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Abstract

Translating real-world scenarios into simulation environments is essential for the safe, cost-
effective, and scalable development of autonomous vehicles. Simulations enable rigorous
testing of complex, rare, and hazardous scenarios, while also allowing for rapid iteration,
data generation, and exposure to diverse conditions. However, the real-to-sim gap remains
a significant challenge, as automated methods often fail to accurately capture real-world
conditions, and manual scenario generation is labor-intensive and struggles to replicate
realistic dynamics and unpredictable human behavior.

In this work, we propose Road2Code, a framework that bridges the gap between
real-world traffic data and simulation by leveraging neuro-symbolic program synthesis.
Road2Code translates real-world driving scenarios into Scenic programs1 for the CARLA
simulator2, utilizing large language models for code generation. To enhance efficiency, we
employ a distillation approach, where a large language teacher model generates reasoning
processes that refine training for a smaller student model used for inference. Road2Code
enhances simulation fidelity by accurately modeling real-world scenarios and agent behav-
iors while enabling scenario editing and counterfactual analysis, providing essential tools for
testing and refining autonomous vehicle behavior. This direct link between real-world data
and simulation lays a foundation for advancing trustworthy and transparent autonomous
driving research, accelerating progress toward reliable autonomous vehicle systems.

Keywords: Neuro-symbolic Programming, Large Language Models, Artificial Intelligence,
Autonomous Driving.

1. Introduction

Simulating autonomous driving scenarios is essential for autonomous vehicle (AV) systems
development as it is less costly, time-consuming, and limited in scope, compared to real-
world testing Ljungbergh et al. (2025) and it is easy to test “edge cases” such as sudden
pedestrian crossings or unexpected vehicle approaches which are otherwise difficult to test
Kalra and Paddock (2016). Simulation provides a risk-free, scalable environment for AV
testing to enable iterative improvement of perception and planning Rong et al. (2020),
accelerate training Chen et al. (2020), enable dynamic adjustments in vehicle behavior
Filos et al. (2020), and support rigorous validation and verification Li et al. (2023).

However, existing frameworks often fall short in capturing the complexity of real-world
driving and traffic. Most frameworks rely heavily on pre-constructed, deterministic scenarios

1. Scenic is a domain-specific probabilistic language for interpretable traffic scenario generation
2. CARLA is an open-source simulator for autonomous driving, for testing self-driving systems
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Figure 1: Road2Code converts real-world video into realistic CARLA simulations using
Scenic, a domain-specific language. It preserves key elements like road structure, vehicle
positions, and agent behavior (left). It also enables scene editing for further analysis and
scenario refinement (right).

and hand-coded agent behavior models that lack the realism and unpredictability inherent
in actual traffic Chao et al. (2018a,b). This limits their ability to effectively represent crit-
ical and nuanced events necessary for robust AV testing. Moreover, traditional simulation
methods struggle to seamlessly integrate real-world sensory input, into simulation, further
reducing their fidelity and practical relevance Chao et al. (2018a); Li et al. (2019). Ad-
dressing these limitations requires a real-to-simulation framework that can automatically
translate real-world driving observations into realistic, editable simulation scenarios, pro-
viding AV systems with comprehensive exposure to the full spectrum of driving situations
they may encounter on the road.

In this paper, we take the first steps toward bridging the substantial gap between real-
world traffic and simulated driving environments, aiming to create adaptable, high-fidelity
simulations that reflect the complexity of real-world traffic while remaining easily editable
and interpretable. To achieve this, we propose a neuro-symbolic approach that generates
simulated scenes directly from real-world video inputs, enabling seamless integration of real-
world data into simulation frameworks. Using the powerful code generation and reasoning
capabilities of Large Language Models (LLMs) Achiam et al. (2023); Roziere et al. (2023);
Touvron et al. (2023); Anil et al. (2023); Devlin et al. (2019), we extract vehicle trajectories
from the input video data and translate their relative motions into Scenic code Fremont
et al. (2019) using our neuro-symbolic synthesis framework. This code can then be loaded
into simulators such as CARLA Dosovitskiy et al. (2017) for subsequent testing and analysis.

Large models like the GPT family Achiam et al. (2023); OpenAI (2024) excel at code
generation but require billions of parameters, demanding significant computational and
memory resources Xu et al. (2024). Therefore, we employ a smaller language model for pro-
gram generation by distilling knowledge from a teacher model. Using Zero-Shot Chain-of-
Thought (ZS-CoT) prompting Kojima et al. (2023), the teacher model generates reasoning
steps that link input scenarios to code, which are then incorporated into the student model
for fine-tuning and inference, improving efficiency without sacrificing performance.

In summary, our key contributions in this work are:

• We introduce Road2Code, a framework that translates real-world driving scenarios
as captured by cameras and LiDAR sensors into symbolic representations. Road2Code
models diverse traffic patterns and vehicle behaviors, as shown in Figure 1, making it
well-suited for autonomous vehicle certification and testing.
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• We harness the reasoning capabilities of Large Language Models for program gen-
eration, employing a Zero-shot Chain-of-Thought prompting approach to guide the
program synthesizer in generating accurate and interpretable neuro-symbolic code
that captures agent movements and behaviors in real traffic scenarios.

• We demonstrate that scenarios generated from real-world videos are easily editable
within our framework (for example, Figure 1, right). Specifically, applications such
as scene translation, editing, and post-mortem analysis highlight Road2Code’s utility
for autonomous driving simulations and comprehensive vehicle behavior testing prior
to deployment.

2. Related Work

Neuro-symbolic Program Synthesis. Program synthesis—generating programs from
high-level task specifications—has long been a challenge in computer science Biermann
(1978); Summers (1977). Traditional approaches to program synthesis rely on automated
search and reasoning but are limited by engineering complexity and scalability Parisotto
et al. (2016). Neuro-symbolic methods, which combine deep learning with symbolic rea-
soning, have emerged as a promising alternative Chaudhuri et al. (2021); Devlin et al.
(2017); Chen et al. (2021b); Hsu et al. (2023); Okamoto and Parmar (2024); Dang-Nhu
(2020); Mao et al. (2019); Stammer et al. (2021). These methods leverage deep learning
for processing unstructured data while using symbolic representations for logical reason-
ing, interpretability, and generalization Parisotto et al. (2016); Chaudhuri et al. (2021);
Jha et al. (2023). Applications of neuro-symbolic methods span textual reasoning Devlin
et al. (2017), query understanding Chen et al. (2021b); Barceló et al. (2023), vision and
graphics Hsu et al. (2023); Ellis et al. (2018), and multi-modal learning Mao et al. (2019);
Stammer et al. (2021). In autonomous driving and robotics, neuro-symbolic programming
has enabled better decision-making for autonomous agents Sun et al. (2021); Namasivayam
et al. (2023); Bennajeh et al. (2019); Elmaaroufi et al. (2024a). More recently, a mixture
of experts model has been used to synthesize autonomous vehicle scenarios from natural
language description Elmaaroufi et al. (2024b).

Large Language Models. Recent advancements in large language models (LLMs) such
as GPT-3 Achiam et al. (2023), GPT-4 Brown (2020), Llama Touvron et al. (2023), PaLM
Anil et al. (2023), and BERT Devlin et al. (2019) have demonstrated strong capabili-
ties in natural language generation Roziere et al. (2023), symbolic reasoning Chen et al.
(2021a), and mathematical problem-solving Hendrycks et al. (2021). However, enhancing
and adapting LLMs’ reasoning for specific tasks remains a challenge. Techniques such as
Chain-of-Thought (CoT) prompting Wei et al. (2022) and Zero-Shot Chain-of-Thought Ko-
jima et al. (2023) enhance reasoning by generating intermediate steps, making models more
interpretable and adaptable. Our approach leverages Zero-shot CoT to generate reasoning
processes, which can enhance program synthesis abilities for simulation scenarios. A key
challenge to harnessing this reasoning ability is deploying LLMs with limited computational
resources. Knowledge distillation and pruning techniques Sanh et al. (2020); Muralidha-
ran et al. (2024); Men et al. (2024); Xia et al. (2023) reduce model size while retaining
performance, but typically require training a new model from from scratch. Instead, we
distill the reasoning process by knowledge transfer from a teacher LLM to a lightweight
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student model, enabling efficient program synthesis for simulations. Training LLMs by uti-
lizing a teacher-student for knowledge transfer have been shown to enhance LLM reasoning
capability Saha et al. (2023); Ho et al. (2022).

Scene Representations and Neural Rendering. Recent advancements in 3D scene
reconstruction and neural rendering, including Neural Radiance Fields (NeRF) Mildenhall
et al. (2021); Tancik et al. (2022); Xu et al. (2022), Gaussian Splatting Wu et al. (2024);
Kulhanek et al. (2024), and implicit representations Sitzmann et al. (2019); Chen and Zhang
(2019); Park et al. (2019), have significantly improved autonomous driving simulations by
enabling novel view synthesis and sensor data generation. While these methods can render
both static and dynamic scenes Pumarola et al. (2021); Gao et al. (2021), they lack com-
positionality, making it difficult to edit individual scene elements—an essential requirement
for flexible scenario testing in AV simulations. Recent efforts Ost et al. (2021); Tonderski
et al. (2024); Yang et al. (2023); Khan et al. (2024); Bashetty et al. (2020) have intro-
duced editable scene representations, but they still fall short of providing programmatic
control over complex driving scenarios. In contrast, by representing traffic scenes symboli-
cally, our Road2Code approach enables precise control, scenario editing, and counterfactual
analysis—capabilities that neural rendering lacks. The work that is closest to us in recreat-
ing real-world scenarios is Miao et al. (2024) however the main approach is fundamentally
different. Our approaches uses model distillation and fine-tuning of foundation models
whereas Miao et al. (2024) uses prompt engineering.

3. Road2Code Neuro-Symbolic Synthesis

3.1. Problem Formulation

Generating realistic and editable autonomous driving scenarios require structured program-
matic representations that accurately reflect real-world conditions. Given an input ego-
vehicle video V , our goal is to generate a Scenic program P that encodes the scene, including
the road structure, agent behaviors, and dynamic interactions, which can then be rendered
in CARLA for simulation.

Formally, given an input video sequence V = {It}Tt=1, It ∈ RH×W×3, where It is the
RGB frame at time t, our goal is to generate a programmatic representation:

P = {e, a}, e ∈ R, a = {ai}Ni=1, (1)

where e represents the road and environment, and ai represents the behaviors of the ith
agent (vehicle). The simulator function h then renders the scene:

V̂ = h(P ), V̂ ≈ V, (2)

ensuring realism and fidelity between the real and simulated scene.

3.2. Road2Code Architecture

Road2Code consists of multiple processing stages, leveraging LLMs for program synthesis
and neuro-symbolic reasoning for structured representation learning. We illustrate the
architecture in Figure 2 and describe it here.
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Figure 2: Road2Code extracts vehicle tracks and translates their motions into Scenic pro-
grams. Using Zero-Shot Chain-of-Thought, a teacher model generates reasoning, which is
integrated into fine-tuning prompts while training the program synthesizer. At inference
time, the generated program P from the video V is deployed in CARLA for evaluation.

Tracking Module T : The tracking module extracts vehicle trajectories from V , produc-
ing a set of 3D vehicle positions relative to ego:

Xt = {xi,t}Ni=1, xi,t ∈ R3, (3)

where xi,t is the position of the ith vehicle at time t. The sequence of vehicle trajectories is
then represented as:

X = (x1,x2 . . .xn) (4)

where each vehicle i has a trajectory xi = (xi,1, xi,2, . . . , xi,T ). We use a pre-trained Multi-
Object Tracking (MOT) model Hu et al. (2019); Chiu et al. (2021) to compute X.

Behavior Encoding Module E: Each vehicle’s movement is encoded into a behavior
vector:

B = {bi,t}Ni=1, bi,t = (vi,t, ai,t), (5)

where vi,t is the velocity at time t, and ai,t is the action at t, such as lane change or braking.
This module produces an encoding function: B = E(X), ensuring structured representation
of autonomous agent (vehicle) behavior.

Prompt Generation Module G: The behavior encoding is converted into a structured
text prompt Y via the prompt generation function G: Y = G(B). This prompt serves as
the input to the program synthesizer. Specifically, G encodes vehicle behaviors into a struc-
tured textual format. For instance, for each vehicle i, the initial placement is represented
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as: “Place car at xi,1”. This process is repeated for all vehicles in Xt. Subsequently, a
sequence of actions is generated, for example: “drive forward at v0,t for 0.5 seconds,

then ...”. The resulting text prompt Yj encapsulates the full scenario. Optionally, an ad-
ditional reasoning process r can be incorporated to provide structured guidance for scenario
synthesis, modifying the prompt generation function to:

Y = G(B, r). (6)

This approach provides explicit agent actions and ensures interpretability, allowing LLMs to
infer correct programmatic rules and aiding the program synthesizer in generating realistic
and logically consistent simulation scenarios.

Program Synthesizer S: The program synthesizer S, implemented as a fine-tuned LLM,
generates the Scenic program:

P = S(Y ), (7)

where P is the programmatic representation (see Equation (1)) that includes structured
definitions such as:

P = {e, a}, a = {define ai with position xi,1 and velocity vi,1}i. (8)

The synthesizer translates behavior into executable code, which can then be rendered in
the CARLA simulator to generate realistic and interpretable scenarios.

3.3. Teacher-Student Model Distillation

Figure 3: This example program
generated by Road2Code defines
agents, initial positions, and vehicle
behaviors, illustrating motion rep-
resentation. Manually added com-
ments provide clarity.

Using large language models like GPT-4o for pro-
gram synthesis is computationally expensive. To re-
duce inference costs, we employ knowledge distilla-
tion, where a teacher model generates reasoning pro-
cesses to train a smaller student model, as illustrated
in Figure 2.
Teacher Model: The teacher model generates an
explanation r of how scenario data X maps to the
program P :

r = g(X,P ). (9)

Following a Zero-shot Chain-of-Thought prompting
Kojima et al. (2023), we introduce structured rea-
soning, such as: r = “Let’s think step-by-step:

Given position xi,1, the vehicle must move

with velocity vi,1”. This structured reasoning en-
ables the student model to learn implicit relation-
ships.
Student Model: This is fine-tuned using a dataset
of pairs of coordinates and ground truth programs:
D = {(Yj , Pj)}Nj=1, where training follows Equa-

tion (7): P̂j = S(Yj , rj). To improve efficiency, we use QLoRA Dettmers et al. (2024)
for low-rank adaptation, reducing the number of trainable parameters while retaining per-
formance.
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Table 1: We evaluate visual error of our model with and without Chain-of-Thought distilla-
tion. We find that distillation improves SSIM by 5.4% and reduces MSE by 47.1%, lowering
errors across all metrics.

SSIM ↑ MSE ↓ LPIPS ↓ mAP50 ↑
No Distillation 0.8079 0.1251 0.2973 0.0190

Ours with ZS-CoT Distillation 0.8515 0.0662 0.1949 0.7333

Figure 4: Real-world traffic scenes are translated to simulation using Road2Code. The
simulated vehicles closely match real-world agents, with IoU scores between 0.6 and 0.7,
indicating strong alignment between simulated and real bounding boxes.

3.4. Training and Inference

Training Phase: Training follows a supervised fine-tuning approach: ① extract vehicle
trajectories Xj = T (Vj), ② encode behavior Bj = E(Xj), ③ generate prompt Yj = G(Bj)
and ④ Fine-tune student model with knowledge distillation

P̂k = S(Yk, g(Xk, Pk)),

where g generates reasoning explanations.
Inference Phase: Given an unseen driving sequence V , the interpretable scenic program
is generated as:

P = S(G(E(T (V )))).

Note that the teacher model is not required at this stage, as reasoning knowledge is already
embedded in the student model. The Scenic program can be executed in CARLA, enabling
simulation, scenario editing, and counterfactual analysis.

The generated Scenic program is highly editable due to its high-level syntax, which
allows users to describe agent behaviors and movements in an intuitive manner. Unlike low-
level scene descriptions from 3D reconstruction-based methods Ost et al. (2021); Tonderski
et al. (2024); Yang et al. (2023); Khan et al. (2024); Zhou et al. (2024), Scenic provides a
structured representation that simplifies modifications.

4. Results and Discussion

4.1. Implementation

Network and Hyperparameters: We used the GPT-4o model OpenAI (2024) as the
teacher model with a temperature of 1.0. For the student model, we fine-tuned a pre-
trained Llama 3.1 model Touvron et al. (2023) with 8 billion parameters, quantized to 8
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bits. Text generation was performed using top-k sampling (k = 50) with a temperature of
1.0 to balance diversity and determinism.

Figure 5: Scenes generated from Road2Code
on instances from nuScenes and Waymo
dataset.

Training Details: The model was trained
with 100 warm-up steps and 1,500 steps
using the AdamW optimizer Loshchilov
and Hutter (2019) at a learning rate of
0.0003. In finetuning, QLoRA hyperparam-
eters were set to rank r = 16, α = 16,
and a dropout probability of 0.05. Training
was conducted on a dataset of 500 prompt-
program pairs generated from the nuScenes
dataset. We generated the programs in the
dataset from the ground truth coordinates
Caesar et al. (2020).

Datasets: We evaluate our model using
nuScenes Caesar et al. (2020) and Waymo
Open Dataset Sun et al. (2020), large-scale datasets of real-world autonomous driving sce-
narios in urban environments. Waymo images have a resolution of 1920×1280 and nuScenes
images are 1600 × 900. We extract vehicle tracks over 5 frames at 0.5-second intervals for
fine-grained evaluations.

4.2. Evaluation

Qualitative Evaluation. We evaluated our model on real-world scenes from the nuScenes
and Waymo datasets, with visualizations shown in Figure 5. The generated scenarios closely
match the real scenes, accurately preserving vehicle placements, road layouts, and weather
conditions. For instance, note that the position of the vehicles in the simulated images
generated by the Road2Code framework visually match their real-world counterparts. Our
framework can to handle multi-lane scenarios, placing the vehicles in the correct lane, as
shown first and third scene of Waymo, and third scene in nuScenes in Figure 5. Most notably,
as demonstrated in the third column of nuScenes in Figure 5, our framework can enable
translating real scenes of inclement weather (rain in this case) into clear day simulations,
facilitating scene analysis.

Quantitative Evaluation. We evaluate the visual similarity of our model quantitatively
in a Synthetic-to-Synthetic scenario to isolate key performance factors under controlled con-
ditions. Evaluating per-pixel quantitative performance on real-world scenes is challenging
due to the lack of accurate ground truth labels. To address this, we generate eight simulated
3D scenes in Carla, varying vehicle locations, environments, and weather conditions, and
use them as ground truth. These scenes are processed through our framework, and the
reconstructed 3D scenes are rendered in CARLA. To assess similarity, we compute mean-
squared error (MSE) as a per-pixel error metric, and SSIM Wang et al. (2004) and LPIPS
Zhang et al. (2018) scores to measure perceptual fidelity.

Additionally, we evaluate bounding box accuracy on real-world scenes, by computing
the bounding boxes of the agents in both ground truth and generated images using object
detection, and then the mAP@0.5 score Lin et al. (2014), that is, the mean average precision
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where the Intersection-over-Union threshold for positive bounding box match is 0.5. As
shown in Table 1, model distillation significantly improves visual similarity, generating
images that more closely resemble the original scenes.

Figure 6: We modify Road2Code
to generate scenes for a variety of
novel unseen scenarios, adjusting
environment, weather conditions,
and vehicle configurations.

Generalization. Although our model was trained on
nuScenes, it successfully generalized to novel scenes in
both Waymo and nuScenes datasets, as demonstrated
in Figure 4. The generated scenarios closely align with
the real-world scenes, with vehicle bounding boxes ex-
hibiting high Intersection-over-Union (IoU) scores, indi-
cating accurate spatial correspondence between the real
and synthesized environments.

4.3. Applications of Road2Code

The Road2Code framework unlocks new capabilities
for AV testing and certification by enabling workflows
that would otherwise be extremely data-intensive, im-
practical or infeasible. In this section, we highlight two
key applications: Scenario Editing and Counterfactual
Analysis, both of which are critical for designing safer
AV systems and ensuring robust certification processes.

Scenario Editing — Enhancing AV Certification
by Supplementing Test Scenarios: A major chal-
lenge in certification of autonomous vehicles is the spar-
sity of critical real-world driving scenarios. Certain
high-risk situations, such as sudden pedestrian cross-
ings, or near-miss collisions, occur rarely in real-world
data. With Road2Code, we overcome this limitation by
systematically modifying and generating new scenarios
in a simulation environment. For instance, an AV oper-
ating in a specific neighborhood may rarely encounter a
busy intersection, whereas human drivers would natu-
rally accumulate far more experiences in such locations.
Road2Code enables the targeted creation of these rare
but crucial scenarios to ensure comprehensive evalua-
tion of AV decision-making.

We first extracts a symbolic representation of a real-world scenario, then perform sys-
tematic modifications, such as adjusting road parameters (e.g., lane count, intersections),
altering physical surroundings (e.g., vegetation, infrastructure elements) or introducing dy-
namic elements (e.g., vehicles, pedestrians, or weather conditions). These modifications
allow for stress-testing AV models under a broad range of conditions without requiring
extensive real-world data collection. Figure 6 demonstrates how Road2Code enables sce-
nario augmentation by introducing additional vehicles or modifying the behaviors of existing
agents, expanding the test coverage of AVs.
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Figure 7: The Scenic program generated from Road2Code is highly editable. We showcase
unexpected and unauthorized lane changes (top row) and oncoming traffic collisions (bot-
tom). The bottom-right scenario is from nuScenes and others from Waymo dataset.

Counterfactual Analysis A fundamental tool for analyzing AV failures is counterfactual
reasoning, which explores “what-if” scenarios by modifying past situations to investigate
alternative outcomes. This is crucial for identifying whether an AV failure stems from a
logical error, perception inaccuracy, or poor decision-making.

Using Road2Code, we conduct counterfactual analysis by systematically altering agent
behaviors to induce potentially unsafe conditions. As illustrated in Figure 7, Road2Code
enables precise manipulation of scenarios to test common accident cases that are difficult to
capture in real-world datasets. This capability potentially allows for validating AV decision-
making robustness under adversarial conditions and ensuring safer real-world deployment
by eliminating critical vulnerabilities in systems.

5. Conclusion

We have presented a framework for converting a real-world autonomous vehicle driving
scenario into a symbolic representation using the domain-specific language Scenic. We
harnessed the reasoning capabilities of large language models and model distillation to effi-
ciently generate programs with a neurosymbolic approach. By demonstrating applications
of the scenario generation for evaluating autonomous driving models under hazardous sce-
narios, we also demonstrate the applicability of our method for robustly simulating and
testing autonomous vehicles. One key extension is to integrate more visually realistic scene
representation into our system. Recent efforts Ost et al. (2021); Tonderski et al. (2024);
Yang et al. (2023) based on inverse rendering have introduced editable scene representa-
tions, but still fall short of providing programmatic control over complex driving scenarios.
By providing a bridge to the symbolic representation, this can augment the ability of our
model for autonomous driving scenarios.
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Michael Felsberg, and Christoffer Petersson. Neuroncap: Photorealistic closed-loop safety
testing for autonomous driving. In European Conference on Computer Vision, pages 161–
177. Springer, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL
https://arxiv.org/abs/1711.05101.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The
neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural
supervision. arXiv preprint arXiv:1904.12584, 2019.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei
Han, and Weipeng Chen. Shortgpt: Layers in large language models are more redundant
than you expect, 2024. URL https://arxiv.org/abs/2403.03853.

14

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://www.science.org/doi/abs/10.1126/scirobotics.aaw0863
https://www.science.org/doi/abs/10.1126/scirobotics.aaw0863
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2403.03853


From Road to Code

Yan Miao, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, Danil Prokhorov, and Sayan
Mitra. From dashcam videos to driving simulations: Stress testing automated vehicles
against rare events. arXiv preprint arXiv:2411.16027, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo
Molchanov. Compact language models via pruning and knowledge distillation, 2024.
URL https://arxiv.org/abs/2407.14679.

K Namasivayam, Himanshu Singh, Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal, Rahul
Jain, Parag Singla, and Rohan Paul. Learning neuro-symbolic programs for language
guided robot manipulation. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 7973–7980. IEEE, 2023.

Lauren Okamoto and Paritosh Parmar. Hierarchical neurosymbolic approach for compre-
hensive and explainable action quality assessment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3204–3213, 2024.

OpenAI. Gpt-4 turbo documentation, 2024. URL https://platform.openai.com/docs/

models/gpt-4o. Accessed: 2024-11-15.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene
graphs for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2856–2865, 2021.

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis, 2016. URL https://arxiv.org/

abs/1611.01855.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 165–174, 2019.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf:
Neural radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10318–10327, 2021.

Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Mārtiņš
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Appendix A. Programmatic Scenario Editability

Figure 8 illustrates the structure and syntax of a Scenic program. The syntax of Scenic
is a domain-specific language suited for scenario definitions in simulation-based testing.
The generated program consists of a list of definitions for a list of vehicles, describing the
characteristics of each vehicle. Each vehicle must correspond to a behavior to describe the
motion over time. We note that the LLM has learned to generate the behavior and vehicle
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definition code, which is formed into a functioning program. However, other sections of the
code, such as definitions of the position of the ego-vehicle, the road that the vehicle has
been placed on, and essential start-up code, have not been generated by the LLM and was
edited in.

We present various edits to the programs, demonstrating their ability to generate mod-
ified scenarios. This enhances the diversity of situations used in simulation and enables
counterfactual testing to identify autonomous driving bugs in critical scenarios. We present
some essential editing operations, which include the corresponding line in the program to
edit. Examples are contained in Figures 8 to 11. We note that the aspect ratios of some
images differ because we used two datasets—nuScenes, which has a wider aspect ratio than
Waymo.

Figure 8: We present the structure of a Scenic program. A Scenic program consists of a
list of specific vehicles, each with a corresponding definition. Every vehicle is paired with
a behavior that describes its motion over time. The behaviors and vehicle definitions are
generated by the program synthesizer.
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Figure 9: We present additional examples where scenario backgrounds can be manipulated;
for example we can obtain night scenes and change inclement weather to render under a
different weather condition.

Figure 10: We can manipulate the initial position of the vehicle. The position is defined as
a pair of coordinates relative to the ego vehicle frame. The x-coordinate has been shifted to
0.0, which causes the vehicle to be translated to the left lane. This shows a way to generate
a new scenario to allow an autonomous driving model to handle diverse situations. The
relevant modified vehicle is indicated in the illustration.
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Figure 11: We can manipulate the position and rotation of the vehicle, as highlighted in
the box. This indicates that we move the vehicle position closer to the ego and rotate the
vehicle at 20 degrees relative to the forward-facing direction. This can be used as a test
scenario where a vehicle has cut in at an angle, presenting a safety hazard.

Figure 12: We show an additional example of manipulation of the position and rotation of
the vehicle. This shows a situation where a vehicle has stopped on the road at a dangerous
angle.
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Figure 13: We show an example of manipulating the vehicle position so that the vehicle is
sitting at an arbitrary position on the road.

Figure 14: We show how we can manipulate the trajectory of the vehicles. We replace the
instructions of a vehicle so that it performs a lane change in the simulation. The behaviors
here can cause a critical situation which the autonomous vehicle must react to.
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