
Proceedings of Machine Learning Research 288:1–33, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Knowledge-Enriched Machine Learning for Tabular Data

Juyong Kim JUYONGK@CS.CMU.EDU
Machine Learning Dept., Carnegie Mellon University, Pittsburgh, USA

Chandler Squires CSQUIRES@ANDREW.CMU.EDU
Machine Learning Dept., Carnegie Mellon University, Pittsburgh, USA

Pradeep Ravikumar PRADEEPR@CS.CMU.EDU

Machine Learning Dept., Carnegie Mellon University, Pittsburgh, USA

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
In this paper, we introduce the general framework of knowledge-enriched machine learning, for
encoding and leveraging problem-specific deterministic knowledge, such as column descriptions
in the tabular setting. We focus on a paradigmatic use case: supervised learning problems on
tabular data. As a first step in this direction, we introduce a simple yet flexible encoding of such
deterministic information in the form of concept kernels, and describe meta-algorithms which
leverage this particular encoding of prior knowledge. To ground future research, we introduce
KE-TALENT, a novel benchmarking suite for kernel-enriched supervised learning on tabular data,
adapted from the recently-introduced TALENT benchmark to include concept kernels and other
metadata for each dataset. Finally, to demonstrate the benefits of concept kernels, we provide results
for several kernel-enriched versions of existing algorithms, also intended as a baseline for future
research. Code is publicly available.
Keywords: Knowledge-enriched machine learning, tabular machine learning, concept kernel

1. Introduction

In areas such as vision and language, deep learning has achieved remarkable success, benefiting
from a combination of massive datasets and domain-appropriate inductive biases encoded into
model architectures (Krizhevsky et al., 2012; Hochreiter, 1997). However, in areas such as tabular,
relational, and scientific machine learning, deep models lag behind tree-based methods like XGBoost
(Grinsztajn et al., 2022). This is often blamed on smaller dataset sizes in such settings. But as we
argue in this paper, another critical reason is that the typical deep learning methods for tabular data
do not leverage rich sources of deterministic domain knowledge, such as column names. Note that
doing so is particularly challenging given the heterogeneity across datasets.

Overall, in many settings, rich sources of domain knowledge are indeed available, but what is
lacking is a general approach for encoding such domain knowledge into algorithmically-usable forms.
In this paper, we propose a general framework, which we call knowledge-enriched machine learning,
to bridge this gap. This framework, specifically geared toward tabular data, provides high-level
scaffolding for a new class of machine learning problems; as a paradigmatic example, we describe
the problem of kernel-enriched supervised learning which extends the standard machine learning
paradigm by considering an additional concept kernel as input to supervised learning algorithms.

To facilitate research in knowledge-enriched learning, we introduce KE-TALENT, a benchmark
that extends the subset of the TALENT benchmark (Ye et al., 2024a) by incorporating structured
metadata. Our benchmark consists of eleven datasets spanning diverse tasks and domains, with

© 2025 J. Kim, C. Squires & P. Ravikumar.

https://github.com/dalgu90/concept-kernels

KIM SQUIRES RAVIKUMAR

each dataset including column description and concept kernels derived from sentence embeddings
to encode semantic relationship between columns. The codebase also provides training pipelines,
enabling researchers to systematically compare different knowledge-enriched learning approaches.

Given a concept kernel that provides a notion of geometry over the individual table columns or
attributes, a critical question is then how to translate to a notion of geometry over entire inputs (or
table rows). As one class of approaches, we provide an implicit notion of geometry over inputs by
considering various forms of smoothers of the input that smooth it with respect to the concept kernel.
As another class of approaches, we explicitly construct so-called value kernels over inputs that are
explicitly specified in terms of the concept kernel. Given geometry over inputs, we can then extract
features and train performant supervised learning models.

Our experiments show that kernel-enriched models demonstrate competitive performance and of-
fer complementary feature representations. These findings highlight both the potential and challenges
of integrating deterministic knowledge into tabular learning.

The remainder of this paper is structured as follows. Section 2 introduces the knowledge-enriched
learning framework, formalizing the use of concept kernels. Section 3 describes KE-TALENT
benchmark, detailing dataset construction and concept kernel generation. Section 4 presents our
geometric approaches for knowledge-enriched learning. Section 5 provides experimental results,
highlighting key findings and limitations. Finally, Section 6 concludes with a discussion of future
research directions.

2. Knowledge-Enriched Learning

We begin by introducing our general framework of knowledge-enriched machine learning. Broadly
speaking, this framework focuses on machine learning algorithms which take structured forms of
deterministic information as input, in addition to the standard input of a dataset.

Consider a standard supervised learning problem with input space X and output space Y .
A supervised learning algorithm is a (possibly random) mapping A : D 7→ m̂D, where D =
{(x(i),y(i))}ni=1 is a dataset and m̂D : X → Y is a prediction function. Put simply, a supervised
learning algorithm A takes a dataset as input and returns a prediction function as output.

We can easily extend this definition to the general notion of a knowledge-enriched supervised
learning algorithm, which again is a (possibly random) mappingA : (D, I) 7→ m̂D, where I is some
structured form of deterministic information (domain knowledge). To specialize this framework, we
must specify the structural form of the deterministic information I. In choosing the structure of I,
one must carefully balance the following goals:

• Flexibility: The structure should be flexible enough to encode many different forms of
commonly-available knowledge, such as logical rules, natural language descriptions, and
relations from knowledge graphs.

• Informativity: The structure should be complex enough to carry problem-specific information.

• Pragmatics: The structure of I provides a pragmatic layer of abstraction between potentially
highly-unstructured domain knowledge on one hand, and the practical constraints of algorithm
design on the other.

In this paper, we focus on a simple but flexible encoding of deterministic information in the form
concept kernels, designed with tabular data problems in mind.

2

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

2.1. Concept Domains and Values

Let C be an arbitrary set of concepts, e.g. in a table taken from a dating website’s database, the con-
cepts may correspond to column names, with C = {age, city,gender,headshot,biography . . .}.

Each concept c ∈ C is associated with a concept domain, denoted Vc, which contains the possible
values of that concept. In general, the concept domains may be both rich and heterogenous, e.g. we
may have Vheadshot = [0, 1]64×64×3 as the set of all 64× 64 RGB images, and Vbiography as the set
of all strings under 1,000 characters.

In these terms, a row in a table corresponds to assigning each concept to a value in its domain.
When C and (Vc)c∈C are clear from context, we define V :=

∏
c∈C Vc as the set of all possible

assignments, termed the value space.1 We use bold letters for assignments, and unbolded letters for
values at specific concepts, e.g. s ∈ V is an assignment and s(c) is the value for concept c.

2.2. Concept Kernels

To relate concepts to a dataset D, we require a correspondence between the concepts C and the input
and output spaces X and Y . Let Cin ⊂ C be a set of input concepts and Cout ⊂ C be a set of output
concepts. Then, we assume that X =

∏
c∈Cin
Vc and Y =

∏
c∈Cout

Vc, i.e., each x ∈ X assigns each
concept to a value in its domain, with x(c) ∈ Vc denoting the value assigned to concept c.

Finally, given a set of concepts C, a concept kernel on C is a symmetric function k : C × C → R.
We are now ready to define a specific form of knowledge-enriched algorithm.

Definition 1 A kernel-enriched supervised learning algorithm is a (possibly random) mapping
A : D × k 7→ m̂D, where k is a concept kernel over C, and each point in D belongs to the value
space V =

∏
c∈C Vc.

It is crucial to note that k is a kernel over concepts rather than a kernel over values, i.e. in the tabular
setting, k measures the similarity between columns, not the similarity between rows. This fact
distinguishes our setup from the traditional usage of kernels in machine learning, e.g. in Gaussian
process regression.

Kernel-enriched Stochastic Processes In general, a kernel-enriched supervised learning algorithm
is defined without any need to specify probabilistic assumptions on the dataset D. However, for
theoretical purposes, we must often specify a data-generating model for D.

Hence, we define a kernel-enriched stochastic process on C as a pair (k,S), where k : C×C → R
is a concept kernel, and S = (S(c))c∈C is a stochastic process, with the random variable S(c) taking
values in the domain Vc. Then, letting X = (S(c))c∈Cin and Y = (S(c))c∈Cout , we may assume that
each pair (x(i),y(i)) in D is an independent sample from P(X,Y).

Constructing and Using Concept Kernels Thus far, we have discussed the general framework of
knowledge-enriched machine learning, and a more specific instantiation: kernel-enriched supervised
learning. However, several details remain. First, how can concept kernels be constructed from
existing sources of problem-specific information? Second, how can algorithms leverage concept
kernels to improve performance?

Both questions are quite open-ended and constitute entire possible areas of research. To seed
these areas, the remainder of the paper offers several basic starting points. First, in Section 3, we

1. In other contexts, such as physics and signal processing, the concept domains are homogeneous (i.e., Vc = Vc′ for all
c, c′ ∈ C), in which case elements of V are called configurations, states, or signals.

3

KIM SQUIRES RAVIKUMAR

Dataset Name Domain Task # class # sample # num # cat

Abalone Biology reg - 4177 7(7) 1(1/3)
Diamonds Geology reg - 53940 6(6) 3(3/20)
Parkinsons Telemonitoring Healthcare reg - 5875 18(18) 1(1/2)
Student Performance Education reg - 651 1(11) 29(19/53)
Communities and Crime Social Science reg - 1994 102(102) 0(0)

Bank Customer Churn Business bincls 2 10000 6(6) 4(4/9)
German Credit Data Business bincls 2 1000 7(7) 13(13/54)
Taiwanese Bankruptcy Business bincls 2 6819 95(95) 0(0)

ASP-POTASSCO Computer Science multicls 11 1294 140(140) 1(1/2)
Internet Usage Social Science multicls 46 10108 1(1) 69(69/423)
Student Dropout Education multicls 3 4424 17(17) 17(17/218)

Table 1: Statistics of the datasets in KE-TALENT. The Task column denotes the task type (reg
= regression, bincls = binary classification, multicls = multi-class classification). The # sample
column denotes the number of samples (rows). The # num column denotes the number of numerical
columns, and the # cat denotes the number of categorical columns. Numbers in parentheses indicate
the number of columns and categories after preprocessing (See Appendix C).

introduce a benchmarking suite, which consists of several datasets along with potentially useful
concept kernels. Then, in Section 4, we describe geometric approaches for leveraging concept kernels
for the purpose of kernel-enriched machine learning.

3. KE-TALENT: Benchmark

While a few tabular machine learning benchmarks exist (Grinsztajn et al., 2022), none explicitly
incorporate deterministic information about column semantics. To address this, we introduce KE-
TALENT, a benchmark that extends a subset of the TALENT benchmark (Ye et al., 2024a), the most
recent large-scale collection of tabular datasets. Our benchmark enhances TALENT by including
column descriptions and embeddings, facilitating the use of prior knowledge in ML models.

We selected eleven datasets from TALENT where descriptive column names or metadata are
available from the original data sources. They cover a diverse range of tasks and configurations of
numerical and categorical input features. The dataset selection was determined prior to running our
method to prevent post-hoc selection bias. Table 1 provides an overview of the dataset statistics.

To facilitate the use of deterministic information, KE-TALENT includes the following for each
dataset: (1) original and preprocessed dataset, (2) metadata for each concept (column), (3) raw
sentence embeddings of each concept (Reimers and Gurevych, 2019), (4) several pre-computed
concept kernels, and (5) code for preprocessing, training, and evaluation. The benchmark will be
continuously expanded to further enhance its scope and applicability.

Concept kernels provided in KE-TALENT For a chosen dataset in our benchmark, let C denote its
concepts, which are in one-to-one correspondence with column indices. As indicated, KE-TALENT
includes concept embeddings (λc)c∈C ; these embeddings can be used to construct concept kernels
k(c, c′) in several ways. We provide multipe types of concept kernels, including inner product,
distance-based, and group-centered inner product kernels. Please refer to Appendix B for the details.

4

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

4. Geometric Approaches to Kernel-Enriched Learning

A concept kernel specifies only a geometry over the concepts C (i.e., columns of a table), whereas in
learning, we need to specify an inductive bias over the values V (i.e., rows of a table). Thus, a critical
question in kernel-enriched learning is how to go from a geometry over coordinates to a geometry
over values. Here, we describe several classes of approaches which accomplish this goal.

Notation For simplicity, we assume C is finite, with input concepts ordered as Cin = {c1, c2, . . . , cD}
for someD ∈ N. From here, we only use the concept kernel over the input concepts k : Cin×Cin → R.
Finally, we will frequently represent k by a symmetric matrix K ∈ RD×D, where (K)ij = k(ci, cj).

We assume homogeneous input concept domains, with values in some finite-dimensional vector
space, i.e., Vc = RB for all c ∈ Cin, which enables vector-space operations2. We can think of each
dimension b as a channel. Then, we can identify each input value x ∈ X with a matrix Mx ∈ RD×B

whose ith row equals x(ci). This makes X a vector space, with X ∼= RD×B . We use x and Mx

interchangeably and write xb for the bth channel of x across all D concepts, i.e. xb = (Mx):,b.

4.1. Smoothing Approaches

In the first class of approaches, we use the concept kernel to implicitly specify a geometry over values
by specifying a transformation that takes each input value x ∈ X to a smoother value x̃ ∈ X .

Smoothness via kernel convolution A simple way to smooth x with respect to k is via kernel
convolution in value space, i.e., via the transformation (k ∗ −) : X → X defined as

(k ∗ x)(c) :=
∑

c′∈Cin
k(c, c′) · x(c′), (1)

Letting x̃ = (k ∗ x), we can represent in matrices as Mx̃ = KMx. To preserve scale, we can apply
either the row-normalized Krow = D−1K, or the symmetric-normalized K := D−1/2KD−1/2

kernels, where D is the diagonal degree matrix Dii =
∑

j Kij . Notably, the value x̃ = D−1Kx
solves the following kernel-weighted least variance objective at each input concept c:

(krow ∗ x)(c) = argmin
v∈Vc

∑
c′∈Cin

k(c, c′) · ∥x(c′)− v∥22 (2)

Such a convolution can also be performed in the spectral domain. If k has a spectral decomposi-
tion, i.e., k(c, c′) =

∑D
m=1 λm⟨ψm(c), ψm(c′)⟩ for orthonormal eigenfunctions ψm : Cin → R and

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λD. We use m as our index to emphasize that each component is
equivalent to a mode in signal processing, with higher-order eigenfunctions (i.e., those associated
with smaller eigenvalues) corresponding to less smooth functions. If xb =

∑D
m=1 αbmψm, then

x̃b = Kxb =
∑d

m=1
βbmψm, where βbm = λmαbm, (3)

which is smoother since the higher-order eigenfunctions are attenuated, i.e., their associated eigenval-
ues are taken closer to zero. Thus, kernel convolution acts a soft low-pass filter.

2. B = 1 in typical tabular data, but we introduce B to generalize notation for cases where feature encodings are applied.
If the input concept domains are heterogeneous, we can pre-process to make them homogeneous, as in Appendix C.

5

KIM SQUIRES RAVIKUMAR

Smoothness via regularization Alternatively, one can use the concept kernel k to construct a
smoothness penalty R : X → R, and solve the regularized least squares problem

x̃ = argmin
v∈X

∑
c∈Cin
∥x(c)− v(c)∥22 + ξR(v), (4)

for a hyperparameter ξ ≥ 0. For example, if k is a Mercer kernel, so that all eigenvalues in its
spectral decomposition are nonnegative, then k induces the norm Rnorm(v) := ∥M⊤

vK
−1Mv∥22. In

this case, the optimum of Equation (4) is x̃ such that Mx̃ = K(K+ ξI)−1Mx. In spectral terms,
we can again view this procedure as a soft low-pass filter, since

x̃b =
∑D

m=1
βbmψm, where βbm =

λm
ξ + λm

αbm. (5)

Alternatively, we can use the kernel-weighted distance a smoothness penalty, i.e., Rlap(v) :=∑
c,c′∈C k(c, c

′) · ∥v(c) − v(c′)∥22, where k(c, c′) = d(c)−1/2k(c, c′)d(c′)−1/2. In this case, we
perform and analyze in the spectral domain of K. The optimum of Equation (4) is x̃ such that
Mx̃ = ((1 + ξ)I − ξK)−1Mx, which has the spectral characterization

x̃b =
∑D

m=1
βbmψm, where βbm =

1

1 + ξ − ξλm
αbm, (6)

where ψm and λm are from the eigen-decomposition of K.

General spectral transforms As noted, kernel convolution, norm regularization, and Laplacian
regularization all amount to soft low-pass filtering with different filters; see Equations (3), (5) and (6),
respectively. When the concept kernel k is a Mercer kernel, we can view all of these approaches as
convolution with a modified version of k. In particular, for a function s : R≥0 → R≥0, we call

ks(c, c
′) :=

∑D

m=1
s(λm)⟨ψm(c), ψm(c′)⟩ (7)

a spectrally transformed concept kernel. Holding to the interpretation that smaller eigenvalues
are associated with less smooth eigenfunctions, we focus on functions s which attenuate smaller
eigenvalues, which we call attenuating spectral transforms.3 Equation (5) and (6) are such transforms.

4.2. Value Kernel Approaches

In the second class of approaches, we explicitly specify a geometry over the input space X by
constructing a value kernel K : X ×X → R. Given a concept kernel k, we start by using its spectral
decomposition to construct a corresponding feature map Φ : Cin → RD:

Φ(c) :=
(√

λ1 · ψ1(c),
√
λ2 · ψ2(c), . . . ,

√
λD · ψD(c)

)
, (8)

so that k(c, c′) = ⟨Φ(c),Φ(c′)⟩. This feature map projects each concept c ∈ Cin into aD-dimensional
eigenspace associated with the concept kernel: ϕm : c 7→

√
λmψm(c) is the mth component of Φ.

Given such a feature map ϕm, an input value x ∈ X can be represented in terms of these concept
features xb =

∑D
m=1(αbm/

√
λm)ϕm. This decomposition by ϕm induces a value kernel

K(xb,x
′
b) =

∑D

m=1

αbm√
λm

α′
bm√
λm

=
∑D

m=1

1

λm
⟨xb,ψm⟩⟨x′

b,ψm⟩ = ⟨φ(xb), φ(x
′
b)⟩, (9)

3. Formally, such functions are monotonically increasing

6

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

where φ is the value feature map, and we use the inner product ⟨f ,g⟩ =
∑

c∈Cin
f(c) · g(c) for any

two functions f : Cin → R and g : Cin → R.
Different spectral transformations s(·) from the smoothing approach lead to different value

kernels, but all share the same eigenfunctions ψm. Specifically, the choice of spectral transformation
s(·) only introduces a point-wise scaling to each value feature component:

φs(xb) =

(
1√
s(λ1)

⟨xb, ψ1⟩,
1√
s(λ2)

⟨xb, ψ2⟩, · · · ,
1√
s(λD)

⟨xb, ψD⟩
)
. (10)

In practice, we set s(·) = 1 when transforming input into value feature. This particular choice
corresponds exactly to the Fourier coefficients with respect to the concept kernel.

Combining value kernels As described, difference choices of concept kernel k lead to different
value kernels K. We can can combine entire value kernels K1 and K2 with value feature maps
Φ1 : X → RD×B and Φ2 : X → RD×B . We can concatenate the value feature maps, resulting in the
value kernel K(x,x′) = K1(x,x

′) +K2(x,x
′). Alternatively, we can convolve the value kernels

as K(x,x′) = (K1 ∗K2)(x,x
′) :=

∫
X K1(x,v) ·K2(x

′,v) · dv, which amounts to Φ1 and Φ2

interacting through integration over an intermediate space.

4.3. Partially Specified Concept Kernels

Thus far, we have united several potential approaches to kernel-enriched supervised learning, showing
that we can use the provided concept kernel k to construct a value kernel K. However, in many
cases, the concept kernel may be only partially specified, e.g. a binary sparsity pattern for k as
B ∈ {0, 1}D×D. Also, even if the concept kernel is fully available, we might wish to better model
the concept relationship by binarizing the kernel and learning from data.

In this scenario of a binarized kernel, we present this kernel as edges in a graph, where each
concept acts as a node. Graph Neural Networks (GNNs) (Kipf and Welling, 2017), specifically Graph
Attention Networks (GATs) (Veličković et al., 2017; Brody et al., 2022), naturally accommodate this
setting. At each GAT layer, attention weights can be dynamically learned based on both current node
features and concept embeddings. We refer to this variant as Concept Graph Attention Networks
(CGATs). Formally, a CGAT layer with node features H(l) ∈ RD×B and concept embeddings
(λc)c∈C updates node features as:

h(l+1)
c =

∑
c′:Bcc′=1

αcc′W
(l)
t h

(l)
c′ , with

αcc′ = exp(score(l)cc′)/
∑

x:Bcx=1 exp(score(l)cx) and

score(l)cc′ = a(l)⊤σ(W
(l)
s h

(l)
c +W

(l)
t h

(l)
c′) + (W

(l)
e λc)

⊤(W
(l)
e λc′),

(11)
where σ is a nonlinear activation, such as LeakyReLU, and W

(l)
s ,W(l)

t ,W(l)
e , and a(l) are learnable

parameters. This approach can adaptively emphasize significant concept pairs based on both learned
representations and concept kernels. We can also apply a multi-head attention scheme to this.

4.4. Using Concept Kernels for Self-Supervised Learning

Concept kernels quantify similarities between the concepts or columns in tabular data. Leveraging
this property, we construct a self-supervised learning (SSL) objective by defining a value transition
distribution, which systematically swaps or replaces column values through a concept-based Markov

7

KIM SQUIRES RAVIKUMAR

chain. Specifically, we row-normalize the concept kernel matrix4 to form the concept transition
matrix T = D−1K, which defines a Markov chain over concepts with a stationary distribution πK.
Given this, we define the value transition distribution as:

Q(x′ | x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc), (12)

where Qcc′ is the value swap distribution to better capture complex or negative correlations.
Using this transition process, we generate multiple augmented views of training samples. SSL

objectives, such as InfoNCE (Oord et al., 2018) or spectral contrastive loss (HaoChen et al., 2021),
can then leverage these views to learn feature representations that inherently respect the geometric
structure encoded by the concept kernel. Please refer to Appendix D for details of the SSL approach.

5. Experiments

In this section, we evaluate the approaches of kernel-enriched learning discussed in Section 4 on KE-
TALENT, and compare them with strong tabular ML baselines. First, we describe the implemented
models of knowledge-enriched supervised learning and the baselines. Then, we outline the evaluation
methodology to ensure a fair comparison. Finally, we present and analyze the results.

5.1. Models

Smoothing models These models construct smoothed representations of input values by applying
transformations derived from the concept kernel. Specifically, we explore three smoothing methods:
(1) convolution using the row-normalized kernel, (2) smoothing via norm regularization, and (3)
smoothing with a Laplacian penalty. After smoothing, the resulting representations are provided as
input to an MLP prediction model5.

Value kernel model This method projects an input row onto spectral components derived from
the concept kernels. We use two concept kernels: the inner product kernel and the group-centered
inner product kernel, where concept groups are identified via HDBSCAN clustering. The model
architecture consists of projection matrices where the input is transformed into the spectral features,
concatenation with the original input value, and an MLP model.

Partially specified concept kernel (CGAT) In this approach, we construct a graph of columns
where edges are the top-p6 highest absolute values from the concept kernel matrix K. This graph is
then utilized by Concept Graph Attention Network (CGAT) described in Section 4.3. The model
architecture includes: a feature encoding layer from RealMLP to transform each column value into a
dense embedding, multiple GCAT convolution layers implemented with PyTorch Geometric (Fey
and Lenssen, 2019), a max-pooling operation over node features, and an MLP prediction head.

Self-supervised learning model Our SSL model consists of a feature encoder, which transforms an
input row into a fixed-length feature vector, and an MLP prediction head. We choose FT-Transformer
(Gorishniy et al., 2021) as the feature encoder. Training the SSL model is in two steps: initial

4. We assume K is non-negative, or pre-process it by clamping negative values to zero.
5. For the MLP architecture in smoothing and value kernel models, we re-implement RealMLP except data-driven

initialization and dropout schedule.
6. p is selected by hyper-parameter search.

8

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Dataset Abalone Diamond ParkTel StuPerf Crime Churn Credit Taiwan ASP Internet StuDrop

Method \ Task reg/RMSE(↓) bincls/Acc(↑) multicls/Acc(↑)

RealMLP 2.1210 523.92 0.7337 2.9277 0.1381 0.8735 0.7157 0.9667 0.3861 0.5302 0.7655
CatBoost 2.1789 524.91 1.5994 2.9244 0.1336 0.8759 0.7430 0.9718 0.3815 0.5358 0.7782
TabR 2.1078 513.53 8.0521 2.9072 0.1437 0.8743 0.7240 0.9678 0.3750 0.5183 0.7493
FT-T 2.1078 532.83 8.3437 2.9642 0.1369 0.8709 0.7123 0.9674 0.3678 0.5348 0.7547

Smooth(kernel) 2.1718 938.03 2.4700 3.0651 0.1466 0.8657 0.7160 0.9722 0.3815 0.5042 0.7162
Smooth(norm) 2.0879 903.70 1.2112 2.9725 0.1401 0.8688 0.6960 0.9659 0.4013 0.5093 0.7579
Smooth(Laplacian) 2.0937 522.37 0.9530 2.8926 0.1397 0.8765 0.7193 0.9694 0.3900 0.5259 0.7673
Value kernel 2.0825 525.79 0.8676 2.9203 0.1394 0.8746 0.7157 0.9673 0.3761 0.5315 0.7665
CGAT 2.0876 677.33 1.4612 3.0397 0.1425 0.8764 0.7337 0.9675 0.3838 0.5275 0.7656
SSL 2.1584 534.12 1.1275 2.9178 0.1373 0.8757 0.7180 0.9655 0.3964 0.5327 0.7571

Table 2: Performance on KE-TALENT benchmark The table reports test set performance of
various baselines and kernel-enriched learning models. Results are averaged over 15 runs after hyper-
parameter tuning. Bold indicates the best-performing method per dataset. Underlined values denote
methods statistically indistinguishable from the best method using Welch’s t-test with p = 0.05 (↓:
lower is better, ↑: higher is better).

contrastive learning on the augmented dataset and finetuning on the supervised task. See Appendix
D for the implementation and training details.

Baselines To assess the effectiveness of our methods, we compare the best models in their respective
model classes on the TALENT benchmark: RealMLP (Holzmüller et al., 2024), a multilayer
perceptron tailored for tabular data with tuned hyper-parameters; CatBoost (Dorogush et al., 2018),
a gradient boosting method handling categorical features via target statistics; TabR (Gorishniy
et al., 2024), which integrates a k-nearest-neighbor-like component into deep learning models; and
FT-Transformer (Gorishniy et al., 2021), combining feature tokenizers with Transformer layers.

5.2. Evaluation method

Our evaluation methodology directly follows TALENT to ensure a fair and consistent comparison
across models. For each dataset and knowledge-enriched model, we perform hyper-parameter
optimization using Optuna Akiba et al. (2019) for 100 trials based on validation performance. Each
model is trained 15 times with the optimal hyper-parameters to report average test performance. For
the SSL model, hyper-parameter search is conducted only during the fine-tuning step, optimizing the
MLP prediction head and training parameters, while the contrastive learning step follows the default
FT-Transformer configuration from the TALENT codebase. Appendix E details the tuning procedure
and search space. For the baseline models, we use the results from the TALENT benchmark.

5.3. Results

Performance on KE-TALENT benchmark Table 2 presents performance of our kernel-enriched
models and baselines on the KE-TALENT benchmark. CatBoost alone ranks best in four datasets,
aligning prior findings that gradient boosting excels in tabular data settings. Nonetheless, kernel-
enriched methods also demonstrate competitive performance, showing the potential of knowledge-

9

KIM SQUIRES RAVIKUMAR

Dataset CatBoost SSL CatBoost (+SSL Feature)

ASP-POTASSCO 0.3815 0.3964 0.4067

Table 3: Combining SSL feature with CatBoost Integrating SSL feature with CatBoost outperforms
baseline CatBoost and SSL, suggesting that SSL representations complement tree-based models.

enriched learning: the smoothing models achieves top on four datasets, and the value kernel notably
excels on Abalone dataset. Despite these successes, kernel-enriched models did not consistently
surpass baselines, likely due to inefficiencies in concept kernel construction or how kernel information
was integrated. Please refer to Appendix F for additional results and kernel visualizations.

Combining SSL features with CatBoost To assess the effectiveness of features learned from
knowledge-enriched learning, we trained CatBoost using both the original tabular data and the feature
from the pre-finetuning SSL encoder outputs on ASP-POTASSCO, where SSL ranked second. As
shown in Table 3, this hybrid approach outperforms both baseline CatBoost and SSL, achieving the
highest accuracy. This result suggests that SSL captures complementary metadata-driven features.

6. Discussion

Contributions In this paper, we outlined the general idea of knowledge-enriched machine learning,
focusing on supervised learning algorithms that take an additional input in the form of a concept ker-
nel. We proposed four meta-approaches that leverage concept kernels to inform their inductive biases.
Additionally, we introduced KE-TALENT, a new benchmark for kernel-enriched supervised learning
on tabular data, evaulated these approaches again strong tabular ML baselines. Our empirical results
show that while kernel-enriched methods did not consistently outperform tree-based baseline, they
demonstrated competitive performance and, in some cases, complementary feature representations.

Immediate future directions Our work opens the door to several future directions for knowledge-
enriched machine learning in different domains. Here, we discuss a few directions of immediate
importance, restricting our focus to the tabular data setting targeted by our benchmarking suite.

• Improved kernel construction: In our KE-TALENT benchmarking suite, we included several
baseline kernels constructed from sentence embeddings. As the understanding of LLM embed-
dings improves, it may become possible to develop better methods for constructing kernels.
Additionally, it may be interesting to use other forms of prior knowledge for constructing
kernels, e.g. using knowledge graph embeddings (Ji et al., 2021).

• Improved handling of heterogeneity: Our datasets were carefully processed to ensure that
the concept domains are relatively homogenous. In cases where this is not possible, or to
further improve performance on these datasets, it may be necessary to enrich algorithms with
other inputs, e.g. functions relating heterogeneous concept domains Vc and Vc′ .

• Higher-order domain knowledge: In some cases, binary relationships may not be sufficient
to capture all domain knowledge. In these cases, it may be necessary to consider richer forms
of knowledge enrichment and use those in methods which leverage higher-order structure, e.g.
simplicial neural networks (Bodnar et al., 2021).

10

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. SCARF: Self-supervised contrastive learning
using random feature corruption. In International Conference on Learning Representations, 2022.

Adrien Bardes, Jean Ponce, and Yann Lecun. VICReg: Variance-invariance-covariance regularization
for self-supervised learning. In International Conference on Learning Representations, 2022.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
International Conference on Learning Representations, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: Gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 2021.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. TabR: Tabular deep learning meets nearest neighbors. In International Conference on
Learning Representations, 2024.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in Neural Information Processing Systems, 2022.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems,
2021.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

David Holzmüller, Leo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned MLPs
and boosted trees on tabular data. In Neural Information Processing Systems, 2024.

Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.

11

KIM SQUIRES RAVIKUMAR

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

Daniel D. Johnson, Ayoub El Hanchi, and Chris J. Maddison. Contrastive learning can find an
optimal basis for approximately view-invariant functions. In International Conference on Learning
Representations, 2023.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in Neural Information Processing Systems, 2012.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text em-
bedding benchmark. In Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics, May 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and hierarchi-
cal concepts in large language models. In ICML 2024 Workshop on Mechanistic Interpretability,
2024a.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In International Conference on Machine Learning, 2024b.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Conference on Empirical Methods in Natural Language Processing, 2019.

B Schölkopf. Learning with kernels: support vector machines, regularization, optimization, and
beyond, 2002.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from Claude 3 Sonnet.
Anthropic, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-
controlled generative models. Advances in Neural Information Processing Systems, 2024.

Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at deep
learning on tabular data. arXiv preprint arXiv:2407.00956, 2024a.

12

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A
deep tabular baseline two decades later. arXiv preprint arXiv:2407.03257, 2024b.

Runtian Zhai, Bingbin Liu, Andrej Risteski, J Zico Kolter, and Pradeep Kumar Ravikumar. Under-
standing augmentation-based self-supervised representation learning via RKHS approximation
and regression. In International Conference on Learning Representations, 2024.

13

KIM SQUIRES RAVIKUMAR

Contents of Appendix

A Notation 15

B Constructing a Concept Kernel 15
B.1 From concept metadata to concept embeddings 16
B.2 From concept embeddings to concept kernel . 16

C Tabular Data Processing 17

D Self-supervised Learning 18
D.1 Data augmentation . 20
D.2 Self-supervised representation learning . 22

E Hyper-parameter Search and Training Details 23

F Additional Results 24
F.1 Best result for each dataset . 24
F.2 Concept kernel visualization . 24

14

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Symbol Domain Description

k Cin × Cin → R Concept kernel (restricted to input concepts)
x X A function mapping each input concepts to a values in its domain

x(c) Vc The function x evaluated at input concept c

D N Number of input concepts
K RD×D Matrix representing the concept kernel (restricted to input concepts)
B N Number of channels/bands in each concept domain
b {1, . . . , B} An index for the bth channel

xb Cin → R The function mapping each concept to its value on the bth channel
Mx RD×B The matrix representing the function x, with ith row equal to x(c)

m {1, . . . , D} An index for the mth mode of an eigendecomposition
λm R≥0 The mth largest eigenvalue of k
ψm Cin → R The mth eigenfunction of k

ψm(c) R The mth eigenfunction of k evaluated at input concept c
αbm R The mth Fourier coefficient of the bth channel of x
βbm R The mth Fourier coefficient of the bth channel of x̃
ξ R≥0 A regularization hyperparameter

Φ Cin → RD A concept feature map
ϕm Cin → R The mth component of the feature map Φ

φ xb 7→ RD A value feature map

W
(l)
{s,t,e} Rdin×dout Weight matrices in CGAT

a(l) Rdout Weight vector in CGAT

Table 4: Notation.

Appendix A. Notation

Table 4 summarizes the notation used throughout the paper by listing symbols, their mathematical
domains, and concise descriptions for easy reference.

Appendix B. Constructing a Concept Kernel

As described in Section 4, concept kernels summarize deterministic information about columns and
facilitate the incorporation of domain knowledge into tabular machine learning. The effectiveness of
knowledge-enriched tabular machine learning heavily depends on the quality of these kernels, as they
dictate the interaction between the columns. Here, we outline general approaches and key design
choices for constructing concept kernels from column metadata.

15

KIM SQUIRES RAVIKUMAR

B.1. From concept metadata to concept embeddings

From concept metadata, we extract concept embeddings (λc)c∈C , where C is the set of concepts (or
columns). Concept embeddings serves the foundation for constructing concept kernels. There are
multiple ways to obtain these embeddings7.

In a case there is a direct mapping from columns to the nodes in a knowledge graph, we can
obtain node embeddings using a knowledge graph embedding method (Ji et al., 2021). However,
such direct mappings are often unavailable. For example, in the “Communities and Crime” dataset of
KE-TALENT, the columns represent measurements such as “percentage of population that is 12-29
in age”, which do not correspond directly to a node in a knowledge graph. A more general approach
is to extract sentence embeddings from a language model (Reimers and Gurevych, 2019), using
textual descriptions of column names and metadata. This method provides a flexible way to obtain
concept embeddings without requiring predefined mappings.

For the datasets in KE-TALENT, either column descriptions or descriptive column names are
available in the original data sources. We extract sentence embeddings for each columns to obtain
concept embeddings. Categorical columns are preprocessed into one-hot encoding, where each
category requires a separate embedding. To generate meaningful presentations, we concatenate the
column name with each category label. For example, the category single under the column marital
status is converted into marital status is single. When a column description is available, it is
appended to the column name before generating embeddings.

The choice of sentence embedding model influences the structure of the concept kernels. You
can select a model that performs well across various sentence embedding tasks (Muennighoff et al.,
2023), or one specialized for semantic textual similarity (STS) tasks. For sentence embedding
models based on instruction tuning, the kernel matrix is often asymmetric. This is because similarity
is computed using cosine similarity between query embeddings and document embeddings, with
queries being prepended with instructions during embedding extraction. Another consideration
is that in many sentence embedding models, similarity scores are more meaningful in terms of
relative rankings rather than absolute values. We choose all-mpnet-base-v2 model due to its
widespread adoption and strong performance in general-purpose sentence embedding tasks, as noted
in the Sentence-Transformer (Reimers and Gurevych, 2019) documentation.

We note that while our approach is general, there is ample room for improvement by refining
column descriptions and selecting a more suitable sentence embedding model through analysis of the
concept kernel matrix.

B.2. From concept embeddings to concept kernel

Given concept embeddings (λc)c∈C , we construct concept kernels k(c, c′) to provide structured
similarity between concepts (or columns). For each dataset, we provide the following concept kernels
as baselines:

1. Inner product: Here, k(c, c′) = ⟨λc,λc′⟩.

2. Centered inner product: Let λ = 1
|C|

∑
c∈C λc. Then k(c, c′) = ⟨λc − λ,λc′ − λ⟩.

3. Exponential squared distance: Here, k(c, c′) = exp
(
−∥λc − λc′∥22

)
.

7. Concept kernels can be directly obtained without explicit concept embeddings, in rare cases where columns have a
direct mapping to concepts in a knowledge graph with predefined similarities.

16

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Each of these standard kernels corresponds to a different interpretation of the geometry of the
embedding space (Schölkopf, 2002). Understanding the geometry of sentence embeddings is an
active area of research (Park et al., 2024b,a; Templeton, 2024), and such research may pave the way
to better ways of constructing kernels for our datasets.

While kernel choice is not the primary focus of our work, we do remark on an important phe-
nomenon. Due to the nature of sentence embeddings, many of these constructions yield kernels which
assign high similarity to concept pairs such as c = the-color-is-red and c′ = the-color-is-blue.
The associated random variables X(c) and X(c′) will typically be highly dependent (in terms of
mutual information), but they may take on very dissimilar values, e.g., they will tend to have a large
negative correlation.

Depending on how a method uses the concept kernel, it may be helpful to adapt the kernel to
encode such negative relationships. To this end, we provide for each dataset a concept partition, i.e.
a division of C into disjoint subsets of concepts C1, C2, . . . , CE . From such a partition, we construct
an additional kernel:

4. Group-centered inner product: Let λe =
1

|Ce|
∑

c∈Ce λc. Then

k(c, c′) =

{
⟨λc − λk,λc′ − λk⟩ c, c′ ∈ Ck
⟨λc,λc′⟩ otherwise

The provided concept partitions can also be used for more complex kernel constructions, e.g. using
subspace projections inspired by concept algebras (Wang et al., 2024). Note that, unlike kernels 1-3,
this kernel is not necessarily positive definite; possibly limiting what algorithms are applicable.

Appendix C. Tabular Data Processing

In general, we pre-process tabular data to ensure robust training with ML models. Tabular datasets
typically contain two types of columns: numerical (continuous or ordinal values) and categorical
(discrete labels). Each type requires appropriate preprocessing to facilitate learning in a deep
frameworks, and preprocessing is dependent on the architecture.

Numerical columns can have varying ranges, units and scales (e.g., linear vs. logarithmic).
To bring them to a comparable scale while keeping preprocessing simple, we apply column-wise
standardization, i.e., subtracting the mean and dividing by the standard deviation. Standardizing
numerical features aligns well with extracting spectral components corresponding to smooth graph
signals, or eigen functions, and stabilizes training. One can also choose other forms of normalization
such as min-max scaling, or, in case the distribution is highly skewed, quantile transformation.

Categorical columns, being nominal, require separate handling. Simply assigning ordinal values
to the category labels may introduce arbitrary order to the labels, potentially degrading performance
when combined with models that assumes a meaningful order. To avoid this while applying to
our various approaches (smoothing, value kernel, and CGAT model), we apply one-hot encoding,
representing each category as an independent binary vector. During preprocessing, some of the
categorical columns are moved into numerical columns when they represent ordinal values.

17

KIM SQUIRES RAVIKUMAR

Concept metadata

Concept embeddings (λc)c∈C

Concept kernel k : C × C → R

Concept transition matrix T ∈ Rd×d

(a)

(b)

(d)

Raw tabular dataset

Pre-processed tabular dataset

Swap distributions
(
Qcc′ : Ṽc ⇝ Ṽc′

)
c,c′∈C

(c)

(e)

Value transition distribution Q : V ⇝ V

Augmented dataset Daug

Learned representations

(f) (f)

(g)

(h)

Deterministic info processing (B)

Tabular data processing (C)

Data augmentation (D.1)

Self-supervised learning (D.2)

Figure 1: Full pipeline of self-supervised learning This figure illustrates the complete pipeline
for knowledge-enriched supervised learning. The pipeline consists of multiple stages, including
deterministic information processing, tabular data processing, data augmentation, and self-supervised
learning. Please refer to the Sections B-D.2 for the detailed descriptions of each stage.

Appendix D. Self-supervised Learning

In this section, we describe the method, implementation details of the pipeline, and key design choices
involved in building knowledge-enriched self-supervised learning models for KE-TALENT. The
overarching objective of knowledge-enriched SSL model is to learn feature representations from both
the raw tabular dataset and the associated concept metadata while leveraging the prior knowledge
encoded in concept metadata to improve downstream task performance. Figure 1 illustrates the full
pipeline and Algorithm 1 a step-by-step overview of the SSL training procedure.

18

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Algorithm 1 ConceptSSL

Require: Concept kernel k : C × C → R, dataset D = {(x(i),y(i))}ni=1, losses (ℓSSL, ℓtask), M ∈ N
Ensure: Encoder h : X → Rd, prediction head g : Rd → Y

1: ## Value transition distribution
2: Compute the concept transition matrix T and the stationary distribution πK from k
3: Compute the value swap distribution Qcc′ for each ci, cj ∈ C.
4: Define the value transition distribution Q(x′|x) using Equation 12
5: ## Dataset augmentation
6: Let Daug = ∅
7: for m = 1, . . . ,M do
8: Sample x and x′ uniformly and independently from D
9: Generate augmented views x1,x2 ∼ Q(·|x) and a negative sample x− ∼ Q(·|x′).

10: Add (x1,x2,x−) to Daug
11: end for
12: ## Self-supervised learning
13: Train h on LSSL(h) = E(x1,x2,x−)∼Daug

[
ℓSSL(fθ(x

1), fθ(x
2), fθ(x

−))
]

14: ## Fine-tuning
15: Train h and g on Ltask(h, g) = E(x,y)∼D

[
ℓtask(g(h(x)),y)

]

First, we show how the concept kernel k : C × C → R can be used to construct a value kernel
K : X × X → R using a self-supervised approach. In the following subsections, we will follow the
steps in the figure that are specific to the SSL approach, describing each steps in detail.

Constructing a value transition distribution To begin, assume that Kin has only nonnegative
entries, let D be a diagonal matrix with (D)ii =

∑din
j=1 kij , and let T := D−1Kin. Then T is a right

stochastic matrix, i.e., its rows sum to one. We call T the concept transition matrix, since it defines
a concept Markov chain, i.e., a Markov chain over concepts. Assuming that T is irreducible and
aperiodic, this Markov chain has a unique stationary distribution which we can represent as a row
vector πK. With some abuse of notation, we will use πK to denote the stationary distribution, and
we will use Ti to denote the transition distribution from concept ci.

Now, we can use the concept Markov chain to define a Markov chain over the (potentially
uncountable) set of input values X . In particular, given any value x ∈ X , consider performing one or
more iterations of the following steps:

1. Sample ci ∼ πK. 2. Sample cj ∼ Ti. 3. Let x1 ← swap(x ; ci, cj).

Here, swap(· ; ci, cj) denotes the function which takes x as input and returns x′ such that
x′(c) = x(c) if c ̸∈ {ci, cj}, x′(ci) = x(cj), and x′(cj) = x(ci). Additionally, to handle (potentially
negative) correlation between column values, we further transform the swapped values in x1 via value
swap distribution Qcc′ , a (probabilistic) mapping from Vc to Vc′ . This process induces a transition
distribution over values, which we call the value transition distribution, denoted Q(X1 | X):

Q(x′ | x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc). (13)

A related work is Bahri et al. (2022), which augments tabular columns by sampling from marginal
distributions, whereas ours leverages concept kernels to incorporate column relationships.

19

KIM SQUIRES RAVIKUMAR

Given the value transition distribution, one can perform augmentation-based self-supervised
learning in a number of ways, e.g. for any anchor value x ∈ X taken from our dataset, we can
generate a positive sample x1 ∼ Q(· | x). Then, we can minimize contrastive training objective
over these pairs to pre-train a value embedding function h : X → Z and use this representation
in downstream algorithms. Intriguingly, this process can be seen as transforming each x by a
generalized Fourier expansion in the basis associated with a specific kernel, as we now describe.

The value kernel and eigenspace extraction Given the value transition distribution Q(X1 | X)
and a data distribution P(X), we define the value kernel K : X × X → R as

K(x1,x2) :=

∫
Q(x1 | x) ·Q(x2 | x) · dP(x)

P(x1) · P(x2)
, (14)

also known as a positive-pair kernel (Johnson et al., 2023; Zhai et al., 2024). Hence, we see that
a kernel k over concepts can be used to construct a kernel K over values, which more directly
expresses an inductive bias over prediction functions m : X → Y .

Fortunately, to utilize the value kernel K, we do not need to evaluate it, which would require
estimating the data distribution P(X) and approximating the potentially intractable integral in the
numerator. Instead, we may work directly with the eigenspace of this kernel, and there are several
potential approaches to efficiently extracting the eigenspace, utilizing its density ratio nature.

A popular class of such approaches is based on contrastive learning. For example, HaoChen
et al. (2021) define the spectral contrastive loss

Lsc(h) := −2 · E
[
h(X1)⊺h(X2)

]
+ E

[(
h(X1)⊺h(X−)

)2]
, (15)

where the joint distribution over
(
X1,X2,X−) is given by∫

Q(X1 | x) ·Q(X2 | x) ·Q(X− | x′) · dP(x) · dP(x′).

They show that, when h ranges over all possible functions, the minimum of Equation (15) yields
the true eigenspace of the positive-pair kernel.8 In practice, h is parameterized by a neural network,
and the empirical counterpart of Equation (15) is minimized, thus the eigenspace is not recovered
perfectly. See Appendix D.2 for other options for self-supervised learning objectives.

D.1. Data augmentation

For steps (a)-(c) of Figure 1, we follow the procedures described in Appendix B and C. In the
remainder of this section, we describe the data augmentation and feature representation learning
steps specific to the SSL approach.

D.1.1. FROM CONCEPT KERNEL TO CONCEPT TRANSITION MATRIX

In (d), we transform the concept kernel into the concept Markov chain that is needed in the value
transition distribution. As described in Section 4.4, we row-normalize the concept kernel matrix
Kin to obtain the transition matrix T, from which the stationary distribution πK is derived. The

8. In particular, this follows from their Lemma 3.2, which relates the spectral contrastive loss to a low-rank approximation
of the kernel. See also Table 1 of Johnson et al. (2023).

20

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

stationary distribution πK specifies the probability of selecting the concept to be swapped, while T
determines the probability to sample to a new concept based on the current one.

To ensure the concept kernels are nonnegative, we clamp negative entries in Kin to zero. Al-
ternatively, an element-wise transformation, such as exponentiation, can be applied to make all
values positive while preserving their relative order. Note that the (cosine) similarity of sentence
embeddings, which is the choice of concept kernel in our implementation, is better interpreted by
relative order rather than by absolute values.

When selecting concepts to swap using the transition matrix T, we handle numerical and
categorical columns differently. When selected concept corresponds to a numerical column, we
restrict to choose another numerical columns since we swap the values. In this case, a single transition
affects two numerical columns.

For categorical columns, the selected concept represents one of the categories within that column
(or the active category of one-hot encoded columns). There are several options for determining the
replacement:

• Swap categories between two categorical columns: Choose another categorical column and
exchange their active categories.

• Replace the category within the same column: Select a different category from the same
column and replace the current category.

• Replace the category with one from any categorical column: Choose a category from any
categorical column and substitute it for the current one.

Note the first option modifies two categorical columns, while the latter two affect only a single
column.

D.1.2. LEARNING SWAP DISTRIBUTIONS

In (e), we define how the actual swapping of column values occurs after columns are selected
by the concept transition matrix. If we simply interchange the values between two columns, the
process becomes equivalent to directly using the concept kernels as the correlation of column values.
However, there are potentially more sophisticated methods that we can apply to better model the
swap distribution Qcc′ : Ṽc ⇝ Ṽc′ as a probabilistic mapping.

For numerical columns, one straightforward approach to model Qcc′ is to simply apply a linear
transformation to the swapped column values. The weight and bias of this transformation can be
pre-determined or trained through self-supervised learning. Possible strategies include:

• Linear regression: Fix the weights and bias to the solution of the linear regression. Under
standardization, the weight corresponds to the correlation ρcc′ and the bias is set to zero.

• Correlation sign: Fix the weight to be the sign of the correlation and the bias to zero. This
addresses the problem of negative value correlation between two close concepts.

• Trainable weights: Initialize the weight and bias to those from linear regression and allow
them to be updated during training.

21

KIM SQUIRES RAVIKUMAR

We chose the first option as the swap distribution on numerical columns. However, one can model
Qcc′ in a more complex manner, such as incorporating trainable weights or making it probabilistic by
predictive posterior variance.

Since we adopt FT-Transformer Gorishniy et al. (2021) as the feature encoder, each category
in categorical columns is represented as an embedding vector. Transition of categorical columns
corresponds to changing one embeddings to another. For simplicity and to keep the number of
trainable parameters small, we use the changed embedding directly without further transformations.

D.1.3. CONSTRUCTING THE VALUE TRANSITION DISTRIBUTION

In (f), we construct the value transition distribution Q : V ⇝ V by integrating the concept transition
distribution T with the value swap distribution Qcc′ . Specifically, given a concept c sampled from the
stationary distribution πK and its paired transition concept c′ ∼ Tc, the transition of values follows
Qcc′(x

′
c|xc). Formally, the value transition distribution is defined as

Q(x′|x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc).

D.1.4. DATA AUGMENTATION

In (g), we construct the augmented dataset Daug, we apply the value transition distribution Q to
generate augmented views of samples in D. By applying Q to a given input instance (or row) x,
we obtain a transformed sample x′, which preserves the semantics while introducing controlled
perturbations. In Section D.1, Daug formulates a set of triplets (x1,x2,x−), where x1 and x2 are
positive pairs and x− is a negative sample, as structure particularly useful for spectral contrastive loss
and other triplet-based objectives. However, for InfoNCE loss where negative samples are implicitly
drawn from the batch rather than explicitly drawn from the mini batch, so different formulation of
Daug is required.

For datasets with many columns, we allow multiple value transitions per sample, where the
number of transitions is selected based on the number of columns. Appendix E describes the heuristics
in determining the number of transitions per different dataset to ensure sufficient augmentation.
Also, note that additional stochasticity can be incorporated into Daug to enhance diversity, such as
introducing noise into numerical columns.

D.2. Self-supervised representation learning

So far, we have obtained the augmented dataset Daug from value transition distribution. In (h),
using this dataset, we perform contrastive representation learning to learn feature representation of
instances and to perform supervised learning. The training process consist of two main steps:

• Contrastive learning to learn features: The feature encoder h(x) is initially trained on Daug
using a contrastive learning objective to extract meaningful representation.

• Fine-tuning (or transfer learning): The trained encoder is then fine-tuned with a prediction
head for the supervised task dataset D.

The choice feature encoder h(x) can be arbitrary as long as it produces a fixed-length feature
from tabular row. Therefore, various architectures can be employed. As described in Section 5.1, we

22

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

choose FT-Transformer as our main encoder due to its input encoding scheme (feature tokenizer).
Alternatively, GNN-based encoders or simple fully-connected networks can be adapted depending
on the dataset of interest.

Several learning objectives can be used for SSL (Johnson et al., 2023; Bardes et al., 2022):

• Spectral contrastive loss: As described above, this approach leverages spectral properties of
the data.

• NT-Xent/NT-Logistic: These is a widely used class of objectives in contrastive learning
that maximizes similarity between augmented views of the same instance while minimizing
similarity with negative samples.

• Non-contrastive losses: One can factorize the positive-pair kernel using non-contrastive
objectives, which extend the Rayleigh quotient to this stochastic setting (Horn and Johnson,
2012). A popular instance is the VICReg objective (Bardes et al., 2022), which is a Lagrangian
objective towards solving:

Lnon-con(h) := E
∥∥h(X1)− h(X2)

∥∥2
2

s.t. Cov(h(Xi)) = I, i = 1, 2,
(16)

where the joint distribution over X1 and X2 is given by∫
Q(X1 | x) ·Q(X2 | x) · dP(x),

i.e., the distribution induced by first sampling x from the data distribution, then sampling X1

and X2 from the value transition distribution conditioned on x.

From several experiments, we found that the InfoNCE loss (Oord et al., 2018) which falls under
NT-Xent, shows better performance than the spectral contrastive loss.

Similar to the benchmark method in Ye et al. (2024a), we perform hyper-parameter tuning to
benchmark our methods. For the our self-supervised learning method in Section 4.4, the training of
our knowledge-enriched model occurs in two steps, so we searched for hyper-parameters only in the
second step. Please refer to Section E for details.

Appendix E. Hyper-parameter Search and Training Details

To optimize our methods to each dataset of KE-TALENT benchmark, we conducted hyper-parameter
optimization using Optuna Akiba et al. (2019) with the Tree-structured Parzan Estimator (TPE)
sampler, the default search strategy in Optuna, following Ye et al. (2024a). The search process aimed
to optimize the root mean squared error (RMSE) for regression tasks and maximize the accuracy
for classification tasks on the validation set. After finding the optimal hyper-parameters for each
dataset and model, we trained the model 15 times with different random seeds and reported the test
set performance. The search space included both architectural and training parameters as detailed in
Table 5 for the hyper-parameter search space.

For the smoothing and value kernel models, which use RealMLP as their MLP architecture, we
searched over the same hyper-parameter space as the TALENT benchmark, except for narrowing

23

KIM SQUIRES RAVIKUMAR

the range of the learning rate to prevent instability in training. We used the AdamW optimizer
with β1 = 0.9, β2 = 0.95, a batch size of 256, and a coslog4 learning rate scheduler. In our
implementation of RealMLP, we omitted data-driven weight initialization or a decaying dropout ratio
due to the implementation complexity. Note that, despite these simplifications, our version remains
closer to the original RealMLP compared to its simplified variant, RealMLP-TD-S.

For the concept graph attention network (CGAT) model, we used dataset-specific batch sizes.
Specifically, we use the largest possible batch size (a power of two, up to 1024) for each dataset that
could fit within 48GB of VRAM (NVIDIA RTX A6000 GPU).

For the self-supervised learning (SSL) model, hyper-parameter search was performed only during
the fine-tuning stage, as described in Appendix D.2, focusing on the MLP prediction head and
optimizer settings. During the SSL stage, we followed the TALENT codebase for default hyper-
parameters of the encoder (FT-Transformer) architecture. We employed the AdamW optimizer with
a cosine learning rate scheduler with warmup, where the base learning rate was set to 2 × 10−5,
and no weight decay. The model was trained with a batch size of 1024, and the number of epochs
was chosen as the minimum multiple of 100 that ensured training for 1000 steps. The number of
transition steps during data augmentation was adjusted per dataset to ensure that approximately 20%
of columns were modified in each augmentation step. For the InfoNCE loss, we set the temperature
parameter to τ = 0.1.

Appendix F. Additional Results

F.1. Best result for each dataset

To provide a more complete picture, Table 6 lists extended KE-TALENT results, including the single
best score for every dataset in the original TALENT benchmark. We did not treat these methods as
primary baselines because (i) they were not the overall top performer within their respective model
families, or (ii) their results became public only after our paper was written.

F.2. Concept kernel visualization

In Figures 2 to 4, we visualize the concept kernels for three datasets with 20–34 columns: Student
Performance, German Credit Data, and Student Dropout. Additionally, Tables 7 to 9, lists the top-5
nearest columns (highest cosine similarity in the concept embedding space, excluding self) for each
column in those datasets. Many of these neighbor pairs are indeed semantically related. For example:

• Student Performance

– “number of school absences” and “number of past class failures”

– “weekend alcohol consumption” and “workday alcohol consumption”

– “extra educational support” and “family educational support”

– “mother’s education” and “father’s education”

• German Credit Data

– “Credit amount” and “Number of existing credits at this bank”

– “Present residence since” and “Present employment since”

24

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Methods Parameters Grid

Smoothing

Smoothing ξ (Only for norm and Laplacian) LogUniform [0.1, 10.0]
Numerical embedding {none, pbld}
Dropout {0.0, 0.15}
Nonlinear activation {SELU, Mish}
MLP hidden layers {[256,256,256],[64,64,64,64,64],[512]}
PLR sigma LogUniform [0.05, 0.5]
Label smoothing (only for classification) {0.0, 0.1}
Learning rate LogUniform [0.02, 0.07]
Weight decay {0.0, 0.02}

Value kernel

Spectral decomposition matrix {Adjacency, Laplacian}
Numerical embedding {none, pbld}
Dropout {0.0, 0.15}
Nonlinear activation {SELU, Mish}
MLP hidden layers {[256,256,256],[64,64,64,64,64],[512]}
PLR sigma LogUniform [0.05, 0.5]
Label smoothing (only for classification) {0.0, 0.1}
Learning rate LogUniform [0.02, 0.07]
Weight decay {0.0, 0.02}

Concept
graph

attention
networks
(CGAT)

Input embed dim LogInt [16, 256]
Conv num layers UniformInt [1, 3]
Conv hidden dim LogInt [16, 64]
Concept attention dim LogInt [4, 16]
Num attn heads UniformInt [1, 4]
Edge active ratio Uniform [0.1, 0.9]
MLP num layers UniformInt [2, 5]
MLP hidden dim LogInt [16, 256]
MLP dropout 0.1
Learning rate LogUniform [3e-5, 1e-3]
Weight decay LogUniform [1e-6, 1e-3]

SSL

MLP num layers UniformInt [2, 5]
MLP hidden dim LogInt [16, 256]
MLP dropout 0.1
Learning rate LogUniform [3e-5, 3e-3]
Weight decay LogUniform [1e-6, 1e-3]

Table 5: Hyper-parameter space for knowledge-enriched supervised learning methods

– “Housing” and “Property”

– “Other installment plans” and “Installment rate in percentage of disposable income”

• Student Dropout

25

KIM SQUIRES RAVIKUMAR

Dataset Abalone Diamond ParkTel StuPerf Crime Churn Credit Taiwan ASP Internet StuDrop

Method \ Task reg/RMSE(↓) bincls/Acc(↑) multicls/Acc(↑)

RealMLP 2.1210 523.92 0.7337 2.9277 0.1381 0.8735 0.7157 0.9667 0.3861 0.5302 0.7655
CatBoost 2.1789 524.91 1.5994 2.9244 0.1336 0.8759 0.7430 0.9718 0.3815 0.5358 0.7782
TabR 2.1078 513.53 8.0521 2.9072 0.1437 0.8743 0.7240 0.9678 0.3750 0.5183 0.7493
FT-T 2.1078 532.83 8.3437 2.9642 0.1369 0.8709 0.7123 0.9674 0.3678 0.5348 0.7547

Best 2.0888 492.58 2.5560 0.1325 0.7513 0.4448
(ResNet) (MNCA) (MNCA) (XGB) (LGBM) (XGB)

Smooth(kernel) 2.1718 938.03 2.4700 3.0651 0.1466 0.8657 0.7160 0.9722 0.3815 0.5042 0.7162
Smooth(norm) 2.0879 903.70 1.2112 2.9725 0.1401 0.8688 0.6960 0.9659 0.4013 0.5093 0.7579
Smooth(Laplacian) 2.0937 522.37 0.9530 2.8926 0.1397 0.8765 0.7193 0.9694 0.3900 0.5259 0.7673
Value kernel 2.0825 525.79 0.8676 2.9203 0.1394 0.8746 0.7157 0.9673 0.3761 0.5315 0.7665
CGAT 2.0876 677.33 1.4612 3.0397 0.1425 0.8764 0.7337 0.9675 0.3838 0.5275 0.7656
SSL 2.1584 534.12 1.1275 2.9178 0.1373 0.8757 0.7180 0.9655 0.3964 0.5327 0.7571

Table 6: Additional Results on KE-TALENT benchmark Additionally to Table 2, the table reports
the best method for each dataset in the “Best” row in case if the earlier four baselines didn’t achieve
the best in TALENT (MNCA: ModernNCA (Ye et al., 2024b), XGB: XGBoost (Chen and Guestrin,
2016), LGBM: LightGBM (Ke et al., 2017)).

– “Mother’s qualification” and “Father’s qualification”

– “Previous qualification” and “Previous qualification (grade)”

– “Nationality” and “International”

– “Mother’s occupation” and “Father’s occupation”

Because the concept embeddings were generated by a pretrained language model, these findings
further demonstrate that modern LMs are effective at computing concept kernels that capture
meaningful semantic relationships among dataset columns.

26

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

st
ud

en
t's

 a
ge

ho
m

e
to

 sc
ho

ol
 tr

av
el

 ti
m

e
we

ek
ly

 st
ud

y
tim

e
nu

m
be

r o
f p

as
t c

la
ss

 fa
ilu

re
s

qu
al

ity
 o

f f
am

ily
 re

la
tio

ns
hi

ps
fre

e
tim

e
af

te
r s

ch
oo

l
go

in
g

ou
t w

ith
 fr

ie
nd

s
wo

rk
da

y
al

co
ho

l c
on

su
m

pt
io

n
we

ek
en

d
al

co
ho

l c
on

su
m

pt
io

n
cu

rre
nt

 h
ea

lth
 st

at
us

nu
m

be
r o

f s
ch

oo
l a

bs
en

ce
s

st
ud

en
t's

 sc
ho

ol
st

ud
en

t's
 se

x
st

ud
en

t's
 h

om
e

ad
dr

es
s t

yp
e

fa
m

ily
 si

ze
pa

re
nt

's
co

ha
bi

ta
tio

n
st

at
us

m
ot

he
r's

 e
du

ca
tio

n
fa

th
er

's
ed

uc
at

io
n

m
ot

he
r's

 jo
b

fa
th

er
's

jo
b

re
as

on
 to

 c
ho

os
e

th
is

sc
ho

ol
st

ud
en

t's
 g

ua
rd

ia
n

ex
tra

 e
du

ca
tio

na
l s

up
po

rt
fa

m
ily

 e
du

ca
tio

na
l s

up
po

rt
ex

tra
 p

ai
d

cla
ss

es
 w

ith
in

 th
e

co
ur

se
 su

bj
ec

t
ex

tra
-c

ur
ric

ul
ar

 a
ct

iv
iti

es
at

te
nd

ed
 n

ur
se

ry
 sc

ho
ol

wa
nt

s t
o

ta
ke

 h
ig

he
r e

du
ca

tio
n

In
te

rn
et

 a
cc

es
s a

t h
om

e
wi

th
 a

 ro
m

an
tic

 re
la

tio
ns

hi
p

student's age
home to school travel time

weekly study time
number of past class failures

quality of family relationships
free time after school
going out with friends

workday alcohol consumption
weekend alcohol consumption

current health status
number of school absences

student's school
student's sex

student's home address type
family size

parent's cohabitation status
mother's education
father's education

mother's job
father's job

reason to choose this school
student's guardian

extra educational support
family educational support

extra paid classes within the course subject
extra-curricular activities
attended nursery school

wants to take higher education
Internet access at home

with a romantic relationship 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2: Kernel heatmap of Student Performance dataset

27

KIM SQUIRES RAVIKUMAR

Du
ra

tio
n

Cr
ed

it
am

ou
nt

In
st

al
lm

en
t r

at
e

in
 p

er
ce

nt
ag

e
of

 d
isp

os
ab

le
 in

co
m

e
Pr

es
en

t r
es

id
en

ce
 si

nc
e

Ag
e

Nu
m

be
r o

f e
xi

st
in

g
cr

ed
its

 a
t t

hi
s b

an
k

Nu
m

be
r o

f p
eo

pl
e

be
in

g
lia

bl
e

to
 p

ro
vi

de
 m

ai
nt

en
an

ce
 fo

r
St

at
us

 o
f e

xi
st

in
g

ch
ec

ki
ng

 a
cc

ou
nt

Cr
ed

it
hi

st
or

y
Pu

rp
os

e
Sa

vi
ng

s a
cc

ou
nt

/b
on

ds
Pr

es
en

t e
m

pl
oy

m
en

t s
in

ce
Pe

rs
on

al
 st

at
us

 a
nd

 se
x

Ot
he

r d
eb

to
rs

 /
gu

ar
an

to
rs

Pr
op

er
ty

Ot
he

r i
ns

ta
llm

en
t p

la
ns

Ho
us

in
g

Jo
b

Te
le

ph
on

e
fo

re
ig

n
wo

rk
er

Duration
Credit amount

Installment rate in percentage of disposable income
Present residence since

Age
Number of existing credits at this bank

Number of people being liable to provide maintenance for
Status of existing checking account

Credit history
Purpose

Savings account/bonds
Present employment since

Personal status and sex
Other debtors / guarantors

Property
Other installment plans

Housing
Job

Telephone
foreign worker

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Kernel heatmap of German Credit Data dataset

28

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Pr
ev

io
us

 q
ua

lif
ica

tio
n

(g
ra

de
)

Ad
m

iss
io

n
gr

ad
e

Un
em

pl
oy

m
en

t r
at

e
In

fla
tio

n
ra

te
GD

P
Ap

pl
ica

tio
n

or
de

r
Ag

e
at

 e
nr

ol
lm

en
t

Cu
rri

cu
la

r u
ni

ts
 1

st
 se

m
 (c

re
di

te
d)

Cu
rri

cu
la

r u
ni

ts
 1

st
 se

m
 (e

nr
ol

le
d)

Cu
rri

cu
la

r u
ni

ts
 1

st
 se

m
 (e

va
lu

at
io

ns
)

Cu
rri

cu
la

r u
ni

ts
 1

st
 se

m
 (a

pp
ro

ve
d)

Cu
rri

cu
la

r u
ni

ts
 1

st
 se

m
 (w

ith
ou

t e
va

lu
at

io
ns

)
Cu

rri
cu

la
r u

ni
ts

 2
nd

 se
m

 (c
re

di
te

d)
Cu

rri
cu

la
r u

ni
ts

 2
nd

 se
m

 (e
nr

ol
le

d)
Cu

rri
cu

la
r u

ni
ts

 2
nd

 se
m

 (e
va

lu
at

io
ns

)
Cu

rri
cu

la
r u

ni
ts

 2
nd

 se
m

 (a
pp

ro
ve

d)
Cu

rri
cu

la
r u

ni
ts

 2
nd

 se
m

 (w
ith

ou
t e

va
lu

at
io

ns
)

M
ar

ita
l S

ta
tu

s
Ap

pl
ica

tio
n

m
od

e
Co

ur
se

Da
yt

im
e/

ev
en

in
g

at
te

nd
an

ce
Pr

ev
io

us
 q

ua
lif

ica
tio

n
Na

tio
na

lit
y

M
ot

he
r's

 q
ua

lif
ica

tio
n

Fa
th

er
's

qu
al

ifi
ca

tio
n

M
ot

he
r's

 o
cc

up
at

io
n

Fa
th

er
's

oc
cu

pa
tio

n
Di

sp
la

ce
d

Ed
uc

at
io

na
l s

pe
cia

l n
ee

ds
De

bt
or

Tu
iti

on
 fe

es
 u

p
to

 d
at

e
Ge

nd
er

Sc
ho

la
rs

hi
p

ho
ld

er
In

te
rn

at
io

na
l

Previous qualification (grade)
Admission grade

Unemployment rate
Inflation rate

GDP
Application order

Age at enrollment
Curricular units 1st sem (credited)
Curricular units 1st sem (enrolled)

Curricular units 1st sem (evaluations)
Curricular units 1st sem (approved)

Curricular units 1st sem (without evaluations)
Curricular units 2nd sem (credited)
Curricular units 2nd sem (enrolled)

Curricular units 2nd sem (evaluations)
Curricular units 2nd sem (approved)

Curricular units 2nd sem (without evaluations)
Marital Status

Application mode
Course

Daytime/evening attendance
Previous qualification

Nationality
Mother's qualification
Father's qualification
Mother's occupation
Father's occupation

Displaced
Educational special needs

Debtor
Tuition fees up to date

Gender
Scholarship holder

International 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4: Kernel heatmap of Student Dropout dataset

29

KIM SQUIRES RAVIKUMAR

Column Top-5 Nearest Columns

“student’s age” “student’s sex”
“student’s school”
“student’s guardian”
“number of school absences”
“student’s home address type”

“home to school
travel time”

“weekly study time”
“number of school absences”
“free time after school”
“student’s school”
“student’s home address type”

“weekly study time” “home to school travel time”
“free time after school”
“family educational support”
“extra-curricular activities”
“extra educational support”

“number of past
class failures”

“number of school absences”
“student’s age”
“extra paid classes within the
course subject”
“current health status”
“student’s sex”

“quality of family re-
lationships”

“current health status”
“going out with friends”
“family size”
“family educational support”
“parent’s cohabitation status”

“free time after
school”

“extra-curricular activities”
“going out with friends”
“number of school absences”
“weekly study time”
“extra educational support”

“going out with
friends”

“weekend alcohol consump-
tion”
“free time after school”
“quality of family relation-
ships”
“workday alcohol consump-
tion”
“with a romantic relationship”

“workday alcohol
consumption”

“weekend alcohol consump-
tion”
“going out with friends”
“free time after school”
“current health status”
“quality of family relation-
ships”

“weekend alcohol
consumption”

“workday alcohol consump-
tion”
“going out with friends”
“current health status”
“free time after school”
“quality of family relation-
ships”

“current health sta-
tus”

“quality of family relation-
ships”
“weekend alcohol consump-
tion”
“workday alcohol consump-
tion”
“going out with friends”
“weekly study time”

Column Top-5 Nearest Columns

“number of school
absences”

“number of past class failures”
“student’s age”
“student’s school”
“home to school travel time”
“free time after school”

“student’s school” “student’s sex”
“student’s age”
“student’s guardian”
“reason to choose this school”
“student’s home address type”

“student’s sex” “student’s age”
“student’s school”
“student’s guardian”
“student’s home address type”
“extra-curricular activities”

“student’s home ad-
dress type”

“student’s school”
“student’s age”
“student’s sex”
“student’s guardian”
“home to school travel time”

“family size” “quality of family relation-
ships”
“family educational support”
“parent’s cohabitation status”
“number of school absences”
“student’s age”

“parent’s cohabita-
tion status”

“quality of family relation-
ships”
“family educational support”
“family size”
“father’s job”
“student’s age”

“mother’s educa-
tion”

“father’s education”
“mother’s job”
“family educational support”
“wants to take higher educa-
tion”
“attended nursery school”

“father’s education” “mother’s education”
“father’s job”
“family educational support”
“wants to take higher educa-
tion”
“attended nursery school”

“mother’s job” “father’s job”
“mother’s education”
“father’s education”
“family educational support”
“student’s guardian”

“father’s job” “mother’s job”
“father’s education”
“mother’s education”
“student’s guardian”
“family educational support”

Column Top-5 Nearest Columns

“reason to choose
this school”

“student’s school”
“extra educational support”
“extra-curricular activities”
“attended nursery school”
“wants to take higher educa-
tion”

“student’s guardian” “student’s school”
“student’s age”
“student’s sex”
“extra educational support”
“family educational support”

“extra educational
support”

“family educational support”
“extra-curricular activities”
“extra paid classes within the
course subject”
“mother’s education”
“wants to take higher educa-
tion”

“family educational
support”

“extra educational support”
“mother’s education”
“father’s education”
“wants to take higher educa-
tion”
“student’s guardian”

“extra paid classes
within the course
subject”

“extra educational support”
“extra-curricular activities”
“student’s school”
“wants to take higher educa-
tion”
“family educational support”

“extra-curricular ac-
tivities”

“extra educational support”
“free time after school”
“student’s school”
“extra paid classes within the
course subject”
“family educational support”

“attended nursery
school”

“student’s school”
“mother’s education”
“father’s education”
“wants to take higher educa-
tion”
“extra-curricular activities”

“wants to take
higher education”

“mother’s education”
“father’s education”
“extra educational support”
“student’s age”
“family educational support”

“Internet access at
home”

“student’s home address type”
“home to school travel time”
“family educational support”
“free time after school”
“student’s school”

“with a romantic re-
lationship”

“student’s sex”
“going out with friends”
“attended nursery school”
“wants to take higher educa-
tion”
“extra-curricular activities”

Table 7: Top-5 nearest columns for each column in Student Performance dataset

30

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

Column Top-5 Nearest Columns

“Duration” “Purpose”
“Job”
“Age”
“Present employment since”
“Property”

“Credit amount” “Number of existing credits at
this bank”
“Credit history”
“Installment rate in percentage
of disposable income”
“Other installment plans”
“Other debtors / guarantors”

“Installment rate in
percentage of dispos-
able income”

“Other installment plans”
“Credit amount”
“Other debtors / guarantors”
“Savings account/bonds”
“Number of people being liable
to provide maintenance for”

“Present residence
since”

“Present employment since”
“Housing”
“Property”
“Credit history”
“Status of existing checking ac-
count”

“Age” “Job”
“Present employment since”
“Duration”
“Telephone”
“Personal status and sex”

“Number of existing
credits at this bank”

“Credit amount”
“Credit history”
“Status of existing checking ac-
count”
“Other debtors / guarantors”
“Other installment plans”

Column Top-5 Nearest Columns

“Number of people
being liable to pro-
vide maintenance
for”

“Other debtors / guarantors”
“Housing”
“Number of existing credits at
this bank”
“Installment rate in percentage
of disposable income”
“Other installment plans”

“Status of existing
checking account”

“Number of existing credits at
this bank”
“Savings account/bonds”
“Credit history”
“Credit amount”
“Present residence since”

“Credit history” “Credit amount”
“Number of existing credits at
this bank”
“Other debtors / guarantors”
“Present employment since”
“Status of existing checking ac-
count”

“Purpose” “Job”
“Duration”
“Property”
“Telephone”
“foreign worker”

“Savings ac-
count/bonds”

“Status of existing checking
account”
“Other installment plans”
“Other debtors / guarantors”
“Number of existing credits at
this bank”
“Installment rate in percentage
of disposable income”

“Present employ-
ment since”

“Present residence since”
“foreign worker”
“Job”
“Credit history”
“Age”

“Personal status and
sex”

“Property”
“Housing”
“Job”
“Age”
“foreign worker”

Column Top-5 Nearest Columns

“Other debtors /
guarantors”

“Other installment plans”
“Credit history”
“Number of people being liable
to provide maintenance for”
“Number of existing credits at
this bank”
“Savings account/bonds”

“Property” “Housing”
“Present residence since”
“Purpose”
“Personal status and sex”
“Job”

“Other installment
plans”

“Installment rate in percentage
of disposable income”
“Other debtors / guarantors”
“Savings account/bonds”
“Credit amount”
“Number of existing credits at
this bank”

“Housing” “Present residence since”
“Property”
“Number of people being liable
to provide maintenance for”
“Telephone”
“Personal status and sex”

“Job” “foreign worker”
“Purpose”
“Present employment since”
“Age”
“Duration”

“Telephone” “Job”
“Housing”
“Property”
“Age”
“Purpose”

“foreign worker” “Job”
“Present employment since”
“Present residence since”
“Personal status and sex”
“Housing”

Table 8: Top-5 nearest columns for each column in German Credit Data dataset

31

KIM SQUIRES RAVIKUMAR

Column Top-5 Nearest Columns

“Previous qualifica-
tion (grade)”

“Previous qualification”
“Admission grade”
“Mother’s qualification”
“Father’s qualification”
“Curricular units 2nd sem
(evaluations)”

“Admission grade” “Previous qualification
(grade)”
“Curricular units 2nd sem
(evaluations)”
“Curricular units 1st sem
(evaluations)”
“Curricular units 2nd sem
(approved)”
“Curricular units 2nd sem
(without evaluations)”

“Unemployment
rate”

“Inflation rate”
“GDP”
“Previous qualification
(grade)”
“Mother’s occupation”
“Admission grade”

“Inflation rate” “Unemployment rate”
“GDP”
“Admission grade”
“Tuition fees up to date”
“Previous qualification
(grade)”

“GDP” “Unemployment rate”
“Inflation rate”
“Nationality”
“International”
“Displaced”

“Application order” “Application mode”
“Previous qualification”
“Previous qualification
(grade)”
“Admission grade”
“Father’s qualification”

“Age at enrollment” “Tuition fees up to date”
“Curricular units 1st sem (en-
rolled)”
“Mother’s qualification”
“Curricular units 2nd sem (en-
rolled)”
“Previous qualification”

“Curricular units 1st
sem (credited)”

“Curricular units 2nd sem
(credited)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 1st sem (ap-
proved)”
“Curricular units 1st sem (eval-
uations)”
“Curricular units 1st sem (with-
out evaluations)”

...

Column Top-5 Nearest Columns

...
“Curricular units
2nd sem (without
evaluations)”

“Curricular units 1st sem
(without evaluations)”
“Curricular units 2nd sem
(evaluations)”
“Curricular units 1st sem (eval-
uations)”
“Curricular units 2nd sem (en-
rolled)”
“Curricular units 2nd sem (ap-
proved)”

“Marital Status” “Mother’s qualification”
“Gender”
“Father’s qualification”
“Mother’s occupation”
“Debtor”

“Application mode” “Application order”
“Mother’s occupation”
“Educational special needs”
“International”
“Marital Status”

“Course” “Scholarship holder”
“Debtor”
“Displaced”
“Gender”
“Curricular units 2nd sem
(credited)”

“Daytime/evening
attendance”

“Curricular units 2nd sem (en-
rolled)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem
(evaluations)”
“Curricular units 2nd sem
(credited)”
“Age at enrollment”

“Previous qualifica-
tion”

“Previous qualification
(grade)”
“Mother’s qualification”
“Father’s qualification”
“Scholarship holder”
“Admission grade”

“Nationality” “International”
“Gender”
“GDP”
“Scholarship holder”
“Father’s occupation”

“Mother’s qualifica-
tion”

“Father’s qualification”
“Mother’s occupation”
“Previous qualification”
“Father’s occupation”
“Previous qualification
(grade)”

“Father’s qualifica-
tion”

“Mother’s qualification”
“Father’s occupation”
“Previous qualification”
“Mother’s occupation”
“Previous qualification
(grade)”

Column Top-5 Nearest Columns

“Mother’s occupa-
tion”

“Father’s occupation”
“Mother’s qualification”
“Father’s qualification”
“Marital Status”
“Previous qualification”

“Father’s occupa-
tion”

“Mother’s occupation”
“Father’s qualification”
“Mother’s qualification”
“Previous qualification”
“Marital Status”

“Displaced” “Debtor”
“Scholarship holder”
“GDP”
“Marital Status”
“Nationality”

“Educational special
needs”

“Curricular units 2nd sem (en-
rolled)”
“Scholarship holder”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem
(evaluations)”
“Mother’s qualification”

“Debtor” “Scholarship holder”
“Marital Status”
“Father’s occupation”
“Displaced”
“Gender”

“Tuition fees up to
date”

“Age at enrollment”
“Curricular units 2nd sem (en-
rolled)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem (ap-
proved)”
“Curricular units 2nd sem
(credited)”

“Gender” “Nationality”
“Marital Status”
“Mother’s occupation”
“International”
“Debtor”

“Scholarship
holder”

“Curricular units 2nd sem
(credited)”
“Debtor”
“Curricular units 1st sem (cred-
ited)”
“Curricular units 2nd sem (en-
rolled)”
“Educational special needs”

“International” “Nationality”
“GDP”
“Gender”
“Educational special needs”
“Displaced”

Table 9: Top-5 nearest columns for each column in Student Dropout dataset We omitted
several redundant columns (from “Curricular units 1st sem (enrolled)” to “Curricular units 2nd sem
(approved)”) due to space constraints.

32

KNOWLEDGE-ENRICHED MACHINE LEARNING FOR TABULAR DATA

33

	Introduction
	Knowledge-Enriched Learning
	Concept Domains and Values
	Concept Kernels

	KE-TALENT: Benchmark
	Geometric Approaches to Kernel-Enriched Learning
	Smoothing Approaches
	Value Kernel Approaches
	Partially Specified Concept Kernels
	Using Concept Kernels for Self-Supervised Learning

	Experiments
	Models
	Evaluation method
	Results

	Discussion
	Notation
	Constructing a Concept Kernel
	From concept metadata to concept embeddings
	From concept embeddings to concept kernel

	Tabular Data Processing
	Self-supervised Learning
	Data augmentation
	Self-supervised representation learning

	Hyper-parameter Search and Training Details
	Additional Results
	Best result for each dataset
	Concept kernel visualization

