
Proceedings of Machine Learning Research vol 288:1–29, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Differentiable Synthesis of Behavior Tree Architectures and
Execution Nodes

Yu Huang1 HUANGYU@NUDT.EDU.CN

Ziji Wu1 WUZIJI@NUDT.EDU.CN

Kexin Ma2 MAKEXIN@NUDT.EDU.CN

Ji Wang1, * WJ@NUDT.EDU.CN

1 State Key Laboratory of Complex & Critical Software Environment, National University of Defense Tech-
nology, Changsha, China
2 Institute for Quantum Information & State Key Laboratory of High Performance Computing, National
University of Defense Technology, Changsha, China

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Deep reinforcement learning (DRL) has achieved remarkable success in solving complex control
tasks. However, neural network policies often lack interpretability and struggle to generalize to
new scenarios without further training. Behavior trees (BTs) offer a more interpretable policy
representation, making them a promising alternative. Yet, the automatic synthesis of BTs remains
a challenge due to the discrete search space and the need to adapt to diverse scenarios. Prior works
often come at the cost of fixed or constrained architectures, or rely on customized execution nodes.
We propose an end-to-end synthesis framework that simultaneously generates the architectures and
execution nodes of BTs solely from environment rewards. We first conduct architecture search
on top of a continuous relaxation of the architecture search space derived from a given grammar.
To tackle the discrete execution mechanism and non-differentiable semantics of BTs, we redefine
the execution mechanism and interpret the semantics in terms of a differentiable approximation.
We also propose an efficient extraction algorithm that leverages the fallback structure of BTs to
instantiate a valid BT architecture. This algorithm recovers the performance damaged by the co-
adaptation and continuous approximation. Experiment results show the superior performance and
generalization of our synthesized BTs, demonstrating the efficacy of proposed framework.
Keywords: Differentiable Synthesis, Behavior Trees, Explainable Reinforcement Learning, Neu-
rosymbolic Programming

1. Introduction

Deep reinforcement learning has achieved tremendous success in a variety of domains, such as
games Silver et al. (2016) and robotic control Ibarz et al. (2021). However, neural network policies
often struggle with poor interpretability and generalization. To address these issues, recent research
has explored the synthesis of symbolic policies, which express task-solving logic in a more transpar-
ent form. One such symbolic policy, Behavior Tree, has been widely praised for its interpretability,
compositionality, and generalization abilities Colledanchise and Ögren (2017). Despite its potential,
the automatic synthesis of BTs still faces significant challenges. It requires not only a reasonable
BT architecture but also diverse agent capabilities that are represented as execution nodes within

* Corresponding Author.

© 2025 Y. Huang, Z. Wu, K. Ma & J. Wang.

HUANG WU MA WANG

the BTs. Hence, two major challenges persist: the first lies in the discrete and rapidly growing ar-
chitecture search space, and the second involves customizing agent capabilities, which necessitates
considerable human expertise. Current BT synthesis methods encounter limitations in architectural
flexibility. To manage the extensive search space, previous approaches typically focus on optimiz-
ing execution parameters within fixed architectures Mayr et al. (2021) or rely on narrow structural
templates for incremental construction French et al. (2019). Although these constrained architec-
tures enhance search efficiency, they significantly limit policy expressiveness and are often tailored
to specific tasks. Recent efforts attempt to address these limitations through two paradigms: (1)
Formal grammar-based methods Scheide et al. (2021), which introduce formal grammars of BTs
and search over them using the variants of Monte-Carlo searching algorithm, and (2) Automated
planning techniques Colledanchise et al. (2019), that build BTs using back-chaining mechanisms.
However, both paradigms rely on predefined action/condition libraries, which require extensive ex-
pert knowledge to construct. Moreover, this reliance damages the learning ability, preventing BTs
from proactively learning primitive behaviors during environment interactions.

We propose a novel end-to-end synthesis framework that jointly learns the architecture and
execution nodes of BTs while maximizing the expected task reward. Unlike prior methods, our
framework defines both the production rules for BT architectures and the domain-specific languages
(DSLs) for execution nodes. The introduction of DSLs enables the learning of execution nodes that
are typically predefined by experts and allows for adaptation through environment interactions. For
instance, in a Pendulum environment, different controllers like PID or linear controllers may be
needed for swinging the pendulum up and keeping it upright. Our framework automatically learns
suitable controller types and their parameters, overcoming limitations in existing approaches. In-
spired by recent advances in differentiable architecture search Liu et al. (2019); Qiu and Zhu (2022),
we conduct the architecture search process on top of a continuous relaxation of the discrete search
spaces. It converts the selection problem of production rules into a continuous weight optimization
problem, facilitating the use of gradient-based methods. After training the architecture weights,
we extract a discrete BT architecture and further fine-tune the parameters of execution nodes using
standard reinforcement learning algorithms. However, BTs’ synthesis presents unique challenges.
First, BTs have various control structures with different semantics, which are more complex than
the if-then-else structure in Qiu and Zhu (2022). The richer search space makes it more difficult to
instantiate a discrete architecture from the trained weights. Second, the discrete execution mecha-
nism inherent in BTs and the non-differentiable semantics of control nodes are incompatible with
gradient-based architecture search. To address these challenges, we redefine the execution mecha-
nism of BTs to include continuous outputs and interpret the non-differentiable semantics of control
nodes using continuous approximation. The improved differentiable BTs preserve the consistent
interface throughout the entire BT and their modularity. Moreover, we find that the continuous
approximation and co-adaptation phenomenon discovered in Cui and Zhu (2021) hinder valid ar-
chitecture extraction by greedily selecting the most likely architecture. Consequently, we present
an effective BT extraction algorithm that leverages the fallback of BTs.

To the best of our knowledge, this framework is the first end-to-end solution capable of simulta-
neously generating BT architectures and execution nodes while maximizing task performance. We
evaluated it across various control scenarios, ranging from classic control environments with both
discrete and continuous action spaces to more complex tasks in MuJoCo. The results demonstrate
that our framework excels in synthesizing BTs with superior performance and generalization.

2

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

2. Preliminaries

2.1. Behavior Tree

A Behavior Tree is a rooted directed tree structure composed of execution nodes which interact
directly with the environment, and control nodes which govern the triggering logic of their child
nodes. During execution, the BT propagates tick signals in depth-first order based on the environ-
ment states and the rules of different node types. A node executes upon receiving a tick signal and
subsequently transmits its return status to its parent (if any). This paper focuses specifically on
the four BT nodes: Condition: An execution node that checks the proposition related to current
states and returns success if it satisfies; otherwise, it returns failure. Action: An execution node that
performs a specified behavior and returns success, failure, or running depending on the execution
results. Sequence: A control node that ticks its children from left to right. It returns failure or
running immediately when a child returns either failure or running. Otherwise, it returns success.
Fallback: A control node that ticks its children from left to right. It returns success or running
immediately when a child returns either success or running. Otherwise, it returns failure. More
details about BTs and their execution can be found in Appendix A.
Behavior Tree Construction Grammar. We design an extensible grammar for constructing BTs.
As illustrated in Fig. 1 (left), the symbol→ and ? denote Sequence and Fallback respectively, while
Act, Cond represents Action and Condition. The hyperparameter n denotes the maximum number
of nonterminals allowed in a control node. For n ≥ 2, the BT construction grammar parameterized
by n affects only topology while preserving expressivity. We fix n = 2 hereafter. In this grammar,
we do not utilize black-box execution nodes but employ different DSLs to unlock encapsulated
execution nodes. It allows users to scale this grammar appropriately according to various task
requirements. For example, in certain tasks, a simple linear function can be sufficient to evaluate
possible conditional judgments or actions. The construction grammar for the instantiated BT is
depicted in Fig. 1 (right). We further describe BT as a pair (g, θ), where g represents the discrete
architecture and θ is a matrix of real-valued parameters associated with the execution nodes.

BT := (→ Cond BT1 . . . BTn)

| (? Cond BT1 . . . BTn) | Act

BT := (→ Cond BT1 . . . BTn)

| (? Cond BT1 . . . BTn) | Act

+ Cond := θc1 + θc2 ∗ x ≥ 0

+ Act := θa1 + θa2 ∗ x

Figure 1: General BT’s construction grammar (left) and Instantiated version (right).

Discussion of Sequence Nodes. A Sequence node is used for actions that should be carried out in
order. However, it poses a great synthesis challenge in RL control tasks. Executing multiple actions
in a single tick may cause temporal inconsistencies, as subsequent action in Sequence nodes depends
on environmental changes from preceding actions, potentially creating variable-length environment
steps. On the other hand, the sequential execution of actions can also be achieved by synchronizing
the duration of environment steps with tick duration. Therefore, this work primarily focuses on
Sequence nodes that have only two child nodes (n = 1).

2.2. Differentiable Architecture Synthesis

Architecture search is challenging due to the discrete and combinatorial search space. Differen-
tiable ARchiTecture Search (DARTs) Liu et al. (2019) proposed a differentiable search framework

3

HUANG WU MA WANG

for neural architecture search problems. It transforms the operation selection problem for a fixed
set of neural network blocks into weight optimization. Recent work Qiu and Zhu (2022); Cui and
Zhu (2021) applies this method to program synthesis. Given a grammar, those methods perform
an architecture search to this grammar over a program derivation graph where nodes contain partial
or complete program architectures, as depicted in Fig. 2. Edges encode extending choices between
different architectures and are relaxed to trainable weights ω. Then, efficient gradient-descent meth-
ods are utilized to learn the probability distribution over all potential program architectures within
the derivation graph. Upon convergence, a discrete program architecture is extracted top-down by
replacing each node with the architecture that has the highest probability.

0

1 …

3 …2 …

…

0.3 0.2 0.1… 𝜔
𝜔

𝒆𝒙𝒕𝒓𝒂𝒄𝒕

Figure 2: An example derivation graph with weights ω. Based on ω, a discrete program is extracted.

2.3. Problem Formulation

Formally, a RL system can be formulated as a Markov Decision Process (MDP) defined by a tuple
M[π] = (S, A, P , r, S0, π), where S is the environment state space, A represents the action space,
S0 is a set of initial states, P : S × A × S → [0, 1] denotes the transition probabilities, and
r : S × A → R captures the task rewards. π is a certain policy, which takes states as input and
outputs actions. At time step t, the agent in state st performs actions selected by policy π, then
receives a reward rt from the environment and transitions to a new state st+1. A MDP system
parameterized with a policy π can generate trajectories ζπ = s0, a0, . . . , at−1, st, The long-
term reward of π is R(π) = E(ζπ=s0,a0,...,at−1,st,...)∼M [π]

∑∞
t=0 γ

tr(st, at), where a discount factor
γ ∈ [0, 1] is hired to avoid infinite total rewards. This paper develops a new RL framework using
BTs as policy representations. We aim to synthesize a BT policy πBT that satisfies the grammar
and maximizes the long-term discount reward R(πBT), by simultaneously learning the architecture
g and parameters θ. Since the input space of Condition nodes or Action nodes can be different from
that of the whole environment state, we assume X is the set of input variables where R|X | ⊂ S.

3. Differentiable Synthesis of Behavior Trees

3.1. Relaxing Architectures Search Space

Formally, behavior tree architecture synthesis constrained by a grammar is performed over a deriva-
tion graph G = {V,E} where a node v ∈ V contains a set of partial architectures with nonterminals
or complete behavior tree architectures permissible by grammar. An edge (v, v′) ∈ E connects two
nodes v and v′ if architectures in v′ can be obtained by expanding a nonterminal within partial ar-
chitectures in v following some production rules. We formulate the architecture derivation graph in
a top-down manner and Fig. 3 depicts a derivation graph for the grammar in Fig. 1.
G essentially expresses all possible BTs up to a certain depth bound d. In the derivation graph,

BT k
i,j represents the k-th nonterminal on j-th partial architecture in node i (start counting at 0). We

assign a trainable weight ω to each edge and relax the choice of all possible production rules into a
softmax. For example, on root node 0, we have four choices to expand the initial nonterminal BT.

4

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

0 𝐵𝑇0,0
0

1 𝐴1 → 𝐶1,0𝐵𝑇1,0
0 ? 𝐶1,1𝐵𝑇1,1

0 ? 𝐶1,3𝐵𝑇1,3
0 𝐵𝑇1,3

1

𝐴 0.04

→ 𝐶𝐵𝑇1 0.01

…… ……

? 𝐶 𝐵𝑇1 𝐵𝑇2 0.85

𝐴 0.08

→ 𝐶𝐵𝑇1 0.63

…… ……

? 𝐶 𝐵𝑇1 𝐵𝑇2 0.11

…

𝜔1,0
0

𝜔0,0
0

2 … ? 𝐶2,3𝐵𝑇2,3
0 𝐵𝑇2,3

1𝐴2 43 …→ 𝐶3,0𝐵𝑇3,0
0𝐴3 …

𝜔0,0
0

𝜔1,0
0

Figure 3: Derivation graph of grammar. It omits the derivation of execution nodes for clarity.

Thus, node 1 contains four partial architectures, and a weight ω0
0,0 is assigned to the edge (v0, v1).

To learn architecture weights, a derivation graph itself is encoded as a differentiable function Fω,θ,
where ω represents architecture weights and θ includes unknown parameters of all behavior trees in
the graph. Fω,θ takes the environment state as input and outputs actions. The semantic computation
of BT k

i,j in node vi is defined as a softmax over possible grammar production rules for BT k
i,j :

∥BTk
i,j∥(s) =

∑
g∈N (v′)

exp(ωe[BTk
i,j , g])∑

g′∈N (v′) exp(ωe[BTk
i,j , g

′])
· ∥g∥(s) (1)

where v′ is the child node directly connected to node vi, and e=(vi, v′). N (v′) represents the set of
architectures in node v′. The output of Fω,θ is delegated to BT 0

0,0 which is the weighted sum by the
outputs of all behavior trees contained in the derivation graph.
Complexity. Let d be the depth of a derivation graph, m be the maximum number of production
rules, and n be the maximum number of nonterminals in any rules. The computation complexity of
Fω,θ is O((m ·n)d). In practice, we employ many strategies to reduce the complexity and run-time,
like Node Sharing Cui and Zhu (2021). We leave the details in Appendix D.1.

We formulate the training process as a bi-level optimization problem and jointly optimize (ω, θ)
with a differentiable object function J defined on the derivation graph’s output. The optimization
proceeds as an iterative two-phase procedure: on the architecture optimization step, we freeze the
execution parameters θ and optimize architecture parameters ω with respect to (2); on the execution
parameters optimization step, we freeze ω and train θ with respect to (3).

ωi+1 ← ωi + α · ∇ωJθi,ωi
(2)

θi+1 ← θi + α · ∇θJθi,ωi
(3)

Those two steps are alternated across training iterations until convergence. The object function
J has different forms depending on the learning methods. Take proximal policy optimization (PPO)
Schulman et al. (2017) as an example, object function J and learning target are:

maximizeθ,ω Jθold,ωold(θ, ω) = Es∼ρFθold,ωold
,a∼Fθold,ωold

[
Fθ,ω(s, a)

Fθold,ωold(s, a)
AFθold,ωold

(s, a)

]
(4)

where ρFθold,ωold
is the discounted state visitation frequency of Fθold,ωold , AFθold,ωold

(s, a) is an advan-
tage estimator over a batch of samples from Fθold,ωold , and θold, ωold are execution node parameters
and architecture weights before the update.

3.2. Differentiable BTs

Originally, concrete actions are performed exclusively in Action nodes and BTs only return one of
the status signals among failure, running, and success. While this execution mechanism facilitates
task switching, its discrete returns are incompatible with gradient-based methods for differentiable

5

HUANG WU MA WANG

architecture searches. To avoid discontinuities, we redefine the output of BTs which returns not just
discrete status but also the real-valued actions performed in the environment, as shown in Fig. 4(a).

In this paper, we stipulate that an Action node returns success and its real-valued actions to the
parent once it is executed. To prevent non-uniform interfaces inside the BT hierarchy, we redefine
the outputs of all types of control nodes to ensure a consistent interface across the entire BT. A
control node receives real-valued actions from its children and similarly passes them to its parent
after computation. We define a real-valued function ∥ · ∥(s) as the semantics of each grammatical
construct, for example, ∥Ai∥(s) = ai[s] reads the result of action Ai in state s, where ai is the
action function, and ∥BT∥(s) represents the output of the entire BT in state s.

tick

Failure SuccessRunning Failure Success
Real-value

actions

tick

(a) Execution machnisms

𝐶 𝑩𝑻𝟏 𝑩𝑻𝒏…𝐶

?

𝑩𝑻𝟏 𝑩𝑻𝒏…

(a) The semantics of 𝑭𝒂𝒍𝒍𝒃𝒂𝒄𝒌 nodes. (b) The semantics of 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 nodes.

(b) Fallback Semantic

𝐶 𝑩𝑻𝟏 𝑩𝑻𝒏…𝐶

?

𝑩𝑻𝟏 𝑩𝑻𝒏…

(a) The semantics of 𝑭𝒂𝒍𝒍𝒃𝒂𝒄𝒌 nodes. (b) The semantics of 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 nodes.

(c) Sequence Semantic
Figure 4: (a) In addition to returning one of the status signals, the BT also returns real-valued actions
in our framework. (b) Semantics of Fallback nodes. (c) Semantics of Sequence nodes.

As illustrated in Fig. 4(b) and Fig. 4(c), a child node can be executed only if its former sibling
node failed in Fallback nodes or succeeded in Sequence nodes. The discrete nature of control node
semantics also creates discontinuous gradients. To overcome this problem, we perform a continuous
approximation of control nodes’ semantics by iteratively employing the sigmoid function:

∥ → C BT1∥ = σ(C) · ∥BT1∥ (5)

∥?C BT1...BTn∥ = (1− σ(C))[∥BT1∥+
n∑

i=2

i−1∏
j=1

(1− σ(Cj))∥BTi∥] (6)

where σ is sigmoid function, Cj is the top-leftmost condition node of BTj , σ(·) and 1 − σ(·)
approximate the continuous representation of Sequence and Fallback control logic, respectively. A
nonterminal BT may be extended to Act, which is not guarded by a condition. Since an action
node returns success once it is executed, we set σ(·) = 1. Note that we assume the action space is
additive, as in the Ant environment where moving down and left are two additive actions. Otherwise,
the aforementioned formulas represent only a relatively reasonable approximation.

3.3. Extraction Algorithm

Once we have learned the derivation graph, we can obtain a discrete BT architecture based on
ω. A conceivable way would be greedily replacing each node with the most likely architecture.
However, the performance ranked by weights in the derivation graph may be inaccurate. As shown
in Fig. 3, a node contains several partial architectures, which may be co-adapted during training via
node sharing Cui and Zhu (2021). Additionally, continuous approximation of the control nodes’
semantics also brings trouble in extracting discrete architectures. Considering a BT with Sequence
as root, when its conditional judgment is False, which causes σ(C) = 0, the whole output of the BT
will be 0 too. This anomaly arises not from BT computation, but from the continuous approximation
of control node semantics, which introduces misleading signals that degrade learning.

We introduce an extraction algorithm by utilizing Fallback nodes to address those potential
issues. The algorithm traverses the derivation graph in a breadth-first manner, maintaining a queue

6

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

that contains the nodes to be processed. In each iteration, it dequeues one node and identifies
the following processed candidates by comparing the probabilities. The insight is that when the
probabilities of multiple architectures are particularly close, they may be co-adaptive. We then add
a special Fallback without condition node to preserve all these architectures in ascending order of
probability. If one dominates the choice, we directly replace the current node with this architecture.
To overcome the disadvantage of continuous approximation, we add a Fallback as a new root and
an Action node to capture unexpected actions. The extraction procedure is depicted in Fig. 5.
Finally, we fine-tune all execution nodes’ parameters within the extracted BT using standard RL
algorithms, leveraging the parameter values previously learned during the architecture search step.
The pseudocode is depicted in Algorithm 1 in the appendix.

0

1

0.48 0.49

𝜔

𝜔

Proposed Method[2]
Co-Adaptation and Extraction Algorithm

……

…………

……
……

i

?

𝑨𝒄𝒕

Extract Add new root

…… ?

……

?

……

Figure 5: Extraction with identifying co-adaptation and adding new root node.

4. Experiments And Evaluations

Our experiments are designed to answer three research questions: RQ1 Is our proposed behavior
tree differentiable synthesis framework more effective than the state-of-the-art methods? RQ2 Can
the baselines and BTs synthesized by our framework generalize to novel scenarios without further
learning? RQ3 How significant is the use of extraction algorithm before the fine-tune process?

4.1. Experimental Setup

Evaluation Task. We evaluated our method on both discrete and continuous control benchmarks.
All those benchmarks are collected from Gym1, MiniGrid2, and Mujoco3. We choose five tasks
from Gym: Acrobot, Cart Pole, Mountain Car (discrete and continuous), and Pendulum. We choose
two classes of MiniGrid tasks: Empty and Crossing. We also selected four tasks from a more com-
plex benchmark Mujoco: Half Cheetah, Ant-Random, Ant-Maze, and Pusher. The correspondence
between benchmarks and research questions is shown in Table 1. Details about tasks can refer to
Appendix C.

Table 1: Correspondence between benchmarks and research questions

Target/Task
Gym MiniGrid Mujoco

Acrobot Cart Pole Mountain Car Pendulum Empty Crossing Half Cheetah Ant Pusher

Effectiveness
Generalization
Ablation

Evaluation Metrics. We compare the average final scores over 10,000 runs for the Gym. For
MiniGrid tasks, we record the mean rewards and success rates over 1000 random seeds. In Mujoco
tasks, we compare the agent’s final distance from the target position.

1. https://gymnasium.farama.org/
2. https://minigrid.farama.org/environments/minigrid/
3. https://robotics.farama.org/envs/MaMuJoCo/#

7

HUANG WU MA WANG

Main Baselines. We select six baselines involving BT synthesis frameworks IRLBT Zhao et al.
(2023) and RL frameworks including DDQN, DDPG, SAC, TRPO, and PPO. Table 6 lists their
applicable action spaces. We use the original settings and do not consider variants. IRLBT defines
two basic units Execution Units (EUs) and Behavior Units (BUs), and the sizes of generated BTs
are determined by the total number of EUs and BUs. We chose different sizes for comparison. The
implementation details and hyperparameters are shown in Appendix D and F.

4.2. Main Results

4.2.1. RQ1: EVALUATION OF EFFECTIVENESS.

We evaluate our method across discrete/continuous environments. See Appendix H for learned BTs.
Discrete Action Space. These tasks include Acrobot, Mountain Car, and Cart Pole. Our baselines
include IRLBT, DDQN, and PPO. We chose sizes 4, 16, and 32 in IRLBT for comparison, respec-
tively. Table 2 presents the mean and standard deviation of final scores. Our framework successfully
solves all tasks and outperforms or matches the performance of RL methods. Compared to IRLBT,
our framework excels in all benchmarks, while IRLBT cannot even solve some tasks (represented
by /). In the Cart Pole task, IRLBT could hardly balance the pole (less than 10 steps) of any size.
This is probably because IRLBT myopically chooses one variable at each step and cannot backtrack.
In contrast, our approach constantly adjusts the probabilities of all possible BTs.

Table 2: Performance comparison with discrete action space.

Task
Method

IRLBT-4 IRLBT-16 IRLBT-32 DDQN PPO OURS

Acrobot -311.60±52.36 -263.44±31.73 -182.15±26.55 -92.94±31.00 -89.75±23.81 -84.30±22.67
Mountain Car / -189.65±36.48 -175.07±22.04 -150.90±11.96 -167.09±20.27 -145.22±4.42

Cart Pole 9.52±0.97 9.45±0.94 9.59±1.07 500.00±0.00 500.00±0.00 449.70±66.55

Continuous Action Space. We also evaluate our method with continuous tasks: Mountain Car,
Pendulum, Half Cheetah, Ant (Random and Maze), and Pusher. The baselines include DDPG,
SAC, TRPO, and PPO. Fig. 6 depicts the learning curves for the rewards or final distance. Results
are averaged over three random seeds. In Mujoco tasks, TRPO and PPO both failed to reach the
target, but our framework can successfully solve those tasks. The high interpretability of BTs is
not sacrificed at the expense of performance. In the Ant task, a TRPO policy with a three-layer
feed-forward network has approximately 100,000 parameters, which is 2438 times our learned BTs.
BTs’ rich control structures implicitly compress the exploration space and provide an advantage of
low-dimensional parameters.

4.2.2. RQ2: EVALUATION OF GENERALIZATION.

An evaluation of the generalization is conducted across two critical dimensions: scalability to larger
sizes and adaptability to more complex environmental configurations. Specifically, for the Empty
task, we first train a policy from scratch on a 5×5 grid (in the green box), then directly evaluate this
policy on larger 6×6, 8×8, 16×16 and even 100×100 grids. In the Crossing task, we train on the
N9S1 scenario (in the green box) and then test on four distinct scenarios: N9S2, N9S3, N11S5 and
N21S9, where N denotes the size of the world and S represents the number of horizontal or vertical
walls that traverse the grid world. We are also interested in whether the policies can generalize to
unseen configurations. We evaluate the policy on Lava Crossing which is a variant of Crossing
with lava streams that end the episode with a zero reward if the agent touches them. Those tasks

8

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

0 10000 20000 30000 40000 50000
steps

−150

−100

−50

0

50

100

R
ew

ar
ds

MountainCar Continuous

0 20000 40000 60000 80000
steps

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

R
ew
ar
ds

Pendulum

0.0 0.5 1.0 1.5 2.0 2.5
steps 1e6

2

4

6

8

10

D
is

ta
nc

e

Half Cheetah Hurdle

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e7

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
is
ta
nc
e

Ant_Random

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
steps 1e7

1

2

3

4

5

6

7

8

D
is
ta
nc
e

Ant_Maze

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is
ta
nc
e

Pusher

Ours DDPG SAC TRPO PPO

Figure 6: Comparison with baselines for tasks with continuous action space. The x-axis denotes the
number of environment interaction steps and the y-axis records the rewards or final distance.

are known to be challenging due to their sparse reward and partial observability. We modify raw
input with abstract states deriving from abstract state predicate evaluations (Appendix D.3). PPO
and PPO-abs which also take abstract states as inputs are considered as two important baselines.

Table 3: Performance and success rate (in parentheses) comparison for generalization.

Methods
Task

Ours PPO PPO-abs

5 × 5 0.94 ± 0.03 (1.000) 0.81 ± 0.18 (0.992) 0.75 ± 0.23 (0.974)
6 × 6 0.95 ± 0.03 (1.000) 0.68 ± 0.30 (0.911) 0.71 ± 0.26 (0.953)
8 × 8 0.94 ± 0.03 (1.000) 0.42 ± 0.31 (0.750) 0.56 ± 0.26 (0.895)
16 × 16 0.96 ± 0.02 (1.000) 0.23 ± 0.29 (0.468) 0.66 ± 0.18 (0.975)

Empty

100 × 100 0.99 ± 0.01 (1.000) 0.16 ± 0.28 (0.310) 0.97 ± 0.01 (1.000)

N9S1 0.85 ± 0.11 (0.916) 0.39 ± 0.34 (0.631) 0.40 ± 0.36 (0.597)
N9S2 0.74 ± 0.23 (0.870) 0.26 ± 0.32 (0.467) 0.36 ± 0.36 (0.559)
N9S3 0.76 ± 0.26 (0.907) 0.25 ± 0.31 (0.453) 0.39 ± 0.35 (0.618)
N11S5 0.74 ± 0.34 (0.841) 0.14 ± 0.24 (0.313) 0.46 ± 0.34 (0.727)

Crossing

N21S9 0.46 ± 0.47 (0.479) 0.03 ± 0.10 (0.078) 0.12 ± 0.22 (0.317)

N9S1 0.68 ± 0.31 (0.757) 0.02 ± 0.12 (0.022) 0.11 ± 0.29 (0.139)
N9S2 0.63 ± 0.40 (0.702) 0.00 ± 0.04 (0.002) 0.04 ± 0.17 (0.045)
N9S3 0.68 ± 0.39 (0.743) 0.00 ± 0.06 (0.005) 0.03 ± 0.15 (0.038)

Lava Crossing

N11S5 0.69 ± 0.39 (0.748) 0.00 ± 0.00 (0.000) 0.01 ± 0.09 (0.011)

The result is shown in Table 3. All baselines perform significantly worse than before on both
tasks. In contrast, the BTs synthesized by our framework achieve zero-shot generalization to larger
task instances. Especially on the Lava Crossing task, our method outperforms baselines by a large
margin. This indicates that our synthesized BTs have learned how to avoid obstacles (no matter
whether walls or lava streams) and perform target navigation.

We also test the generalization of our learned BTs in continuous-space tasks (Appendix G). We
reshaped the maze’s size in the Ant Maze task and changed the number and height of hurdles in
the Half Cheetah Hurdle task. The results of Ant Maze show that as the size becomes larger, the
generalization of BTs deteriorates with an effective generalization limit of roughly 150% relative to
the original maze size. For Half Cheetah Hurdle, the learned BT adapts well across scenarios with
varying hurdle numbers and can handle scenarios up to 7.5× of the original height.

9

HUANG WU MA WANG

4.2.3. RQ3: ABLATION EVALUATION FOR EXTRACTION ALGORITHM.

We conduct an ablation study to evaluate the necessity of the extraction algorithm. The baseline
(denoted by Greedy) directly extracts a BT architecture by replacing each node with the most likely
architecture. Table 4 summarizes the mean and standard deviation of rewards (or final distances)
and the number of environment steps (in ten thousand) until convergence for various algorithms.
Our extraction algorithm outperforms the greedy extraction method in those tasks. Considering
the impact of co-adaptation and continuous approximation, we take advantage of Fallback nodes
to preserve potential architectures. Particularly in Pendulum, the greedy method gets much worse
because it is trapped in training a single PID controller, which makes it impossible to solve this task.

Table 4: Performance and convergence comparison for different extraction methods

Method
MountainCar-Continuous Pendulum Ant Random Ant Cross

Rewards Steps Rewards Steps Distance Steps Distance Steps

Ours 92.26 ± 1.05 2.3 -272.60 ± 161.81 5.7 0.87 ± 1.03 214.4 1.49 ± 1.73 149.2
Greedy 83.89 ± 3.23 7.6 -1020.70 ± 171.34 10.9 1.83 ± 1.02 655.0 4.17 ± 1.27 500.0

5. Related Work and Conclusion

Policy representation is crucial in RL systems, usually categorized into neural network and symbolic
types. Neural network policies suffer from poor interpretability and generalization, while symbolic
policies are constructed through predefined rules or logical structures Alur et al. (2013), which are
more interpretable and verifiable. It traditionally depends on expert-designed control algorithms
Thomason et al. (2024) without incorporating learning techniques. Neural symbolic policy synthe-
sis methods have emerged recently, which employ neural networks to facilitate synthesis processes.
A wealth of literature has applied imitation learning to abstract networks’ control logic into sym-
bolic forms, like finite automata Giles et al. (1992), decision tree Bastani et al. (2018), program
Verma et al. (2018, 2019), and behavior tree Zhao et al. (2023). However, imitation-guided methods
often produce suboptimal policies due to the distillation gap. Balog et al. (2017); Parisotto et al.
(2017) learn a probability distribution over DSL operators or programs given the input-output ex-
amples and then use it to guide search. While the above methods require stronger supervision, our
framework generates BTs solely using rewards. Trivedi et al. (2021) synthesis programs by first
learning an embedding space and then searching this space to find programs. This method requires
a large dataset and only works on tasks with discrete states and actions. Our method applies to both
discrete and continuous domains. Qiu and Zhu (2022); Cui and Zhu (2021) apply the method in Liu
et al. (2019) to program synthesis, learning the probability distribution over all possible program
derivations induced by a given grammar. However, applying this method to BTs synthesis is more
challenging due to the larger search space, the greater diversity in control structures, and the discrete
nature of outputs. More work about policy representation and BTs generation is in Appendix E.
Conclusion We propose a novel differentiable BT synthesis framework that jointly learns the archi-
tectures and execution nodes of BTs. Experiment results demonstrate that our method is effective.
The ablation study indicates that our extraction algorithm excels in discovering valid architectures.

Acknowledgments

This research was supported by the NSFC Programs (No. 62032024).

10

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

References

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013, pages 1–8. IEEE, 2013. URL https://ieeexplore.ieee.
org/document/6679385/.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=ByldLrqlx.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learn-
ing via policy extraction. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
2499–2509, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6d8545daa42d5ced125a4bf747b3688-Abstract.html.

Zhongxuan Cai, Minglong Li, Wanrong Huang, and Wenjing Yang. BT expansion: a sound and
complete algorithm for behavior planning of intelligent robots with behavior trees. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pages 6058–6065. AAAI Press,
2021. doi: 10.1609/AAAI.V35I7.16755.

Yue Cao and C. S. George Lee. Robot behavior-tree-based task generation with large language
models. In Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Com-
bination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023), volume 3433 of
CEUR Workshop Proceedings, 2023.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, pages 1294–1303. IEEE, 2019. doi: 10.1109/ICCV.2019.00138.

Xinglin Chen, Yishuai Cai, Yunxin Mao, Minglong Li, Wenjing Yang, Weixia Xu, and Ji Wang.
Integrating intent understanding and optimal behavior planning for behavior tree generation from
human instructions. In Proceedings of the Thirty-Third International Joint Conference on Ar-
tificial Intelligence, IJCAI-24, pages 6832–6840. International Joint Conferences on Artificial
Intelligence Organization, 2024. doi: 10.24963/ijcai.2024/755.

Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: an introduction. CoRR,
abs/1709.00084, 2017. URL http://arxiv.org/abs/1709.00084.

Michele Colledanchise, Diogo Almeida, and Petter Ögren. Towards blended reactive planning
and acting using behavior trees. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8839–8845, 2019. doi: 10.1109/ICRA.2019.8794128.

11

https://ieeexplore.ieee.org/document/6679385/
https://ieeexplore.ieee.org/document/6679385/
https://openreview.net/forum?id=ByldLrqlx
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
http://arxiv.org/abs/1709.00084

HUANG WU MA WANG

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. In Advances in Neu-
ral Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 11123–11135, 2021.

Renato de Pontes Pereira and Paulo Martins Engel. A framework for constrained and adaptive
behavior-based agents, 2015.

Kevin French, Shiyu Wu, Tianyang Pan, Zheming Zhou, and Odest Chadwicke Jenkins. Learning
behavior trees from demonstration. In International Conference on Robotics and Automation,
ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages 7791–7797. IEEE, 2019. doi:
10.1109/ICRA.2019.8794104.

Yanchang Fu, Long Qin, and Quanjun Yin. A reinforcement learning behavior tree framework for
game ai. In Proceedings of the 2016 International Conference on Economics, Social Science,
Arts, Education and Management Engineering, pages 573–579. Atlantis Press, 2016/08. ISBN
978-94-6252-220-6. doi: 10.2991/essaeme-16.2016.120.

C. Lee Giles, Clifford B. Miller, Dong Chen, Hsing-Hen Chen, Guo-Zheng Sun, and Yee-Chun Lee.
Learning and extracting finite state automata with second-order recurrent neural networks. Neural
Comput., 4(3):393–405, 1992. doi: 10.1162/NECO.1992.4.3.393. URL https://doi.org/
10.1162/neco.1992.4.3.393.

Simona Gugliermo, Erik Schaffernicht, Christos Koniaris, and Federico Pecora. Learning behavior
trees from planning experts using decision tree and logic factorization. IEEE Robotics Autom.
Lett., 8(6):3534–3541, 2023. doi: 10.1109/LRA.2023.3268598.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. volume abs/1812.05905, 2018. URL http://arxiv.org/abs/
1812.05905.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How
to train your robot with deep reinforcement learning: lessons we have learned. Int. J. Robotics
Res., 40(4-5), 2021. doi: 10.1177/0278364920987859. URL https://doi.org/10.1177/
0278364920987859.

Matteo Iovino, Jonathan Styrud, Pietro Falco, and Christian Smith. Learning behavior trees with
genetic programming in unpredictable environments. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4591–4597, 2021. doi: 10.1109/ICRA48506.2021.
9562088.

Mart Kartasev and Aron Granberg. Integrating reinforcement learning into behavior trees by hier-
archical composition. 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
4th International Conference on Learning Representations, ICLR 2016, 2016. URL http:
//arxiv.org/abs/1509.02971.

12

https://doi.org/10.1162/neco.1992.4.3.393
https://doi.org/10.1162/neco.1992.4.3.393
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
7th International Conference on Learning Representations, ICLR 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=S1eYHoC5FX.

Artem Lykov and Dzmitry Tsetserukou. Llm-brain: Ai-driven fast generation of robot behaviour
tree based on large language model. 2023. URL https://arxiv.org/abs/2305.19352.

Matthias Mayr, Konstantinos I. Chatzilygeroudis, Faseeh Ahmad, Luigi Nardi, and Volker Krüger.
Learning of parameters in behavior trees for movement skills. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 -
Oct. 1, 2021, pages 7572–7579. IEEE, 2021. doi: 10.1109/IROS51168.2021.9636292.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=rJ0JwFcex.

Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Comput. Surv., 54(5):109:1–109:35, 2022. doi: 10.
1145/3453160. URL https://doi.org/10.1145/3453160.

Nicholas Potteiger and Xenofon D. Koutsoukos. Safe explainable agents for autonomous navigation
using evolving behavior trees. In IEEE International Conference on Assured Autonomy, ICAA
2023, Laurel, MD, USA, June 6-8, 2023, pages 44–52. IEEE, 2023. doi: 10.1109/ICAA58325.
2023.00014. URL https://doi.org/10.1109/ICAA58325.2023.00014.

Nicholas Potteiger and Xenofon D. Koutsoukos. Safeguarding autonomous UAV navigation:
Agent design using evolving behavior trees. In IEEE International Systems Conference, SysCon
2024, Montreal, QC, Canada, April 15-18, 2024, pages 1–8. IEEE, 2024. doi: 10.1109/
SYSCON61195.2024.10553469. URL https://doi.org/10.1109/SysCon61195.
2024.10553469.

Nicholas Potteiger, Ankita Samaddar, Hunter Bergstrom, and Xenofon D. Koutsoukos. Designing
robust cyber-defense agents with evolving behavior trees. In International Conference on As-
sured Autonomy, ICAA 2024, Nashville, TN, USA, October 10-11, 2024, pages 1–10. IEEE, 2024.
doi: 10.1109/ICAA64256.2024.00011. URL https://doi.org/10.1109/ICAA64256.
2024.00011.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=6Tk2noBdvxt.

Emily Scheide, Graeme Best, and Geoffrey A. Hollinger. Behavior tree learning for robotic task
planning through monte carlo DAG search over a formal grammar. In IEEE International Con-
ference on Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June 5, 2021, pages
4837–4843. IEEE, 2021. doi: 10.1109/ICRA48506.2021.9561027.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,

13

https://openreview.net/forum?id=S1eYHoC5FX
https://arxiv.org/abs/2305.19352
https://openreview.net/forum?id=rJ0JwFcex
https://doi.org/10.1145/3453160
https://doi.org/10.1109/ICAA58325.2023.00014
https://doi.org/10.1109/SysCon61195.2024.10553469
https://doi.org/10.1109/SysCon61195.2024.10553469
https://doi.org/10.1109/ICAA64256.2024.00011
https://doi.org/10.1109/ICAA64256.2024.00011
https://openreview.net/forum?id=6Tk2noBdvxt

HUANG WU MA WANG

ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 1889–1897. JMLR.org, 2015. URL http://proceedings.mlr.press/
v37/schulman15.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. volume abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

Jonathan Styrud, Matteo Iovino, Mikael Norrlöf, Mårten Björkman, and Christian Smith. Combin-
ing planning and learning of behavior trees for robotic assembly. In 2022 International Confer-
ence on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022, pages
11511–11517. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9812086.

Ioan Alexandru Sucan, Mark Moll, and Lydia E. Kavraki. The open motion planning library. IEEE
Robotics Autom. Mag., 19(4):72–82, 2012. doi: 10.1109/MRA.2012.2205651. URL https:
//doi.org/10.1109/MRA.2012.2205651.

Wil Thomason, Zachary K. Kingston, and Lydia E. Kavraki. Motions in microseconds via vec-
torized sampling-based planning. In IEEE International Conference on Robotics and Automa-
tion, ICRA 2024, Yokohama, Japan, May 13-17, 2024, pages 8749–8756. IEEE, 2024. doi:
10.1109/ICRA57147.2024.10611190. URL https://doi.org/10.1109/ICRA57147.
2024.10611190.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J. Lim. Learning to synthe-
size programs as interpretable and generalizable policies. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors,
Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 25146–25163, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/d37124c4c79f357cb02c655671a432fa-Abstract.html.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, pages 2094–2100. AAAI Press, 2016. doi: 10.1609/AAAI.
V30I1.10295. URL https://doi.org/10.1609/aaai.v30i1.10295.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5052–5061. PMLR, 2018. URL http://proceedings.mlr.
press/v80/verma18a.html.

14

http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/ICRA57147.2024.10611190
https://doi.org/10.1109/ICRA57147.2024.10611190
https://proceedings.neurips.cc/paper/2021/hash/d37124c4c79f357cb02c655671a432fa-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d37124c4c79f357cb02c655671a432fa-Abstract.html
https://doi.org/10.1609/aaai.v30i1.10295
http://proceedings.mlr.press/v80/verma18a.html
http://proceedings.mlr.press/v80/verma18a.html

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected
programmatic reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 15726–15737, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html.

Adam Wathieu, Thomas R. Groechel, Haemin Jenny Lee, Chloe Kuo, and Maja J. Mataric. RE: bt-
espresso: Improving interpretability and expressivity of behavior trees learned from robot demon-
strations. In 2022 International Conference on Robotics and Automation, ICRA 2022, Philadel-
phia, PA, USA, May 23-27, 2022, pages 11518–11524. IEEE, 2022. doi: 10.1109/ICRA46639.
2022.9812046.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. CoRR, abs/1911.10635, 2019. URL http://arxiv.
org/abs/1911.10635.

Qi Zhang, Lin Sun, Peng Jiao, and Quanjun Yin. Combining behavior trees with maxq learning to
facilitate cgfs behavior modeling. In 2017 4th International Conference on Systems and Infor-
matics (ICSAI), pages 525–531, 2017. doi: 10.1109/ICSAI.2017.8248348.

Chenjing Zhao, Chuanshuai Deng, Zhenghui Liu, Jiexin Zhang, Yunlong Wu, Yanzhen Wang, and
Xiaodong Yi. Interpretable reinforcement learning of behavior trees. In Proceedings of the 15th
International Conference on Machine Learning and Computing, ICMLC 2023, Zhuhai, China,
February 17-20, 2023, pages 492–499. ACM, 2023. URL https://doi.org/10.1145/
3587716.3587798.

15

https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
http://arxiv.org/abs/1911.10635
http://arxiv.org/abs/1911.10635
https://doi.org/10.1145/3587716.3587798
https://doi.org/10.1145/3587716.3587798

HUANG WU MA WANG

Appendix A. More Details about Behavior Trees

A.1. Classic Formulation of BTs

A BT is a directed tree where we apply the standard meanings of root, child, parent, and leaf
nodes, which control the agent’s decision-making behavior. The leaf nodes of BTs are execution
nodes that can be classified into action nodes (represented by green rectangles) and condition nodes
(represented by purple ovals). The non-leaf nodes are called control flow nodes, including four types
of node: Sequence, Fallback, Parallel and Decorator. In this work, we mainly focus on the usage
of Sequence nodes (represented by→) and Fallback nodes (represented by ?).

Condition: A condition node that checks the proposition related to current states and returns
success if it satisfies the specified situation; otherwise, it returns failure. Like Low battery, At
pos. Note that a Condition node never returns a status of running.

Action: An action node like PickUp and Goto pos, that performs a specified behavior and
returns success, failure, or running depending on the execution results. For example, while
the action Goto pos is ongoing, it returns running. If it is successfully completed at the next
tick, it returns success.

Sequence: A control node that ticks its children from left to right. A Sequence node is used
when some actions, or condition checks, are meant to be carried out in sequence. It returns
failure or running immediately when a child returns either failure or running. It returns
success if and only if all its children return success. Note that when a child returns running or
failure, the Sequence node does not route the ticks to the next child (if any). For example, in
Fig. 7, if At pos is false, the Sequence node will return failure immediately and will not tick
PickUp and Goto pos.

Fallback: A control node that ticks its children from left to right. A Fallback node is used
when a set of actions represents alternative ways of achieving a similar goal. It returns success
or running immediately when a child returns either success or running. Otherwise, it returns
failure. Note that when a child returns running or success, the Sequence node does not route
the ticks to the next child (if any). For example, in Fig. 7, if Low battery is true, the Fallback
node will return success immediately and no more nodes will be ticked.

A.2. Execution Example

Fig. 7 shows a BT example that controls the robot to pick up a key from a specific position when
the robot has sufficient power.

？

Low
battery

Pickup？

At
pos

Goto
pos

Behavior Tree

？

Low
battery

Pickup？

At
pos

Goto
pos

First Tick

？

Low
battery

Pickup？

At
pos

Goto
pos

Second Tick

？

Low
battery

Pickup？

At
pos

Goto
pos

First Tick

Successful pickup Low batteryfailureticked successrunning

Figure 7: BT example.
16

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

The execution of BTs starts from the root and infinitely delivers ticks to its children at a par-
ticular frequency. Ticks can be seen as a signal to identify which node is executable. We take one
possible execution of the BT example for illustration, which requires that the robot first go to the
specific position, then pick up a key. The whole process must be carried out with a high battery and
stopped if the battery is low. We assume that the conditions Low-battery and AtPos don’t hold ini-
tially. In the first tick, the condition node Low-battery is ticked but returns failure, then the sequence
node is ticked due to the functionality of these control flow nodes. AtPos also returns failure, and the
action node GotoPos is ticked and returns running. Status running means the action is in progress
but not completed. The status running is propagated to the root since all the control flow nodes will
return running if one of their children returns running. Similar to the first tick, the action node Go-
toPos is ticked again but returns success in the second tick. During the second tick, the action node
Pickup is also ticked since the first child of the sequence node returns success, and Pickup returns
success. The success of Pickup means the pickup task succeeds. If the conditions Low-battery hold
initially, it returns success and the whole BT returns success. The rest of the nodes will not be ticked
in this situation. This alerts the operator that the robot needs to be recharged.

Appendix B. The Extraction Algorithm and Complexity Analysis

B.1. Co-Adaptation and The Abnormality Caused by Continuous Approximation

As shown in Fig. 8(a), a node contains several partial architectures, and those architectures may
partition the search space into disjoint segments and collaboratively model the entire search space.
In other words, it is the weighted sum of those partial architectures’ outputs that produces satisfying
performance, not the one with the largest probability. Therefore, when obtaining a discrete BT
structure, the greedy approach that selects the partial architectures with the highest probability will
lead to an unreasonable structure. In our work, Fallback nodes are utilized to address this potential
issue.

0

1

0.5 0.001 0.49 𝜔
𝜔

𝒆𝒙𝒕𝒓𝒂𝒄𝒕 𝒘𝒊𝒕𝒉𝒎𝒂𝒙𝒊𝒎𝒖𝒎

Search Space

𝑪𝒐 − 𝑨𝒅𝒂𝒑𝒕𝒊𝒐𝒏

Co-Adaption ： Architectures contained in a node may
partition the search space into disjoint segments and
collaboratively model the entire search space.

Proposed Method[2]
Co-Adaptation and Extraction Algorithm

?
𝒖𝒔𝒆 𝒇𝒂𝒍𝒍𝒃𝒂𝒄𝒌

(a) Fallback Semantic

Proposed Method[2]
Co-Adaptation and Extraction Algorithm

?

𝑨𝒄𝒕

→

……

C
→

……

C

Add new root

(b) Sequence Semantic
Figure 8: (a) Co-adaptation phenomenon. (b) The abnormality caused by the continuous approxi-
mation.

Continuous approximation of the control nodes’ semantics also brings trouble in extracting
discrete architectures. Considering a BT with Sequence as root, as shown in Fig. 8(b), when the
Condition node (represented by purple ovals) returns failure, the whole output of the BT will be
zero. However, this anomalous action, especially when zero is in the action space like Mountain-
car, will introduce misleading signals that degrade learning performance. In this paper, we add a
Fallback as a new root node and an Action node to capture unexpected actions.

17

HUANG WU MA WANG

B.2. Pseudocode of the Extraction Algorithm

As illustrated in Algorithm 1, the extraction algorithm takes a trained derivation graph G and a
threshold λ as input and outputs a BT with the discrete architecture. The derivation graph G is
implemented as a multi-pointer linked list. Each node contains multiple pointers that indicate the
partial architectures it holds, along with a weight representing the probability of selecting these
partial structures. Besides, our algorithm maintains a queue of nodes to be processed, which is
initialized to [root] (cf., line 1 to line 2). At each iteration, the algorithm dequeues a node and iden-
tifies processed candidates using the IDENTIFY function (cf., line 15 to line 23) with a threshold λ
(cf., line 3 to line 5). This function extracts the most likely partial architectures q and compares the
probabilities of the remaining candidates with pro_q. Any child with probabilities particularly close
to pro_q will be added to the candidate set all_cand. This set will be empty if the current node is
an execution node that does not require further extensions. After identification, we determine which
new nodes should be added to the queue (len(next_n) > 0) and detect co-adaptation by evaluating
the candidate set’s length (len(next_n) > 1) (cf., line 6 to line 11). Finally, we add a new root
node and a new action node (cf., line 12 to line 14).

Algorithm 1: Extraction Algorithm
Input: Trained derivation graph G, threshold λ
Output: Synthesized behavior tree BT

1 root = G.root
2 queue = [root]
3 while len(queue) != 0 do
4 n = queue.pop()
5 next_n = IDENTIFY(n, λ)
6 if len(next_n) > 0 then
7 if len(next_n) > 1 then
8 next_n = [Fallback(next_n)]

9 n.next = next_n
10 for cand in next_n do
11 queue.append(cand)

12 act = Action()
13 new_root = Fallback([root, act])
14 return new_root

15 Function IDENTIFY(node, λ)is
16 all_cand = []
17 if node.type == "Control" then
18 q, pro_q = Max_Probability(node)
19 resort(node.w)
20 for w′ in node.w do
21 if pro_q - w′ < λ then
22 all_cand.append(node with w′)

23 return all_cand

18

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

B.3. Complexity Analysis of the Extraction Algorithm

The time complexity of the extraction algorithm depends on several factors, including the depth
of the tree (d), the number of production rules (m), and the maximum number of nonterminals
contained in a rule (n). In the best-case scenario, each node has a child that dominates the weights,
resulting in a time complexity of O(nd). This occurs when the threshold is too strict, limiting
exploration to exactly one production rule. When there is no co-adaptation, our extraction algorithm
degenerates into a greedy method. Conversely, the worst-case scenario arises when the threshold
is too permissive, requiring the algorithm to explore nearly all possible rule combinations across
the tree. In this case, the time complexity would be O((n ·m)d). In practice, the time complexity
typically lies between the best and worst cases due to the threshold-based pruning mechanism. The
threshold plays a critical role in the extraction algorithm’s efficiency as we mentioned above. The
choice of threshold is a trade-off between accuracy and efficiency and can be tuned based on the
requirements of specific applications.

Based on the ablation studies shown in Fig. 4 in the experimental section, we observe that the
extraction algorithm significantly enhances the overall efficiency and reduces total training time.
This improvement occurs because the extraction algorithm generates a well-structured initial BT,
which decreases the search space for the RL fine-tuning process. Regarding the running time of
the extraction algorithm itself, it is negligible compared to the time required for RL training. The
extraction algorithm operates efficiently, and its computational cost is minimal within the context
of the overall pipeline. Thus, while RL fine-tuning does add to the running time, the extraction
algorithm effectively offsets this by accelerating the convergence of the RL process.

B.4. Discussion about Real-world Applications

While our proposed framework achieves significant performance in both discrete and continuous
tasks, some may question the potential of this framework for real-world applications. There are
some works Potteiger and Koutsoukos (2023, 2024); Potteiger et al. (2024) that learns BTs in ab-
stract environments and then transfer to the real world. Using the abstract environments leads to
an efficient and safe learning process since the agent is not interacting with the real environment.
For example, in UAV navigation and obstacle avoidance tasks, Potteiger and Koutsoukos (2023,
2024) first automatically construct BT using GP in an abstract grid environment, and then deploy
and transfer this BT to a realistic simulation. Potteiger et al. (2024) designs BTs for robust cyber-
defense agents to defend against adaptive cyber-attackers. This method also starts by synthesizing
BTs in a novel Cyber-Firefighter Abstract Environment. Inspired by these works, we believe that
our proposed method can also be well transferred to real-world applications.

Appendix C. Detailed Descriptions of the Tasks and the Input of BTs

C.1. Gymnasium Tasks

Tasks from the Gymnasium that occurred in our experiments are briefly introduced below. For more
details, please refer to the Gymnasium Documentation. As aforementioned, we utilize raw states as
the input in these benchmarks.

a) Acrobot. This system features two links connected linearly to form a chain, with one end
fixed. The joint between the two links is actuated. The objective is to apply torques at the actuated

19

HUANG WU MA WANG

(a) Acrobot (b) Cart Pole (c) Mountain Car (d) Pendulum

Figure 9: Gymnasium Tasks used in our experiments.

joint to swing the free end of the chain above a specified height, starting from an initial position
where it hangs downward.

b) Cart Pole. In this setup, a pole is connected by an unactuated joint to a cart that moves along
a frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole
by applying forces in the left and right direction on the cart.

c) Mountain Car. The Mountain Car MDP is deterministic and consists of a car placed stochas-
tically at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
that can be applied to the car in either direction. The objective is to accelerate the car strategically
to reach the goal state on top of the right hill. There are two versions of this task in the Gymnasium:
one with discrete actions and one with continuous actions. We evaluated our method on both of
them.

d) Pendulum. This system consists of a pendulum attached at one end to a fixed point, with the
other end free. The pendulum starts in a random position, and the goal is to apply torque at the free
end to swing it upright, positioning its center of gravity directly above the fixed point.

C.2. MiniGrid Tasks

We conducted experiments using two types of MiniGrid tasks: the Empty Task and the Crossing
Task. Please refer to MiniGrid Documentation for more information. In this benchmark, a positive
reward is given only when the goal condition is achieved. Otherwise, the reward is always 0. We
select increasingly larger map sizes and more complex environment configurations to verify the
generality of our method. Note that we defined abstract states as inputs for BTs, which are detailed
in Appendix D.3.

a) The Empty Task. This environment is an empty room where the goal for the agent is to reach
a designated green square, which provides a sparse reward. A small penalty is subtracted from the
number of steps to reach the goal. This environment is useful, with small rooms, to validate that
the RL algorithm works correctly, and with large rooms to experiment with sparse rewards and
exploration. In the random variants of this environment, the agent begins at a random position for
each episode.

20

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

(a) Empty (Default) (b) Empty 6 × 6 (c) Empty 8 × 8 (d) Empty 16 × 16

Figure 10: The Empty Tasks in MiniGrid that are used in our experiments.

b) The Crossing Task. In this task, the agent must reach the green goal square located at the
opposite corner of the room while avoiding rivers of deadly lava that can terminate the episode in
failure. Each lava stream runs across the room either horizontally or vertically, and each has a single
crossing point that can be safely used. Fortunately, a safe path to the goal is guaranteed to exist.
This environment is useful for studying safety and safe exploration. An alternative version of this
task replaces lava with walls and was also utilized for evaluating our methods.

(a) Crossing (Default) (b) Crossing S9N1 (c) Crossing S9N2 (d) Crossing S9N3

Figure 11: The Crossing Tasks in MiniGrid that are used in our experiments.

C.3. Mujoco Tasks

As illustrated in Fig. 12, we selected three representative simulation tasks in Mujoco to evaluate
the effectiveness of our method: Half Cheetah, Pusher, and Ant (including both Random and Maze
maps). Below are brief descriptions of each task; please refer to Mujoco Documentation for further
information.

a) Half Cheetah (Hurdle). The Half Cheetah is a 2D robot with nine parts and eight joints,
including two legs. The goal is to make the cheetah run forward (to the right) as fast as possible
to reach the target with a radius of 1. In the Half Cheetah Hurdle version, the Cheetah is also
required to jump over hurdles. In this task, the input X includes the position of the next hurdle
xnext and the Half Cheetah’s back foot xback, the distance from Half Cheetah’s back foot to next
hurdle ||xback, xnext||1 are then computed as additional input for the Condition nodes.

b) Pusher. The Pusher task involves a multi-jointed robot arm that consists of shoulder, elbow,
forearm, and wrist joints. The goal is to move a target cylinder (the object) to a specified goal
position using the robot’s end effector. The input X of behavior tree are xobj , yobj , xarm, yarm, and
then computes ||xobj , yobj ||2, ||xarm, yarm||2 as inputs for the Condition nodes.

21

HUANG WU MA WANG

(a) Half Cheetah (b) Pusher (c) Ant (Random) (d) Ant (Maze)

Figure 12: Simulation Tasks in Mujoco that are used in our experiments.

c) Ant. The Ant is a 3D quadruped robot with a torso that has free rotational movement and
four attached legs. In the Random task, the Ant starts at the origin and is required to reach randomly
sampled targets within a confined circular region. In the Maze task, the Ant must reach a randomly
designated goal area (including coordinates like [6, 6], [6,−6], and [12, 0]) while navigating through
a maze with walls as obstacles. The input X of behavior tree consists of xant, yant, xgoal, ygoal,
along with arctan(yant

xant
) and ||xant, yant||2 as the overall inputs.

Appendix D. Implementation Details

In this section, we present implementation details, including a complexity analysis of the derivation
graph computation, the DSL designs of Condition and Actions nodes, and the abstract state of
MiniGrid tasks.

D.1. Complexity Analysis of the Derivation Graph Execution

The complexity of the derivation graph computation is exponential (EXP), as discussed in Sec. 3.
In the code implementation, we perform the computation in a bottom-up manner: we invoke each
execution node and pass its result to wherever it is used in the tree. Similarly, intermediate results
computed by shorter ones can be reused by longer ones. More importantly, for each BT contained
in the derivation graph, we compute its results exactly once since the input to any BT is always the
current environment state. This shared computation approach can significantly reduce the time cost
of derivation graph execution. Notably, we applied an effective optimization strategy called Node
sharing to our derivation graph, which can significantly decrease space complexity form O((m·n)d)
to O(nd). More information can be found in Cui and Zhu (2021).

For more complex tasks that require more production rules and a deeper derivation graph, we
could optimize the architecture search procedure by applying further optimization strategies. For
example, Progressive DARTS Chen et al. (2019) and Iterative Graph Unfolding Cui and Zhu (2021)
gradually increase the tree depth d during the search procedure, focusing on higher-quality deriva-
tions by dropping the lowest-weighted derivations. These strategies would allow our framework to
scale to more complex tasks.

D.2. Detailed DSL designs for Condition and Action nodes

In this paper, we argue that a linear function can sufficiently evaluate potential conditional judg-
ments and serve as the DSL for Condition nodes. We consider four DSLs for Action nodes.

22

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

Affine Action. The DSL for affine action is defined as: A := θa1 + θa2 · x, where θa1, θa2 are
parameters. Particularly, affine action can simply be a learnable constant θa1 as θa2 is 0. The DSL
for discrete action space is always a trainable constant θa1. During execution, this constant resizes
itself according to the constraints of the task’s action space. Consider the Cart Pole task, where the
valid actions are limited to the values zero and one. The actions generated by the derivation graph
often need to be adjusted to the nearest valid action. This is typically implemented using the round
function in code.
PID Action. A PID controller is a type of feedback loop commonly used in control systems to
maintain a desired setpoint. The "PID" stands for Proportional, Integral, and Derivative, which are
the three terms in the controller’s output equation. The DSL of PID action is: PIDθP ,θI ,θD(ϵ, h, s) =
θP · P + θI · I + θD ·D, where P = (ϵ − s) is proportional term, I = fold(+, ϵ − h) is integral,
and D = peek(h,−1)− s is derivative term. θP , θI , θD are parameters to be trained, ϵ is the target,
and h is a history of previous states. The function fold takes as input an anonymous function fun
x·f(x) that evaluates an expression f(x) over the input x. The function peek returns the most recent
state in the history memory. Taking the Pendulum task as an example, the observation of Pendulum
contains cos(ω), sin(ω) and ω̇, where ω is the angle the pendulum makes with the vertical and ω̇ is
the angular velocity. The goal is to stay the pendulum upright, so the fixed goal ϵ is set to [1, 0, 0].
Linear Recomposed Action. As complexity grows, it is beneficial to compose and reuse task-
agnostic primitive actions. The DSL of linear recomposed action is: Ar := θ1 · a1 + · · ·+ θM · aM ,
where {ai}Mi=0 are pre-trained primitives. Ar recomposes primitive actions into a more complex
action with parameters θ1, · · ·, θM ∈ R1. In practice, we usually compute a weighted sum of
primitives as: ∥Ar∥(s) =

∑M
i=0 pi · ai(s) where composition weights {pi}Mi=0 are calculated using

softmax. In the Mujoco benchmark, we require multiple primitive actions to compose higher-level
skills. For example, we equipped Ant with four basic primitive policies, i.e., aup, adown, aleft, and
aright. For pusher, it requires two primitive skills apusher_down and apusher_left. In the Half Cheetah
Hurdle environment, two simple policies ajump and aforward are provided. All the primitives we
used are borrowed from Qiu and Zhu (2022).

D.3. Abstract State of MiniGrid Tasks

In MiniGrid, each grid is encoded as a 3-dimensional tuple (OBJECT_IDX, COLOR_IDX, STATE)
that indicates the object’s types, object’s colors and object’s states. The agent moves through
this grid with a partially visible field, interacting with objects and navigating toward goals. To
make behavior tree synthesis more practical and interpretable, we modified the raw environment
state to a "abstract state". We defined several predicates, including: front_is_clear, left_is_clear,
right_is_clear, goal_on_left, goal_on_right, goal_present, front_is_obj. front_is_obj can be instan-
tiated according to the environment configuration and goal condition, for instance, front_is_obj(key).
Those predicates construct a higher-level representation of the environment based on raw state data.
We form an abstract state by concatenating the Boolean values of the predicates as a binary vec-
tor. We also incorporate the agent’s direction information into the abstract state to facilitate faster
convergence, shown in Fig. 13.

Appendix E. Additional Related Works

Policy Representation. Policy representation is the key to a control system. In modern approaches,
it can be categorized into two types: neural network policy and symbolic policy. Neural network

23

HUANG WU MA WANG

[𝑓𝑟𝑜𝑛𝑡_𝑖𝑠_𝑐𝑙𝑒𝑎𝑟 = 1,
𝑙𝑒𝑓𝑡_𝑖𝑠_𝑐𝑙𝑒𝑎𝑟 = 0,
𝑟𝑖𝑔ℎ𝑡_𝑖𝑠_𝑐𝑙𝑒𝑎𝑟 = 0,… ,
𝑓𝑟𝑜𝑛𝑡_𝑖𝑠_𝑤𝑎𝑙𝑙 = 0, … ,]

[𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟 = 𝑙𝑒𝑓𝑡]

Figure 13: An example abstract state from the Crossing task in MiniGrid.

policies have achieved promising successes in many challenging control tasks due to their strong
fitting capabilities. Classic algorithms are divided into value-based (e.g. DDPG van Hasselt et al.
(2016)), policy-based (e.g. TRPO Schulman et al. (2015), PPO Schulman et al. (2017)) and hybrid
methods (e.g. SAC Haarnoja et al. (2018), DDPG Lillicrap et al. (2016)). Neural network poli-
cies have made remarkable progress in recent years, such as HRLPateria et al. (2022) and MARL
Zhang et al. (2019). However, neural network policies still suffer from poor interpretability and
generalization.

Symbolic policies represent strategies through predefined rules or logical structures Alur et al.
(2013), which have better interpretability and verifiability. Symbolic policy representation includes
programs, finite state machines, decision trees, and behavior trees. This type of policy always relies
solely on traditional control algorithms designed by experts based on domain knowledge Thomason
et al. (2024); Sucan et al. (2012), without incorporating learning techniques. In recent years, neu-
ral symbolic policy synthesis methods have emerged, which employ neural networks to facilitate
a synthesis process. Giles et al. (1992) extracted finite automata out of neural networks. VIPER
Bastani et al. (2018) learns decision tree policies guided by a DNN policy via model compression
and imitation learning. PIRL Verma et al. (2018) and PROPEL Verma et al. (2019) also employ
imitation learning to synthesize programs. DeepCoder Balog et al. (2017) trains neural networks to
predict a probability distribution over DSL operators and then uses it to guide the program synthe-
sis. While the above methods require stronger supervision, LEAPS Trivedi et al. (2021) synthesizes
programs solely from reward signals by first learning a program embedding space and then search-
ing this space to find a program. pi_PRL Qiu and Zhu (2022) applies the method in DARTS Liu
et al. (2019) to programmatic reinforcement learning, which synthesizes differentiable program-
matic policies without a pre-trained oracle. However, applying this method to BTs synthesis is
more challenging due to the larger architecture search space, the greater diversity of semantics in
construction structures, and the discrete nature of the outputs.
Behavior Tree Generation. Various studies have been explored for synthesizing BTs automat-
ically. Some methods Fu et al. (2016/08); Zhang et al. (2017); Kartasev and Granberg (2019);
de Pontes Pereira and Engel (2015) replace nodes in a fixed BT with RL components, endowing
BTs with learning capacity.

Learning from Demonstration (LfD) French et al. (2019); Wathieu et al. (2022); Gugliermo et al.
(2023) has also been utilized to generate BTs via translating decision trees to BTs. Zhao et al. (2023)
defines two basic units and builds BTs on those units. For the above methods, the expressiveness of
the generated BTs is usually limited by fixed architectures or constrained transformation rules.

24

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

Some works synthesize BTs on the given agent’s capabilities. Scheide et al. (2021) utilizes a
Monte Carlo search to find BTs in a search space defined by a formal grammar and a set of capa-
bilities. Some methods combine automated planners with BT synthesis Colledanchise et al. (2019);
Cai et al. (2021) and construct a BT based on back-chaining, which starts from the goal conditions
and iteratively links the actions that satisfy them. Genetic Programming Styrud et al. (2022); Iovino
et al. (2021) is also widely used for BT synthesis, and its initial population is generated according
to the given capabilities. More recent work Chen et al. (2024); Cao and Lee (2023); Lykov and
Tsetserukou (2023) employs Large Language Models (LLMs) to generate BTs from natural lan-
guage instructions. However, predefined execution nodes always link to static functions, with the
drawbacks of being scenario-specific and requiring relearning when the setup changes.

Appendix F. Hyperparameters and Training Details

F.1. Configurations of the Derivation Graph

Table 5 summarizes the derivation graph depth and action DSLs used for different benchmarks.

Table 5: Derivation graph depth and action DSLs

Tasks Depth Action DSL Type

Gym(except Pendulum) 3 Constant
Pendulum 4 Constant/PID Controller
MiniGrid 4 Constant
Mujuco 6 Linear Recomposed Actions

F.2. Hyperparameters of Baseline Algorithms

The baseline algorithms and their hyperparameters we used are listed in Table 6. All neural network
architectures of RL algorithms are two- or three-layer feed-forward networks with a hidden size of
256.

IRLBT Zhao et al. (2023) presents a behavior trees generation method that directly represents
the policies generated by Q-learning and its derived algorithms in the form of BTs. It defines two
basic units: Branching Units (BUs) which is a Sequence node with one condition and one Fallback,
and Execution Units (EUs) which is a Sequence node with one condition and one action. At time
step t with an environment state st, this method searches the units corresponding to st and updates
the visit frequency, Q-values, potential division objects list and its highest expected reward increase
∆Q. If ∆Q exceeds the dynamic threshold QTH , the tree grows. This algorithm is similar to
decision tree generation methods but differs in its representation of decision conditions, which are
explicitly stored in Condition nodes.

25

HUANG WU MA WANG

Table 6: Baseline Methods and detailed Hyperparameters

Baseline Methods Description Action Spaces Hyperparameters

IRLBT
Zhao et al. (2023)

A Q-learning-
based BT synthesis
framework

Discrete

Discounter factor: 0.8
Visit decay: 0.99
Split_max: 10e10
Split_decay: 0.99
Number of split: 7

DDQN
van Hasselt et al. (2016)

Double Deep Q-
Learning algorithms

Discrete

Learning rate: 0.002
Batch size: 64
Replay buffer size: 10000
Update interval: 10
Discounter factor: 0.98
Exploration Rate: 0.1

DDPG
Lillicrap et al. (2016)

Actor-Critic algorithms
with policy gradient

Continuous

Actor learning rate: 0.0005
Critic learning rate: 0.005
Batch size: 128
Replay buffer size: 100000
Update interval: 20
Discounter factor: 0.99
Exploration Rate: gradually
decreases from 0.25 to 0.05.

SAC
Haarnoja et al. (2018)

Soft actor-critic
algorithms

Continuous

Actor learning rate: 0.0005
Critic learning rate: 0.005
Batch size: 256
Replay buffer size: 100000
Update interval: 5
Discounter factor: 0.99
Soft update τ : 0.005

TRPO
Schulman et al. (2015)

Trust region policy
optimization algorithms

Continuous

Batch size: 512
Replay buffer size: 100000
Update interval: 10
Discounter factor: 0.99
GAE: 0.97
KL-Divergence limit: 0.05
L2 regularization regression: 0.001

PPO
Schulman et al. (2017)

Proximal policy
optimization algorithms

Discrete
Continuous

Actor learning rate: 0.0003
Critic learning rate: 0.001
Batch size: 128
Replay buffer size: 100000
Update interval: 10
Discounter factor: 0.99
GAE: 0.97
Clip ratio eps: 0.02

Appendix G. More Results on the Generalization Experiments

We investigate the generalization of our learned BTs in tasks involving continuous spaces. Addi-
tionally, we assess how well these BTs can adapt to larger state spaces and new configurations.

In the Ant Maze benchmark, we scale the maze size by factors of 0.8, 1.2, 1.5, and 1.8 (as shown
in Fig.14) and directly evaluate the learned BT obtained from the original task. Since target positions

26

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

are adjusted accordingly, we record the final distance to the goal normalized by the agent’s initial
distance from the goal. Success rates are also recorded. Table 7 shows that our method demonstrates
strong generalization in shrinking mazes but exhibits decreasing performance as the scaling factor
increases, with an effective generalization limit of roughly 150% relative to the original environment
size.

(a) Ant Maze (0.8×) (b) Ant Maze (1.2×) (c) Ant Maze (1.5×) (d) Ant Maze (1.8×)

Figure 14: Ant Maze with reshaped sizes.

Table 7: Generalization results of generalization in Ant Maze tasks. Results are averaged over 50
random executions

Tasks
Ant Maze

Original 0.8× 1.2× 1.5× 1.8×

Distance 0.128±0.184 0.182±0.292 0.144±0.192 0.156±0.158 0.180±0.154
Success_Rate 0.640 0.680 0.260 0.100 0.000

In the Half Cheetah Hurdle environment, we change the environment configurations from the
number and height of hurdles. In the original tasks, a half cheetah must jump over three hurdles
to reach the target with a radius of 1. We have set up the following variants: half cheetah with six
hurdles, half cheetah with nine hurdles, and half cheetah with higher hurdles (shown in Fig.15). The
results are shown in Table 8, where "6" and "9" indicate numbers and "n×" means height scalability.
It can be seen that learned BT generalizes well across scenarios with varying numbers of hurdles. In
environments with hurdles of varying heights, its generalization performance gradually deteriorates,
successfully handling scenarios up to 7.5× the original height. At 10× scaling, the BT fails to guide
the cheetah over the obstacle toward the target.

Table 8: Generalization results of generalization in Half Cheetah Hurdle tasks. Results are averaged
over 50 random executions.

Tasks
Number Height

Original 6 9 2× 5× 7.5× 10×

Distance 0.008±0.037 0.048±0.126 0.131±0.242 0.026±0.094 0.092±0.203 0.348±0.257 0.702±0.070
Success_Rate 0.960 0.840 0.720 0.900 0.800 0.180 0.000

In continuous scenarios, both Ant Maze and Half Cheetah Hurdle, the BTs make conditional
judgments and execute actions based on specific environmental data, which are highly dependent

27

HUANG WU MA WANG

(a) Half Cheetah Hurdle with six Hurdles

(b) Half Cheetah Hurdle with nine Hurdles

(c) Half Cheetah Hurdle with Higher Hurdles (the 1st and the 3rd)

Figure 15: Half Cheetah Hurdle with different hurdles.

on the environment’s configuration. However, in discrete scenarios, such as MiniGrid, the behavior
tree accepts abstract state inputs, offering better generalization.

Appendix H. Synthesized Behavior Trees

CartPole

𝜽𝑪𝟏
𝟏 = [𝟏. 𝟕𝟐, 𝟎. 𝟑𝟕, −𝟎. 𝟖𝟖,−𝟏. 𝟎𝟐], 𝜽𝑪𝟏

𝟐 = [−𝟏𝟎. 𝟐𝟗]

𝜽𝑪𝟐
𝟏 = [𝟏𝟎. 𝟒𝟐,−𝟐𝟏. 𝟒𝟐,−𝟑𝟕. 𝟗𝟕,−𝟑𝟓. 𝟔𝟕], 𝜽𝑪𝟐

𝟐 = [−𝟎. 𝟗𝟕]

𝑨𝟏 = [𝟎], 𝑨𝟐 = 𝟏

𝐴2𝐶2

𝐴1𝐶1

?

?

MountainCar

𝜽𝑪𝟏
𝟏 = [𝟓. 𝟐𝟒,−𝟒. 𝟗𝟖], 𝜽𝑪𝟏

𝟐 = [−𝟔. 𝟐𝟕]

𝜽𝑪𝟐
𝟏 = [𝟑. 𝟐𝟗,−𝟗𝟑. 𝟎𝟏], 𝜽𝑪𝟐

𝟐 = [𝟐. 𝟏𝟒]

𝑨𝟏 = [𝟎], 𝑨𝟐 = 𝟐

𝐴2𝐶2

𝐴1𝐶1

?

?

Acrobot

𝜽𝑪𝟏
𝟏 = 𝟎. 𝟏𝟏,−𝟏. 𝟐𝟗, −𝟐. 𝟕𝟕,−𝟎. 𝟓𝟕, −𝟖. 𝟔𝟕, 𝟓. 𝟎𝟕

𝜽𝑪𝟐
𝟐 = [−𝟎. 𝟗𝟑]

𝑨𝟏 = [𝟐], 𝑨𝟐 = [𝟎]

?

𝐶1 𝐴1

𝐴2

MountainCar Continuous

𝜽𝑪𝟏
𝟏 = [−𝟏𝟏. 𝟏𝟏, 𝟒𝟕𝟖. 𝟐𝟗], 𝜽𝑪𝟏

𝟐 = [−𝟔. 𝟐𝟔]

𝑨𝟏 = [𝟏. 𝟎], 𝑨𝟐 = [−𝟏. 𝟎]

?

𝐴2

𝐶1 𝐴1

Pendulum

𝜽𝑪𝟏
𝟏 = [𝟎. 𝟖𝟗, 𝟏. 𝟎𝟗, 𝟏. 𝟎𝟔], 𝜽𝑪𝟏

𝟐 = [𝟐. 𝟎𝟕]

𝑨𝟏 = {𝜽𝑷: 𝟏. 𝟏𝟎, 𝟏. 𝟏𝟎, 𝟏. 𝟏𝟒, 𝜽𝑰: 𝟐. 𝟎𝟔, 𝟐. 𝟐𝟎, 𝟎. 𝟒𝟔
𝜽𝑫: [−𝟎. 𝟖𝟔, 𝟏. 𝟔𝟏, 𝟏. 𝟏𝟒]}, 𝑨𝟐 = [𝟏. 𝟕𝟐]

?

𝐴2

𝐶1 𝐴1

Pusher with target position at (-1,0)

𝜽𝑪𝟏
𝟏 = −𝟏. 𝟏𝟎,−𝟑. 𝟕𝟗 , 𝜽𝑪𝟏

𝟐 = [−𝟑. 𝟎𝟏]

𝜽𝑪𝟐
𝟏 = [−𝟎. 𝟒𝟖, 𝟎. 𝟖𝟖], 𝜽𝑪𝟐

𝟐 = [𝟎. 𝟐𝟒]

𝑨𝟏 = [𝟎. 𝟑𝟖, 𝟎. 𝟔𝟐], 𝑨𝟐 = 𝟎, 𝟏
𝑨 = [𝒂𝒑𝒖𝒔𝒉−𝒍𝒆𝒇𝒕, 𝒂𝒑𝒖𝒔𝒉−𝒅𝒐𝒘𝒏]

𝐴1

𝐴2

𝐶1

𝐶2

?

Figure 16: Synthesized Behavior trees. In Pendulum, A1 is a PID controller that is specified by
θP , θI , θD; In Pusher, actions are composed of two primitive functions: apush_down and apush_left.

28

DIFFERENTIABLE SYNTHESIS OF BEHAVIOR TREE ARCHITECTURES AND EXECUTION NODES

𝜽𝒄𝟎
𝟏 = 𝟐. 𝟖𝟗,−𝟎. 𝟖𝟑, 𝟐. 𝟒𝟕.−𝟏. 𝟕𝟓, −𝟏. 𝟎𝟏, 𝟑. 𝟏𝟓, −𝟎. 𝟏𝟗,−𝟎. 𝟐𝟏, −𝟎. 𝟏𝟔, 𝟎. 𝟏𝟏,−𝟎. 𝟏𝟎, 𝟎. 𝟏𝟎, −𝟎. 𝟐𝟐, −𝟎. 𝟏𝟔,−𝟒. 𝟎𝟐 , 𝜽𝒄𝟎

𝟐 = [−𝟎. 𝟎𝟐]

𝜽𝒄𝟏
𝟏 = 𝟎. 𝟗𝟖, 𝟎. 𝟏𝟒, −𝟎. 𝟏𝟕,−𝟎. 𝟏𝟓, −𝟎. 𝟐𝟖, 𝟎. 𝟔𝟖, −𝟎. 𝟎𝟕,−𝟎. 𝟏𝟓, −𝟎. 𝟐𝟓, 𝟎. 𝟎𝟗,−𝟎. 𝟎𝟖, −𝟎. 𝟏𝟏, 𝟎. 𝟐𝟏, 𝟎. 𝟐𝟏, 𝟎. 𝟖𝟔 , 𝜽𝒄𝟏

𝟐 = [𝟎. 𝟏𝟓]

𝜽𝒄𝟐
𝟏 = 𝟎. 𝟓𝟑, 𝟎. 𝟏𝟗, 𝟎. 𝟒𝟔, −𝟎. 𝟑𝟎, 𝟎. 𝟐𝟎, 𝟎. 𝟑𝟗, −𝟎. 𝟐𝟏,−𝟎. 𝟏𝟔, 𝟎. 𝟏𝟐, −𝟎. 𝟏𝟎, 𝟎. 𝟏𝟎,−𝟎. 𝟐𝟐, −𝟎. 𝟏𝟔, −𝟎. 𝟎𝟗,−𝟎. 𝟓𝟎 , 𝜽𝒄𝟐

𝟐 = [−𝟎. 𝟐𝟎]

𝑨𝟏 = 𝟎 , 𝑨𝟐 = 𝟐

?

𝐴1

𝐶0

𝐶1

𝐴2𝐶2

empty
Empty

𝜽𝒄𝟎
𝟏 = −𝟑. 𝟓𝟒, 𝟑. 𝟗𝟕, 𝟎. 𝟐𝟕, 𝟎. 𝟕𝟓,−𝟎. 𝟗𝟏, −𝟑. 𝟑𝟐, 𝟎. 𝟎𝟕, 𝟎. 𝟐𝟓, −𝟎. 𝟏𝟐, 𝟎. 𝟎𝟖,−𝟎. 𝟏𝟏, 𝟎. 𝟏𝟖, 𝟎. 𝟐𝟏,−𝟎. 𝟐𝟒, 𝟐. 𝟎𝟖 , 𝜽𝒄𝟎

𝟐 = [−𝟑. 𝟔𝟓]

𝜽𝒄𝟏
𝟏 = −𝟏. 𝟐𝟎,−𝟎. 𝟐𝟐, −𝟎. 𝟏𝟐, 𝟎. 𝟑𝟓, 𝟎. 𝟏𝟕,−𝟏. 𝟎𝟎, −𝟎. 𝟐𝟒, −𝟎. 𝟏𝟗, 𝟎. 𝟐𝟑, 𝟎. 𝟏𝟖,−𝟎. 𝟎𝟕, 𝟎. 𝟐𝟏, −𝟎. 𝟐𝟐, 𝟎. 𝟏𝟕, −𝟎. 𝟖𝟗 , 𝜽𝒄𝟏

𝟐 = [𝟎. 𝟏𝟓]

𝜽𝒄𝟐
𝟏 = −𝟎. 𝟒𝟑,−𝟎. 𝟑𝟒, 𝟎. 𝟎𝟗, 𝟎. 𝟑𝟑, 𝟎. 𝟎𝟕, −𝟎. 𝟒𝟕, 𝟎. 𝟐𝟓, −𝟎. 𝟏𝟐, 𝟎. 𝟎𝟖,−𝟎. 𝟏𝟏, 𝟎. 𝟏𝟖, 𝟎. 𝟐𝟏, −𝟎. 𝟐𝟒, 𝟎. 𝟐𝟐, −𝟎. 𝟑𝟗 , 𝜽𝒄𝟐

𝟐 = [−𝟎. 𝟏𝟑]

𝜽𝒄𝟑
𝟏 = 𝟎. 𝟒𝟗, 𝟎. 𝟒𝟏, −𝟎. 𝟑𝟏,−𝟎. 𝟏𝟑, −𝟎. 𝟎𝟐,−. 𝟏𝟎, −𝟎. 𝟐𝟎, 𝟎. 𝟎𝟑, −𝟎. 𝟐𝟎, 𝟎. 𝟐𝟐,−𝟎. 𝟏𝟐, −𝟎. 𝟏𝟑, 𝟎. 𝟐𝟏, −𝟎. 𝟏𝟕, 𝟎. 𝟐𝟏 , 𝜽𝒄𝟑

𝟐 = [𝟎. 𝟎𝟎]

𝑨𝟏 = 𝟎 , 𝑨𝟐 = 𝟐 , 𝑨𝟑 = 𝟏

?

𝐴1

𝐶0

?

?

𝐶1

𝐴3𝐶3

?

𝐶2 𝐴2

Crossing
Crossing

Figure 17: Behavior trees of MiniGrid tasks. The input is modified as an abstract state.

𝜽𝒄𝟎
𝟏 = −𝟒. 𝟔𝟓, 𝟏. 𝟎𝟔, 𝟐. 𝟐𝟏, 𝟎. 𝟒𝟑,−𝟑. 𝟏𝟎, −𝟑. 𝟒𝟎 , 𝜽𝒄𝟎

𝟐 = [𝟏𝟎. 𝟑𝟐]

𝜽𝒄𝟏
𝟏 = −𝟐. 𝟑𝟖, 𝟔. 𝟏𝟒, 𝟏. 𝟎𝟑,−𝟔. 𝟗𝟗, 𝟐. 𝟑𝟔, 𝟏. 𝟎𝟑 , 𝜽𝒄𝟏

𝟐 = [−𝟔. 𝟓𝟐]

𝜽𝒄𝟐
𝟏 = 𝟓. 𝟓𝟗,−𝟎. 𝟗𝟔,−𝟗. 𝟑𝟖, −𝟒. 𝟑𝟖,−𝟏. 𝟒𝟐, −𝟒. 𝟖𝟖 , 𝜽𝒄𝟐

𝟐 = [𝟎. 𝟗𝟔]

𝑨𝟏 = 𝟎. 𝟎𝟎, 𝟎. 𝟎𝟎, 𝟎. 𝟎𝟎, 𝟏. 𝟎𝟎 , 𝑨𝟐 = 𝟎. 𝟒𝟑, 𝟎. 𝟎𝟎, 𝟎. 𝟓𝟕, 𝟎. 𝟎𝟎 , 𝑨𝟑 = 𝟎. 𝟎𝟎, 𝟎. 𝟕𝟖, 𝟎. 𝟎𝟎, 𝟎. 𝟐𝟐

?

𝐴3

𝐶0 ?

𝐴2𝐶2𝐶1 𝐴1

Random

?

Ant Random

𝜽𝑪𝟏
𝟏 = [−𝟐. 𝟔𝟏,−𝟎. 𝟏𝟗, 𝟎. 𝟓𝟒, 𝟎. 𝟐𝟏, 𝟎. 𝟐𝟏, 𝟏. 𝟕𝟕], 𝜽𝑪𝟏

𝟐 = [−𝟎. 𝟐𝟒]

𝜽𝑪𝟒
𝟏 = [−𝟏. 𝟑𝟎,−𝟎. 𝟏𝟐, 𝟏. 𝟐𝟖, −𝟎. 𝟓𝟑,−𝟎. 𝟎𝟒, −𝟐. 𝟑𝟖], 𝜽𝑪𝟒

𝟐 = [−𝟎. 𝟒𝟎]

𝜽𝑪𝟐
𝟏 = [𝟐. 𝟑𝟑,−𝟎. 𝟐𝟑, −𝟐. 𝟐𝟐, 𝟐. 𝟏𝟎, 𝟎. 𝟖𝟗, 𝟎. 𝟑𝟑], 𝜽𝑪𝟐

𝟐 = [−𝟎. 𝟓𝟎]

𝜽𝟑
𝟏 = [𝟎. 𝟐𝟐, −𝟎. 𝟔𝟕, 𝟏. 𝟓𝟖,−𝟏. 𝟑𝟒, −𝟎. 𝟓𝟐, 𝟎. 𝟒𝟎], 𝜽𝑪𝟑

𝟐 = [𝟎. 𝟑𝟓]

𝑨𝟏 = [𝟎. 𝟖𝟓, 𝟎, 𝟎. 𝟎𝟗, 𝟎. 𝟎𝟔], 𝑨𝟐 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟗𝟐, 𝟎. 𝟎𝟑 , 𝑨𝟑 = [𝟎, 𝟎. 𝟏𝟑, 𝟎, 𝟎. 𝟖𝟕]

?

?

𝐴2 𝐶3

𝐶1 𝐶4

𝐶2

𝐴1

𝐴3

Ant Maze

Figure 18: Behavior trees of Mujoco Ant tasks. The action nodes are composed of four primitive
functions: aup, adown, aleft, and aright.

In this section, we provide synthesized BTs of our proposed method which are complementary to
the main experiments in the main paper. The BTs synthesized for the tasks Cart Pole, Mountain Car,
Acrobot, Pendulum, and Pusher are shown in Fig. 16. The BTs synthesized for the task in MiniGrid
are shown in Fig. 17, and BTs learned for Ant are depicted in Fig. 18. The learned behavior tree of
the Half Cheetah Hurdle task is an Action node, which is composed of two primitives aforward and
ajump with weight [0.999, 0.001]. Moreover, we optimized the BT architecture based on empirical
execution data. For instance, during the Cart Pole task execution, we observed that the action node
added by the extraction algorithm remained inactive. Consequently, we removed the newly added
root and action nodes from the extraction process.

29

	Introduction
	Preliminaries
	Behavior Tree
	Differentiable Architecture Synthesis
	Problem Formulation

	Differentiable Synthesis of Behavior Trees
	Relaxing Architectures Search Space
	Differentiable BTs
	Extraction Algorithm

	Experiments And Evaluations
	Experimental Setup
	Main Results
	RQ1: Evaluation of effectiveness.
	RQ2: Evaluation of generalization.
	RQ3: Ablation Evaluation for Extraction Algorithm.

	Related Work and Conclusion
	More Details about Behavior Trees
	Classic Formulation of BTs
	Execution Example

	The Extraction Algorithm and Complexity Analysis
	Co-Adaptation and The Abnormality Caused by Continuous Approximation
	Pseudocode of the Extraction Algorithm
	Complexity Analysis of the Extraction Algorithm
	Discussion about Real-world Applications

	Detailed Descriptions of the Tasks and the Input of BTs
	Gymnasium Tasks
	MiniGrid Tasks
	Mujoco Tasks

	Implementation Details
	Complexity Analysis of the Derivation Graph Execution
	Detailed DSL designs for Condition and Action nodes
	Abstract State of MiniGrid Tasks

	Additional Related Works
	Hyperparameters and Training Details
	Configurations of the Derivation Graph
	Hyperparameters of Baseline Algorithms

	More Results on the Generalization Experiments
	Synthesized Behavior Trees

