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Abstract
Transformer models are the backbone of modern natural language processing. However, whether
they can truly perform logical reasoning remains uncertain. This paper examines transformers’
capacity for logical inference in a controlled setting, isolating a single rule—modus ponens—and
eliminating confounding factors such as semantic knowledge and linguistic complexity. We sys-
tematically vary architectural components, specifically the number of attention heads and layers,
to assess their impact on logical inference. Our results show that attention heads enhance infor-
mation propagation, whereas deeper architectures accelerate convergence but also introduce poten-
tially redundant parameters. While transformers successfully handle level-2 inference tasks, their
difficulties with higher-level and out-of-distribution problems suggest that they rely on heuristic
“shortcuts” rather than explicit multi-step reasoning. Analysis of attention maps and ablation ex-
periments indicates that these shortcuts function similarly to a matching-aggregation algorithm,
where attention heads identify inference links, and the feed-forward network verifies if they form
a valid chain. These findings highlight fundamental limitations in transformers’ ability to perform
structured logical reasoning.
Keywords: Transformers, Logical Reasoning, Modus Ponens, Mechanistic Interpretability

1. Introduction

Transformer models are the dominant neural architecture in modern natural language processing
(Vaswani et al., 2017), driving state-of-the-art large language models such as GPT-4 (Achiam et al.,
2023) and Llama 2 (Touvron et al., 2023). These models demonstrate remarkable performance
across diverse tasks, whether through fine-tuning or in-context learning, often producing responses
that seem to reflect complex reasoning (Bubeck et al., 2023). However, it remains unclear whether
transformers genuinely engage in reasoning or merely approximate it by leveraging statistical pat-
terns. Understanding the nature of their reasoning abilities is crucial for developing methods that
enhance coherence and reliability in their outputs.

Most studies on reasoning in transformers focus on models trained on natural language, i.e.,
language models (Han et al., 2022; Tian et al., 2021; Clark et al., 2020). This poses a signif-
icant challenge, as it becomes difficult to disentangle genuine reasoning from stored knowledge
or a combination of both. In this paper, we investigate a highly constrained logical task—modus
ponens—using a synthetic dataset specifically designed to isolate this rule. The dataset employs
symbols devoid of semantic content, ensuring that reasoning is assessed independently of linguistic
priors or memorization. Furthermore, to remove any influence of pre-trained knowledge, we train
all models from scratch on this dataset. Our goal is to determine whether transformers can engage in
pure logical reasoning and what strategies they use to solve logical problems. The key contributions
of this paper are:
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• A synthetic dataset for logical reasoning that isolates a single operation—modus ponens—
allowing precise control over the number and sequence of inferential steps.

• A series of interpretability experiments that analyze the internal mechanisms of transformers
and their strategies for solving logical reasoning tasks.

All data and code are available in our GitHub repository. 1

2. Related Works

When tested on natural language datasets, transformer models appear capable of solving logical rea-
soning tasks (Clark et al., 2020; Tian et al., 2021; Han et al., 2022). However, evidence suggests that
they do not truly master logical reasoning. Instead, they tend to rely on statistical artifacts to infer
theorems rather than employing general, rule-based procedures (Zhang et al., 2022). Moreover, their
reasoning is brittle when confronted with abstract content or information that conflicts with prior
knowledge (Dasgupta et al., 2022; Tang et al., 2023). Transformers also struggle to structure logical
proofs (Saparov and He, 2023) and face significant challenges with multi-step and compositional
reasoning (Rae et al., 2021; Dziri et al., 2023; Press et al., 2023).

One way to better study a complex phenomenon such as logical reasoning is to isolate it from
other possible influences. This can be achieved by creating algorithmically generated datasets that
focus on a single phenomenon, minimizing confounding factors (e.g., Power et al. 2022; Hanna
et al. 2023). Our dataset follows a similar methodology to (Zhang et al., 2022) and (Clark et al.,
2020) but imposes even stricter constraints, isolating a single rule—modus ponens—while delib-
erately excluding conjunction, negation, syntactic structure, and natural language templates. This
simplified dataset is then used to explore the internal mechanisms of a transformer model, trained
from scratch, as it attempts to solve the logical reasoning task.

Transformers’ reasoning capabilities have been analyzed through various approaches, including
behavioral evaluation (Clark et al., 2020; Han et al., 2022; Tian et al., 2021) and structural probing
(Pirozelli et al., 2024). This study aligns with the field of mechanistic interpretability, which seeks
to reverse-engineer neural networks (Cammarata et al., 2020; Wang et al., 2022; Kantamneni and
Tegmark, 2025). Prior work has investigated model circuits (Elhage et al., 2021), causal tracing
(Meng et al., 2022; Heimersheim and Nanda, 2024), and logit lens (Wang et al., 2024) to uncover
the internal mechanisms of transformers. Our focus is predominantly on transformers’ architecture
and the role of their components in solving a constrained logical task.

3. Data

Reasoning can take many forms—such as causal, temporal, and mathematical—each offering a
unique perspective on how conclusions are drawn. Among these, logical reasoning appears to be
the most fundamental form of inference, as it does not depend on any particular subject matter.
Traditionally, logical reasoning is divided into deductive and non-deductive forms, depending on
whether the conclusion necessarily follows from the premises or holds with some degree of proba-
bility or plausibility, as in inductive and abductive reasoning (Groarke, 2024).

In what follows, we focus on the most fundamental deductive rule, modus ponens—if p is true
and p implies q, then q. Problems in our dataset involve the repeated application of this single

1. https://github.com/paulopirozelli/logicalreasoning.
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Figure 1: Example of a level-2 inference problem. The first row illustrates the original chain of
rules, from which positive and negative examples are derived by removing specific rules.
The second row (True) allows two consecutive applications of modus ponens, whereas
the last row (False) permits only a single inference step.

rule. Even so, the inference process can become complex, as multiple paths may lead to the same
conclusion, framing it as a search problem in an argumentative graph. To further simplify this
setting, we constrain problems to linear chains of implications, ensuring a single valid deduction
path. This setup significantly reduces problem complexity. With only one valid deduction path, the
conclusion can be reached through a straightforward, sequential procedure.

Another challenge in determining whether transformer-based models can genuinely reason lies
in their exposure to vast datasets, making it difficult to disentangle inference from stored knowledge.
For instance, consider the argument: “All mammals are vertebrates. All dogs are mammals. Are
dogs vertebrates?” Even if a model provides the correct answer, it is unclear whether this results
from explicit reasoning (dogs→ mammals→ vertebrates), direct memorization, or indirect pattern
recognition (e.g., an analogy with cats). To address this, we construct a synthetic dataset designed
to isolate logical implication from linguistic structure and commonsense knowledge.

We define the inference level (I) of an argument as the minimal number of modus ponens
applications required to distinguish positive from negative examples. An argument is labeled True
if it permits exactly I applications of modus ponens starting from both the initial and final facts, and
False if it permits at most I − 1. Figure 1 illustrates this concept for a level-2 inference problem.
In the figure, letters c and i represent the initial and final facts, respectively, while each pair of
letters denotes an inferential rule (e.g., cf means “c implies f ”). The middle row illustrates a True
example, where two consecutive applications of modus ponens can be performed, starting from the
initial fact: c, c → f, f → q. In contrast, the last row represents a False example, where only one
inference step is possible: c, c→ f, but no further conclusions can be drawn beyond this point. The
same logic applies in reverse, starting from the final fact i.

3.1. Dataset Construction

The dataset is generated as follows. First, a letter is randomly sampled from the alphabet as the
initial fact, which also serves as the antecedent of the first rule. This letter is then removed from
the alphabet. Next, another letter is sampled as the consequent of the first rule. The process repeats
iteratively: each newly chosen consequent becomes the antecedent of the next rule, ensuring a
continuous chain of logical implications. This continues until a base chain with R = 3I + 2 rules
is formed, after which the final fact is appended (first row in Fig. 1).
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Both positive and negative examples are then created by selectively removing rules from the
chain. In True examples, rules I and R − I are removed, leaving exactly I inferential steps from
both ends. In False examples, rules I + 1 and R − I − 1 are deleted, ensuring only I − 1 steps
remain. After that, the rules are shuffled while ensuring that the order of the letters remains intact.
The initial and final facts remain fixed in this process. The rules are then shuffled, preserving
letter order, and each instance is represented as a concatenated string prefixed with S. For example,
Sceynpybpzvscvz (True) and Smwomysjkqoggsq (False).

Each dataset instance, regardless of label, exhibits the following properties:

• 3I rules, derived from the original 3I + 2 rules in the base chain after rule deletion;

• 1 initial fact, serving as the starting point for inference;

• 1 final fact, serving as the endpoint for inference;

• 3 letters never serving as consequents;

• 3 letters never serving as antecedents;

• (I + 1)× 2 letters appearing as both antecedents and consequents in different rules.

Hence, all features in the dataset arise exclusively from the random sampling of letters during
rule construction and the subsequent shuffling of the rules.

The total number of possible samples for inference level I is:2

samples = 2× P (26, 3I + 3)× (3I)! (1)

For this study, we generated a level-2 inference dataset consisting of 900K training samples,
along with 50K additional instances for validation and testing. The dataset is perfectly balanced,
with an equal number of samples of each label. General statistics of the dataset are provided in
Appendix A. For an inference level of 2, the total number of possible samples is approximately
1.13× 1012. In contrast, our training set contains only 9× 105 instances, with an additional 5× 104

allocated for validation and testing. This vast discrepancy makes direct memorization or simple
interpolation highly unlikely.

4. Transformers can solve easy logical problems

A key property of our classification task is that it admits an explicit algorithmic solution, outlined
in Appendix B. This solution relies on a recurrent approach. However, transformers lack recurrence
by design. This raises an important question: despite their lack of recurrence, can transformers
effectively solve such problems?

Thus, we investigate whether transformer models can successfully solve constrained logical
problems and how they organize reasoning. Our analysis focuses on the level-2 inference dataset

2. The base chain, representing the number of possible logical chains before rule deletion, is given by P (26, 3I + 3),
where P (n, k) denotes the number of ways to sample k distinct elements from an alphabet of size n. The term 3I+3
arises because we need 3I + 2 rules in the base chain, and each rule introduces a new element, plus one additional
element for the final fact. The factor of 2 accounts for the two possible labels. Finally, the permutations term (3I)!
reflects the number of possible orderings of the 3I rules after rule deletion.
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described in the previous section.3 Specifically, we examine the architectural requirements—such as
the number of layers and attention heads—needed for transformers to accurately follow a reasoning
chain.

Model Setup. We build several BERT models with varying numbers of layers and attention heads.
As in a standard BERT architecture, we use an embedding size of 768, layer normalization, and a
feedforward network with an intermediate layer four times the embedding dimension. ReLU is
used as the activation function, and positional embeddings are added before the transformer blocks
(Vaswani et al., 2017).

Each token is encoded as a 26-dimensional one-hot vector (one dimension per letter in the Latin
alphabet), forming an input sequence of 15 tokens. For classification, a linear projection is attached
to the start-of-sequence token, mapping its 768-dimensional embedding to a scalar output, which is
then passed through a sigmoid function. This output is compared with the ground-truth labels for
evaluation.

Training Details. We use a dropout rate of 0.1, a learning rate of 1 × 10−5, and a batch size of
2048, which consistently yields stable convergence. Adam is used as the optimizer, with a one-
epoch warm-up phase where the learning rate increases linearly from 0 to 1×10−5. After warm-up,
the learning rate decays linearly until reaching zero in the final epoch, up to a maximum of 1,000
epochs. The task is considered solved once the model achieves over 99% validation accuracy, after
which it is evaluated on the test set. To estimate variability, each model configuration is trained ten
times.

Single-Layer Models. Figure 2 shows the maximum validation accuracy attained by single-layer
models with varying attention heads. Performance improves with more attention heads, with mod-
els exceeding 99% accuracy at 48 heads. This suggests that transformers solve this problem by
efficiently propagating information horizontally across the input sequence.

Figure 2: Maximum accuracy for single-layer models with varying attention heads. Each configu-
ration was trained 10 times; error bars show confidence intervals.

3. A level-1 inference problem reduces to a simple lookup table.
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Multiple-Layer Models. We also trained models with 2–6 layers and 1–6 attention heads, using
the same training setup. Overall, 97.38% of these models converged within 1,000 epochs.4 Figure 3
shows the number of epochs required for convergence. Deeper models generally converged faster
(Wang et al., 2024), though gains diminished beyond five layers. Moreover, increasing the number
of attention heads sped up convergence, especially in shallower models. These results suggest that
transformers leverage both horizontal and vertical information flow to solve the task.

Figure 3: Epochs required for convergence in a level-2 inference task, across models with 2–6
layers and 1–6 attention heads. Each configuration was trained 10 times.

Grokking. The convergence process consistently followed a characteristic pattern: training ac-
curacy gradually increased, and then, after prolonged training, both training and validation metrics
abruptly surged to near-perfect levels. This sharp transition, known as grokking (Power et al., 2022),
reflects a shift from memorization to strong generalization. Similar behavior has been observed in
other tasks involving compositional reasoning (Wang et al., 2024). Examples of this and other
convergence patterns are provided in Appendix C.

Conclusion. Single-layer models needed more attention heads to converge, indicating that hori-
zontal information flow can compensate for shallow depth. In models with 2–4 layers, additional
heads accelerated convergence, highlighting an interaction between horizontal and vertical flows.
However, beyond five heads, additional heads provided no benefit, suggesting that vertical process-
ing dominates in deeper models.5

5. Transformers do not make inferential steps

Transformer models can solve logical reasoning problems, but do they implement an algorithm akin
to the one described in Appendix B? Two key observations suggest otherwise: their inability to
generalize to out-of-distribution (OOD) data and their failure on level-3 problems.

4. Only models with 2 layers failed to converge. The fastest convergence, in 30 epochs, was achieved by a model with
6 layers and 2 attention heads.

5. Appendix D explores the trade-off between vertical and horizontal expansion in terms of parameter efficiency, using
pruning techniques.
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5.1. OOD Generalization

To assess whether transformers had truly learned a general solution, we designed a constrained OOD
scenario. Specifically, we evaluated their ability to solve a level-2 inference problem for an unseen
token. To achieve this, we filtered the original dataset for a single letter—p—excluding all instances
containing this letter from the training set while retaining only instances with p in the validation and
test sets. This filtering procedure reduced the dataset to 622K examples (588K for training, 17K for
validation, and 17K for testing).

Results. We trained five models with 3 layers and 4 attention heads on the filtered dataset. Al-
though some achieved up to 93% accuracy on the validation set, none fully solved the task involving
the unseen token. This performance indicates a failure to generalize fully. This suggests that the
models adopt a strategy distinct from our general algorithm.

5.2. Higher-Level Inference

We investigated whether transformers could handle logical problems requiring additional infer-
ence steps. To this end, we tested level-3 inference tasks, exemplified by 21-token sequences
like Shexoehvbnrogwpgupvbw (True) and Sjvlqzxtmyovlrzwrmjxw (False). We experi-
mented with various hyperparameters, including different numbers of layers, heads, learning rates,
and optimization strategies. Models were trained for up to 10,000 epochs while monitoring valida-
tion accuracy. Despite achieving near-perfect accuracy on the training set, they consistently failed
to generalize to the validation set.

Hypothesis. A likely explanation is that models adopt shortcut strategies—collapsing multi-step
reasoning into a single, shallow step—instead of building explicit inference chains (Liu et al., 2023).

6. Partial Deductions

We hypothesize that transformer models do not execute a step-by-step chain of reasoning via explicit
modus ponens. Instead, they approximate full inference chains through a matching-aggregation
mechanism. In this process, attention heads identify individual inference links (e.g., p→ q, q → r),
while the feed-forward network verifies that these links form a valid chain. This procedure requires
the model to locate individual rules and to memorize both positive and negative combinations of
them. Appendix E provides additional details on this theoretical framework.

In a toy scenario where each attention head encodes precisely one rule (along with 26 heads
each for initial and final facts), solving a level-2 inference problem would require 702 heads. How-
ever, real transformer models require far fewer heads due to the distributed nature of their learned
representations: each head can capture multiple, often related, patterns. Rather than enforcing a
rigid one-to-one mapping between heads and inference rules, the model compresses rule detection
across multiple heads. In our experiments, models used at most 48 heads—substantially fewer than
the naı̈ve estimate. Pruning experiments further support this observation: removing a large fraction
of model weights had minimal impact on performance (Appendix D). This suggests that transformer
models do not depend on narrowly specialized heads. Instead, multiple heads contribute overlap-
ping, often redundant information, improving robustness to pruning and enhancing generalization.

Multi-layer architectures also enable vertical distribution of rule detection. Earlier layers may
identify some inference links, while later layers capture others. As a result, a multi-layer model can
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spread the burden of rule detection across layers, reducing the need for many specialized attention
heads within each layer compared to a single-layer model.

Beyond detecting individual rules, the model must also encode all valid and invalid rule combi-
nations. In a level-2 inference task, the number of possible combinations is given by:

26× 650× 649× 2 = 21,936,200 (2)

Here, 26 corresponds to the number of initial facts; 650, the number of possible first rules
(m × (m − 1)); 649, the number of possible second rules; and the factor of 2 accounts for both
forward and backward deductions.

A more efficient solution might restrict inference to a single direction and consider only the
antecedent of the second rule, yielding:

26× 650× 25 = 422,500 (3)

Nonetheless, even under this simplification, solving a level-3 inference problem would involve
handling 26×650×649×25 = 274,202,500 distinct combinations—underscoring the intractability
of exhaustive rule enumeration for problems of this kind.

7. Attention Maps

To analyze the implementation of the partial deduction strategy, we examine the model’s attention
maps. Each model learns a distinct solution. As is common with attention maps, the reasoning pro-
cess is not always fully transparent. Therefore, we focus on two models whose deduction strategies
are relatively clear.

We use F (forward) and B (backward) to denote deduction-relevant rules, and N (none) for
irrelevant rules. F0 and B0 represent the initial and final facts, respectively. Numerical indices
indicate a rule’s position in the deduction sequence, while (a) and (c) specify the antecedent and
consequent of a rule. If no clear pattern emerges, we label it as NAN. For instance, given the input
Srfmrtmpaytwybp, the rules can be rearranged as follows:

• Forward Deduction: r
F0
, r → t

F1
, t→ w

F2

• Irrelevant Rules: a→ y
N1

, y → b
N2

• Backward Deduction: f → n
R2

, n→ p
R1

, p
R0

3 Layers, 1 Attention Head From the attention map, we observe that the first layer consistently
focuses on the third rule (located at positions 7–8 in the input sequence). Rather than starting from
either end of the sequence, the model initiates reasoning from this rule and follows its connections.
Given that four out of the six rules are relevant for deduction (either forward or backward), the
model has a 67% chance of selecting a useful starting point.

The logical path the model follows depends on the initial rule it extracts. When the model starts
with a relevant rule (F1, F2, B1, B2), the attention maps reveal the following sequences, progressing
from the first to the third layer:
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Case 1: F1→ F0 + F2(a)*→ F0
Case 2: F2→ F1(c)→ F0
Case 3: B1→ B0→ B2(c)
Case 4: B2→ B1(a)→ NAN

The transition made by the model when starting with the third rule does not always follow the
same direction. Sometimes, it progresses to the next rule in the deduction (e.g., B1→ B0), while in
other cases, it backtracks (e.g., B2→ B1). An asterisk (*) denotes instances where a rule or token
exhibited only weak activation. Figure 4 illustrates examples of the Case 4 and Case 2 strategies.

Figure 4: Attention maps for a 3-layer, 1-head model, illustrating Case 4 and Case 2 strategies,
respectively.

If the model starts from an irrelevant rule (N1, N2), the attention heads follow these paths:

Case 5: N1→ N2(a)→ NAN
Case 6: N2→ N1(c)→ NAN

Since these paths lack the final step, the model cannot determine whether the example is positive
or negative based solely on this approach. Thus, it must be relying on alternative mechanisms to
reach a conclusion.
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2 Layers, 6 Attention Heads For this model, the attention maps indicate a different deduction
strategy. In the first layer, Attention Head 6 focuses on the fourth rule. If this rule is relevant to
the deduction, Attention Heads 3 and 5 attend to the connected rule, following this pattern:

Case 1: F1→ F2(a)
Case 2: F2→ F1(c)
Case 3: B1→ B2(c)
Case 4: B2→ B1(a)

Discussion. Attention mechanisms remain crucial to model performance, even when their indi-
vidual contributions are not directly interpretable. For example, the first model we analyzed suc-
cessfully solves problems even when starting with irrelevant rules (Case 4). This behavior suggests
that attention may operate in a more distributed or diffuse fashion, enabling the model to integrate
information in ways not fully captured by attention maps. Alternatively, it may indicate that other
architectural components—such as residual connections—also play a significant role. 6

8. Conclusion

Logical reasoning is a cornerstone of human intelligence, and endowing AI models with this capa-
bility is crucial for their advancement. In this work, we introduced a synthetic dataset centered on
deductive reasoning—specifically, the modus ponens rule—designed to precisely control the infer-
ence steps required for each problem. By focusing on tasks with well-defined algorithmic solutions,
our goal was to assess whether transformer-based models could discover and replicate such reason-
ing processes.

We trained various transformer architectures to address these tasks and found that both the num-
ber of attention heads and the number of layers significantly impact model performance. Attention
heads were particularly important for enabling convergence in shallower models, while deeper ar-
chitectures benefited from faster convergence. Our results suggest that although only a subset of the
model’s parameters directly contributes to logical reasoning, the overall parameter count remains
closely tied to architectural depth and width.

Experiments involving level-2 inference problems—and the models’ consistent failure on OOD
and level-3 inference tasks—indicate that these models are likely not engaging in genuine step-by-
step reasoning. Rather, they appear to exploit statistical shortcuts. Through attention map anal-
ysis and ablation studies, we found evidence that transformers implement a form of matching-
aggregation mechanism: attention heads identify applicable rules, and the feedforward layers ag-
gregate the relevant information. The failure of transformers to perform true multi-step inference
highlights potential limitations of this architecture for tasks requiring sequential reasoning.
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Appendix A. Data Distribution

Figure 5 shows the distribution of letter by position in the input string of the training set.

Figure 5: Frequency of letter by position in the input string. Training set.

Figure 6 shows there is almost no correlation between the letters that appear in strings in the
training data; and that this correlation is smaller in magnitude for the labels.

Figure 6: Correlation between the letters and labels of training data.
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Appendix B. Algorithmic Solution

A key property of our classification task is that it admits an explicit algorithmic solution, outlined
in Algorithm 1.footnoteFor simplicity, we ignore the start-of-sequence token. The algorithm runs
in O(I ·m) time, where I is the inference level (the number of loop iterations) and m is the length
of the list L.

Algorithm 1 Inference Algorithm Pseudocode
Data: List L, inference level I
Result: Boolean label
consequent pos← 0
consequent← L[consequent pos]
L[consequent pos]← None

for i← 1 to I − 1 do
antecedent← consequent
antecedent pos← L.index(antecedent)
L[antecedent pos]← None
consequent pos← antecedent pos+ 1
consequent← L[consequent pos]
L[consequent pos]← None

end
if consequent ∈ L then

label← True
end
else

label← False
end

B.1. Time and Space Complexity Analysis

Notation. Let I be the inference level (number of reasoning steps), and let m be the length of the
input list L. The list contains 3I rules and two atomic facts (start and goal), with each rule encoded
as two characters. Hence:

m = 6I + 2 = Θ(I). (4)

Initialization (Lines 1–3). These operations involve:

• Assigning scalars and retrieving L[0]: Θ(1)

• Setting L[0]← None: Θ(1)

Total: Θ(1)

Loop Body (Lines 4–10). Executed for I − 1 iterations. Each iteration includes:

• One index() lookup: Θ(m)

• A constant number of assignments and list accesses: Θ(1)
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Total: Θ(I ·m) = Θ(I2) (since m = Θ(I))

Final membership test.

• Checking whether the final consequent appears in the list: Θ(m).

• Assigning the final label: Θ(1).

Total: Θ(m) = Θ(I)

Overall Time Complexity.

• Dominated by the loop: Θ(I2)

Space Complexity.

• The list L is modified in-place: Θ(m) = Θ(I)

• Only a constant number of scalar variables are used: Θ(I)
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Appendix C. Model Convergence

Below, we show some typical patterns of model convergence observed in our experiments. In most
cases, we observe a grokking behavior, where the validation accuracy suddenly jumps from random
chance to perfect performance, indicating a transition from memorization to actual problem-solving.
The cases differ in the distance between training and validation curves (Figs. 7, 8) and the number
of eureka moments (Figs. 9, 10). We also note some cases of gradual learning (Figs. 11). It is
important to note that these patterns were not discovered via a systematic analysis, but were instead
observed through careful manual inspection of selected training runs.

Figure 7: Grokking. Model with 3 layers and 4 attention heads.

Figure 8: Train and Validation Aligned. Model with 3 layers and 4 attention heads.
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Figure 9: Single Bump. Model with 3 layers and 4 attention heads.

Figure 10: Multiple Bumps. Model with 6 layers and 6 attention heads.

Figure 11: Gradual Learning. Model with 2 layers and 1 attention head.
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Appendix D. Pruning

To further investigate the role of layers and heads in level-2 inference, we conducted a pruning
experiment with two objectives. First, we aimed to quantify the minimum number of effective (non-
zero) parameters required for optimal performance. Second, we examined whether our architec-
tural insights—specifically, that fewer layers but more heads facilitate multi-step reasoning—hold
under systematic pruning. We employed unstructured pruning, a technique that randomly elimi-
nates individual weights instead of entire components (Cheng et al., 2024). Unstructured pruning is
architecture-agnostic and straightforward to implement.

Training Setup. We experimented with transformer models spanning 2 to 6 layers and 1 to 6
attention heads.7 We use a dropout rate of 0.1, a learning rate of 1 × 10−5, and a batch size of
2048, which consistently yields stable convergence. Adam is used as the optimizer, with a one-
epoch warm-up phase where the learning rate increases linearly from 0 to 1×10−5. After warm-up,
the learning rate decays linearly until reaching zero in the final epoch, up to a maximum of 1,000
epochs. After each epoch, we randomly set 0.1% of the weights to zero, permanently deactivating
them. The network then underwent a full epoch (49 iterations at a batch size of 2048) to adapt to
the newly pruned weights, leveraging its capacity for self-repair (Rushing and Nanda, 2024). Each
model configuration was run five times.

Results. Despite the progressive deactivation of weights, the network demonstrated remarkable
robustness. On average, models achieved near-perfect accuracy with only 4.4% of their original
parameters (SD = 0.96). This suggests that a relatively small subnetwork is sufficient to match the
full model’s performance (Frankle and Carbin, 2019). The most parameter-efficient model, with 2
layers and 6 heads, required just 607,342 active weights—only 4.9% of the original 14,813,199. In
terms of percentage, the most compressed model was a 4-layer, 6-head transformer, which retained
just 3% of its weights.

To investigate how layers and heads influence these active subnetworks, we estimated a linear
regression expressing the number of remaining (non-zero) weights W as a function of the number
of layers L, the number of attention heads A, and their interaction, L ·A:

W = 9.5× 105 + 7.2× 104L− 1.7× 105A

+ 3.8× 104L ·A.
(5)

Conclusion. Increasing the number of layers (L) raises the number of effective parameters re-
quired for solving the task (W ), and this effect intensifies at higher attention head counts (A) due
to their positive interaction. Conversely, the effect of attention heads on W depends on depth. For
small L values (e.g., L = 1 or L = 2), the negative coefficient on A (−1.7 × 105) outweighs the
positive interaction term (3.8 × 104L · A), meaning that increasing A reduces W . However, once
L > 4.47, the interaction term becomes dominant, making the overall effect of A over W positive.
This finding aligns with our earlier observation that horizontal expansion (more heads) enhances
efficiency in shallow models. These experiments reveal a fundamental tradeoff: increasing the
number of heads reduces parameter requirements, while greater depth accelerates learning.

7. Models with a single layer proved difficult to converge, as seen in previous experiments.
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Appendix E. Partial Deduction Algorithm

We show how a single-layer transformer can implement a solution to a two-level inference problem.
This solution implements a matching-aggregation approach: attention heads detect specific pat-
terns corresponding to logical rules, while the downstream feedforward network aggregates these
signals to verify the inference.8

Suppose each token x is constructed by concatenating a letter one-hot vector with a position
one-hot vector:9

x = [token-hot ∥ position-hot] ∈ Rd.

Attention Pattern-Matching Assume we wish to detect the rule “e→ b” appearing in a specific
pair of positions—say, positions 3 and 4. In our formulation, we design an attention head in which
the query matrix Q is tuned to identify the antecedent (the letter e in position 3) and the key matrix
K is tuned to detect the consequent (the letter b in position 4). For instance, if the columns of Q are
set equal to the token embedding corresponding to e in position 3, then the dot product Q · x might
yield:

• +2 if both the token is e and it is in position 3 (with each attribute contributing +1),

• +1 if either the token is e in a different position or the token in position 3 is not e,

• 0 otherwise.

An analogous construction applies to the key matrix K, which is tuned to output a positive value
only when the consequent letter b appears in position 4. Consequently, when both conditions are
met, the dot product Q⊤

i Kj reaches its maximum value (in this case, +2×+2 = +4).
In practice, verifying whether an input instance satisfies the conditions for a two-step modus

ponens inference would require three attention checks:

• The initial fact (x) (forward) or the final fact (y) (backward) appears in the second or last
position, respectively;

• The rule x→ y must be present among the candidate rules;

• The token y appears in an odd position greater than one (forward), which is reserved for rule
antecedents, or the token x appears in an even position, which is reserved for rule consequents
(backward).

A fully general, brute-force solution for a level-2 inference task might allocate heads as follows.
One would need 26 heads to verify that a specific initial fact (one per letter) appears in its designated
slot. To detect all possible rules x→ y, one could imagine assigning 26× 25 = 650 heads (one for

8. Attention heads and feedforward computation could directly identify full inference patterns from the tokens, but this
clearly produces a combinatorial explosion. It is computationally more efficient to recognize basic components first
and aggregate them next. We could also imagine that, instead of single rules, the network first regconizes multistep
sequences, e.g., e, e → b, b → k, and then simply verifies whether a given multistep rule is present. Again, this
produces a much larger combinatorial space than the matching-aggregation algorithm we hypothesize.

9. In our models, we add both token and positional encodings. This is a simplification for exposition purposes. A similar
demonstration could be made for the summation case.
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each possible rule pair, assuming self-loops like x → x are excluded), plus an additional 26 heads
to confirm that a candidate antecedent appears in its proper slot. Moreover, if backward deduction
is considered (i.e., checking final facts and their corresponding positions, such as odd-numbered
slots), an extra 26 heads might be required, yielding a total on the order of 702 distinct heads.10

Rule Aggregation. Once each attention head “activates” upon detecting its designated pattern,
their outputs are aggregated and passed to a downstream feed-forward network. This network
performs a logical combination—such as summing the positive signals and comparing the total
to a threshold—to determine whether the overall inference is valid. One possible interpretation
is that the attention mechanism handles the “matching” step, while the feed-forward layers inte-
grate these signals to assess each potential chain of reasoning. These chains could follow struc-
tures like antecedent-rule-rule (e.g., x, x → y, y → something) or consequent-rule-rule (e.g.,
something → y, y → x, x).

For a level-2 problem, the number of necessary rule instances would be given by:

2× 26× 650× 649 = 21, 936, 200 (6)

More generally, for a level-I problem, the number of possible rule combinations is:

2× 26×R× (R− 1)× · · · × (R− I)

= 2× 26× R!

(R− (I + 1))!

(7)

A simplification arises if one considers only a single direction, focusing solely on either the
antecedent or consequent of the final rule. In this reduced form, a level-I problem allows:

R× (R− 1)× · · · × (R− I + 1)×m

=
R!

(R− I)!
×m

(8)

where m represents the vocabulary size.

Deeper Inferences. It is worth noting that while the above mechanism can be engineered to han-
dle two-level inferences, extending it to support level 3 inferences (or deeper) presents significant
challenges. As the depth of the inference increases, the number of possible combinations of ini-
tial facts, rules, and intermediate deductions grows combinatorially. This expansion would demand
many more neurons in the dense layers than are typically available in standard transformer archi-
tectures, potentially explaining why models struggle with deeper logical reasoning tasks. This is
perhaps why we were not able to train models to solve a 3-level task.

10. Higher-level inferences do not require more heads, since the combination of possible two-letter rules is still 650.
That could change if a model considered multi-step rules (e.g., x → y → z). This would make the aggregation task
lighter; however, the number of multi-step rules attended would be much larger, following R×(R−1)×· · ·×(R−k),
where k represents the number of steps in a single rule. For instance, for a three-step rule (e.g., x → y → z), a model
would need to identify 650× 649× 648 = 273,358,800 rules. This would make the matching process significantly
more complex.
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Appendix F. Ablation

To better understand the information flow in our model, we conducted an ablation study, systemati-
cally removing specific components to assess their individual contributions to overall accuracy. The
ablated components included attention heads (both layer-wise and individually), residual connec-
tions (before both the attention and feedforward networks), the feedforward network itself, entire
transformer blocks, and positional embeddings.

Table 1 presents the results for a 3-layer, 4-attention-head model. The baseline corresponds to
the full model with no components removed. In general, individual attention heads were not essen-
tial, except for Head 2 in the second layer, whose removal caused a significant drop in performance.
Residual connections were crucial in the first two layers but had a lesser impact in the final layer.
Interestingly, skipping the first transformer block did not entirely disrupt the model’s ability to make
predictions.

Component Layer 1 Layer 2 Layer 3
Baseline 98.90
Attention

All 97.40 50.00 52.16
Head 1 98.39 98.89 98.55
Head 2 98.44 50.00 88.17
Head 3 98.90 98.88 91.53
Head 4 98.42 98.91 82.10

Residual C.
First 51.93 53.22 92.40
Second 49.53 48.98 98.23

Feedforward 89.74 91.55 51.25
Transf. Block

All 50.00
Single 72.05 50.18 48.39

Pos. Emb. 49.54

Table 1: Ablation of different components in a model with 3 layers and 4 attention heads. Test set
accuracy is reported.

Through a qualitative assessment across multiple models, we identified the following key find-
ings, highlighting how each component contributes to overall performance.

Attention Heads

Full Layer Removing all heads in a layer often led to accuracy dropping to chance level.

Individual Heads Single heads were usually non-critical, indicating that attention was distributed
across multiple heads.

Head Sensitivity Models with fewer heads were more sensitive to head removal.
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Feedforward Network

Shallow Models Removing the feedforward network greatly reduced accuracy.

Deep Models The contributions of feedforward layers were spread across multiple layers,
making individual layers less crucial.

Other Findings

Positional
Embeddings

Removing positional embeddings reduced performance to chance, highlighting
their key role in encoding word order.

Transformer
Redundancy

Some transformer blocks in deeper models were redundant and could be re-
moved without significantly affecting performance.

Residual
Connections

Residual connections were crucial in lower layers but had less impact in higher
layers.
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