry. We illustrate the properties in Table 3.

Zoom(x, 0.5)[i][j] = (
t=1∑
t=0

k=1∑
k=o

x[i ∗ 2 + t][j ∗ 2 + k])/4

Shift(x, a, b)[i][j] =

{
x[i− a][j − b] (i− a ≥ 0 ∧ j − b ≥ 0)

0 else

Rotate(x, θ)[i][j] = x[[cos(−θ) ∗ i+ sin(−θ) ∗ j], [cos(−θ) ∗ j − sin(−θ) ∗ i]]

Frame(x)[i][j] =

{
x[i][j] (4 ≤ i ≤ 22 ∧ 4 ≤ j ≤ 22)

100 else

Threshold(x)[i][j] =

{
255 x[i][j] ≥ 128

0 else

Flip(x)[i][j] = x[27− i][j]

(12)

6.2.3. EXPERIMENT SETTINGS

To evaluate the performance of our method, we designed a series of experiments, assessing the ac-
curacy, the training time cost, the property satisfiability for single or combinations of constraints,

16

LEARNING SUBJECT TO CONSTRAINTS

Name Hard Constraint Example

Fading ∀x. F (x, p) = F (x/2, p)

Zooming ∀x. F (x, p) = F (Zoom(x, 0.5), p)

Translation ∀x. F (x, p) = F (Shift(x, 5, 5), p)

Rotation ∀x. F (x, p) = F (Rotate(x, 15◦), p)

Frame Annotation ∀x. F (x, p) = F (Frame(x), p)

Contrast of Pixel ∀x. F (x, p) = F (255− x, p)

Thresholding ∀x. F (x, p) = F (Threshold(x), p)

Symmetry
∀x. F (x, p) ∈ {0, 1, 8}
↔ (F (x, p) = F (Flip(x), p))

180◦ Rotation
∀x. F (x, p) = 6

↔ F (Rotate(x, 180◦), p) = 9

Norm Robust ∀x. ||x− x0||∞ < 30→ F (x) = F (x0)

Table 3: Properties as Hard Constraints of the Symbolic NN model. The implementation of the
functions Zoom, Shift, Rotate, Frame, Threshold, and Flip can be checked in Equa-
tion (12). || · ||∞ is the infinite norm.

17

YU LIU LIU CHEN WANG ZHAN WANG

and the ability of anti-attacking. Our method is compared with the SOTA works Wong and Kolter
(2018); Li et al. (2023), named Logic Constraint Learning Li et al. (2023) (LogicCL) and Robust
LearningWong and Kolter (2018) (RobustL), and a data augmented deep learning (Data+L) as the
baseline. RobustL is only applicable to the Norm Robust property, and the other two methods are ap-
plicable to all properties. They all use LeNet5 LeCun et al. (1989) as the learning model, containing
7 layers with 59,654 learnable parameters including: 2 convolution layers, 2 max-pooling layers, 2
fully connected layers, and 1 soft-max output layer. As a comparison, the inner construction of the
symbolic neural network F for this task, depicted in Figure 3, contains only 8,542 parameters.

To compare with the data augmented learning, we apply the hard constraint as a data aug-
mentation method to the training set. Each instance produces one augmented instance if the hard
constraint is applicable. The performance of model will be tested on two test sets. The first is the
original 10,000 instances in the test sets. The second is an attack set produced by using the hard
constraint as an augmentation on the correctly predicted instances in the original test set.

The rules used in both forward and backward can all be vectorized and implemented on GPU
(we implement the vector computation by the ArrayFire C++ library2). Hence, we can support
batch. The batch size on constructing the soft constraint is set as 4096. The upper abstract gradi-
ent ←−p ▲ is propagated through batches, while the lower abstract gradient ←−p ▼ is dropped between
batches. We only train SNN on one epoch as more epochs brings no improvement to the abstract
gradient descent. We set an epoch of 100 and a batch size of 512 for the traditional gradient-descent
methods.

Also, in the SNN learning, if we failed to pass the min-max optimization on x for the hard
constraint for 50 interactions, we will drop the hard constraint and run soft constraint optimization
only to get a trained model.

The computing environment of the experiments is: CPU i9-13900KF, GPU RTX-4090, and
Memory 256G. All experiments are carried 5 times, and we average the results.

2. https://arrayfire.com/

18

https://arrayfire.com/

	Introduction
	Related Work
	Preliminaries
	Notations
	Abstract Gradient Descent
	The Abstract Domain of Boxes

	Our Method
	Primitive Functions
	Architecture Design of SNN for MNIST
	Min-max Optimization

	Evaluation
	Conclusion
	An example of Abstract Gradient Calculation on boxes
	Abstraction Propagation

	Detail of Experiments
	Task and Dataset
	Constraints
	Experiment Settings

