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Abstract
This paper presents a neural network-based algorithm with soundness guarantees to study the sta-
bility of discrete-time linear switched systems. This algorithm follows a counterexample guided in-
ductive synthesis (CEGIS) architecture: an iterative process alternating between the learner, which
provides a candidate Lyapunov function, and the verifier which checks its validity over the whole
domain. We choose a ReLU neural network as learner for its expressivity and flexibility, and a
satisfiability module theories (SMT) solver as verifier. In addition, we introduce a post processing
step to leverage a valid Lyapunov function from the neural network in case of failure of the CEGIS
loop. Several examples demonstrate the algorithm’s efficacy.
Keywords: Lyapunov function, Joint spectral radius, Neural network, CEGIS, SMT

1. Introduction
Switched systems provide a simple yet powerful modeling framework to capture many processes
and approximate complex systems such as cyber-physical systems. They present both practical and
theoretical challenges, including their stability analysis which has been the core subject of many
works; see Sun and Ge (2011). Formally, a discrete-time linear switched system is of the form

x(k + 1) = Aσ(k)x(k), (1)

where the switching signal σ : N → {1, . . . ,M} sets the dynamics at each iteration and Aσ(k) lies
in a finite set of square matrices Σ := {A1, . . . , AM} ⊂ Rn×n with n,M ∈ N.

The stability of these systems has been extensively studied. In this work, we focus on the case
of arbitrary switching, i.e. when there are no constraints on the switching signal. It turns out that in
this case stability is characterized by the Joint Spectral Radius (JSR) of Σ. First introduced in Rota
and Strang (1960), the JSR of a finite set of matrices Σ, denoted by ρ(Σ), is defined by

ρ(Σ) := lim sup
k→∞

{
∥A∥1/k : A ∈ Σk

}
, (2)

where Σk encodes all the possible products of length k of the matrices in Σ. It is well-known that
system (1) is asymptotically stable if and only if ρ(Σ) < 1, see (Jungers, 2009, Corollary 1.1).
Despite this appealing characterization, the approximation of the JSR was proven to be NP-hard
(Blondel and Tsitsiklis (1997)) and the question of deciding whether “ρ(Σ) < 1?” is even unde-
cidable (Blondel and Canterini (2008)). This has not, however, prevented the emergence of several
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approximation techniques (see (Jungers, 2009, Chapter 2.3), for a whole review); Most of which
derive from Lyapunov theory, e.g. quadratic functions in Blondel et al. (2005) and Sum-Of-Squares
(SOS) polynomials in Parrilo and Jadbabaie (2008), and aim to provide JSR upper bounds.

Recently, several Machine Learning (ML) techniques have tackled the problem of learning a
Lyapunov function; see Petridis and Petridis (2006); Richards et al. (2018); Chang et al. (2020);
Dawson et al. (2021); Farsi et al. (2022); Zhang et al. (2023); Lechner et al. (2022); Chen et al.
(2021). In particular, Abate et al. (2021) proposes a CounterExample-Guided Inductive Synthesis
(CEGIS) algorithm where a neural network is trained to represent a Lyapunov function whose valid-
ity is soundly checked by a Satisfiability Modulo Theories (SMT) solver thereafter. This approach
benefits from the flexibility and expressiveness of neural networks and has shown promising results,
though it does not address switched systems. In this paper, we adopt a similar strategy to approxi-
mate the JSR. Not only does the neural network have to represent a candidate Lyapunov function,
but we must also rely on sample points to provide the best (tightest) upper approximation of the JSR.
Therefore, the SMT solver checks the Lyapunov inequalities over the whole domain. The neural net-
work and the SMT solver alternate until a valid approximation is found, or the procedure stops after
reaching a maximum number of iterations. In case of failure, we introduce a post processing step; It
leverages the network’s knowledge of the sample points to derive a valid JSR approximation despite
the failure. This contribution addresses a key limitation of many CEGIS-based stability analyses:
the lack of guarantees that the procedure will yield a valid JSR bound, which we mitigate through a
tailored post-processing step. Finally, we test our new algorithm on several benchmarks. An addi-
tional contribution is a well-defined, well-understood benchmark for evaluating neural networks in
Lyapunov analysis, which is an emerging trend in AI and automation.

The paper is organised as follows: Section 2 reviews classical JSR approximation techniques
and the expressivity power of ReLU neural networks. Section 3 introduces our CEGIS JSR approx-
imation ML technique. Section 3.1 improves previous result linking approximation guarantees to
ReLU neural network structure. Section 3.2 presents the algorithm’s components and Section 3.3
introduces a post processed approximation method. We conclude with numerical experiments and
further discussion in Section 4, before the conclusion.

Notation : Given a square matrix Q ∈ Rn×n of dimension n ∈ N, Q ≻ 0 denotes that Q is positive
definite, that is x⊤Qx > 0 for any x ∈ Rn

0 := Rn \ {0}. Given a real number x ∈ R, ⌈x⌉ denotes
the ceiling of x, i.e. the smallest integer exceeding x.

2. Preliminaries
2.1. Classical and newer approximation techniques

Notwithstanding several theoretical limitations, the approximation of the JSR has been the subject
of numerous studies. Most of them rely on the following characterisation and amount to finding a
common contractive norm along all the matrices. In this section, we first review the approximation
techniques which derive from the following result.
Theorem 1 (Proposition 1 in Rota and Strang (1960)) For any finite set of matrices Σ such that
ρ(Σ) ̸= 0, the joint spectral radius of Σ can be defined as

ρ(Σ) := inf
∥·∥∈N

max
A∈Σ

∥A∥ , (3)

where N refers to the family of submultiplicative norms1.
1A matrix norm ∥·∥ : Rn×n → R≥0 is submultiplicative if for all A,B ∈ Rn×n, ∥AB∥ ≤ ∥A∥ ∥B∥.
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Note that one can restrict the infimum over the matrix norms induced by a vector norm. Theorem 1
implies in particular that any submultiplicative norm ∥ · ∥ : Rn → R≥0 provides an upper bound on
the JSR, defined as the maximum norm over the matrices in Σ denoted by ρ(Σ, ∥ · ∥), i.e.

ρ(Σ) ≤ max
A∈Σ

∥A∥ := ρ(Σ, ∥·∥).

Moreover, if there exists a norm which realizes the infimum in Theorem 1 (which is not always the
case), it will be called an extremal norm. For any ε > 0, there exists a norm ∥ · ∥ε, which will be
called ε-extremal, that satisfies

∀A ∈ Σ, ∀x ∈ Rn : ∥Ax∥ε ≤ (ρ(Σ) + ε) ∥x∥. (4)

In order to provide an upper bound on the JSR that would be as tight as possible, one usu-
ally looks over a sufficiently wide set of norms, called a template for which the computation
can be easily done. The most classical family of norms is the set of ellipsoidal norms defined by
∥x∥Q :=

√
x⊤Qx where Q = Q⊤ and Q ≻ 0. Theorem 14 in Blondel et al. (2005) proves that the

best ellipsoidal approximation of the JSR, i.e. ρQ(Σ) := infQ≻0 maxA∈Σ ∥A∥Q , satisfies some
guarantees, namely that

1

τQ
ρQ(Σ) ≤ ρ(Σ) ≤ ρQ(Σ), (5)

where τQ :=
√
n. Moreover, they proved that ρQ(Σ) can be computed efficiently as the solution of

a convex optimisation program.

Not only norms may be used to derive an upper bound on the JSR. One can indeed relax the
convexity property, and look for a candidate (common) Lyapunov function, i.e. a continuous, pos-
itive definitive and homogeneous function (Ahmadi et al., 2014, Theorem 2.4). If such a function
V : Rn → R≥0 satisfies the following Lyapunov inequalities:

∀A ∈ Σ, ∀x ∈ Rn : V (Ax) ≤ γ V (x), (6)

then ρ(Σ) ≤ γ. For example, Parrilo and Jadbabaie (2008) introduce the JSR approximation using
Sum-Of-Squares (SOS) polynomials (which are not necessarily norms) for which they also provide
a bound on the quality of the approximation (see (Parrilo and Jadbabaie, 2008, Theorem 3.4)).

In this work, we consider the universal template of continuous piecewise linear (CPWL) func-
tions as candidate Lyapunov functions. Since their sublevel sets are polytopes, we will refer to the
polytopic approximation of the JSR. Similarly to John’s Theorem (John (1948)) for the ellipsoidal
approximation of convex sets, the following theorem provides an upper bound on the minimum
number of vertices for a polytope to approximate a convex set with some prespecified error τ .

Theorem 2 (Theorem 1.1 in Barvinok (2013)) Let n and k be two positive integers and τ > 1 be
a real number such that(

τ −
√
τ2 − 1

)k
+
(
τ +

√
τ2 − 1

)k
≥ 6 D(n, k)1/2, (7)

where

D(n, k) :=

⌊k/2⌋∑
m=0

(
n+ k − 1− 2m

k − 2m

)
. (8)

Then, for any symmetric, compact and convex set K ⊂ Rn with non-empty interior and containing
the origin, there exists a symmetric polytope P ⊂ Rn with at most 8D(n, k) vertices such that

P ⊆ K ⊆ τP. (9)
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Using this theorem, Debauche et al. (2024) derive some approximation guarantees using CPWL
functions whose polytopic sublevel sets have a fixed number of vertices, as follows.

Theorem 3 (Theorem 6 in Debauche et al. (2024)) Let ρ(Σ) be the joint spectral radius of a fi-
nite set of matrices Σ of dimension n ∈ N. For any τ > 1 and kτ ∈ N such that relation (7) is
satisfied, the following relation holds:

1

τ
ρP(Σ) ≤ ρ(Σ) ≤ ρP(Σ), (10)

where ρP is the optimum solution of (3) where the norms are restricted to CPWL norms with at most
8D(n, kτ ) vertices.

2.2. Expressivity power of ReLU neural networks

In this work, we use a feedforward neural network with ReLU activation functions as template.

Definition 1 (ReLU neural network) A Rectified Linear Units (ReLU) feedforward neural net-
work with k ∈ N hidden layers with parameter θ = [n0, . . . , nk+1] is defined by k affine transfor-
mations T (j) : Rnj−1 → Rnj , x 7→ W (j)x + b(j) for j ∈ {1, . . . , k}, and a linear transformation
T (k+1) : Rnk → Rnk+1 , x 7→ W (k+1)x. The network represents the function NNθ : Rn0 → Rnk+1

given by
NNθ := T (k+1) ◦ σ ◦ · · · ◦ T (2) ◦ σ ◦ T (1), (11)

where σ(x) = (max{0, x1}, . . . ,max{0, xn}). The matrices W (l) and the vectors b(l) are respec-
tively the weights and the biases of the l-th layer while nl is the width of the l-th layer. The maximum
width of all the hidden layers is called the width of the neural network, and the depth is k + 1.

Any function represented by a ReLU neural network is a continuous piecewise affine function.

Definition 2 (Continuous piecewise affine/linear function) We say that a function f : Rn → R
is a continuous piecewise affine (resp. linear) function (CPWA/L function) if there exists a finite set
of polyhedra2 whose union is Rn, and furthermore if f is affine (resp. linear) over each polyhedron.
The number of pieces of f is the mininum number of polyhedra necessary to express f as above.

Conversely, any CPWL function can be represented by a ReLU neural network, and it is possible to
bound the depth and the width with respect to its number of pieces. Moreover, the represented func-
tion is homogeneous if and only if the biases are zero, see (Hertrich et al., 2021, Proposition 2.3).

Theorem 4 (Theorems 4.2 and 4.4 in Hertrich et al. (2021)) Let f : Rn → R be a CPWL func-
tion with p affine pieces. Then f can be represented by a ReLU neural network with depth ⌈log2(n+
1)⌉+ 1 and width O(p2n

2+3n+1). If f is a convex CPWL function, then the width is of O(pn+1).

Theorem 4 means that, given a CPWL function f , there exists a ReLU neural network, some weight
matrices and some biases such that the represented function is f . Nothing ensures that one will
reach this function during the training process though.

3. Formal approximation of the JSR using ReLU neural networks
In this section, we introduce a new formal method to approximate the JSR of a finite set of ma-
trices using ML algorithms. We consider a CEGIS architecture as implemented in the Fossil tool
developed in Abate et al. (2021); Edwards et al. (2023, 2024). This synthesis architecture involves
the alternating interaction of two main components, namely a learner and a verifier. The learner

2A polyhedron is the intersection of a finite number of halfspaces. A polytope is a bounded polyhedron.
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Figure 1: Illustration of the CEGIS architecture of our method to provide sound upper approxima-
tion of the JSR of a finite set of matrices Σ ⊂ Rn×n.

seeks to submit a candidate Lyapunov function and a sample-based JSR approximation to the veri-
fier. Subsequently, the verifier either validates or disproves the candidate stability certificate – in the
latter case providing new samples to the learner. The communication between the two components
is facilitated by the translator and the consolidator; further information can be found in Abate et al.
(2021). Although the algorithm is sound, it is not complete, as the CEGIS loop may not always ter-
minate. To address this, we introduce a post-processing step that leverages the information acquired
by the network over the sample points, generalizes it to the entire state space, and generates a valid
upper bound of the JSR, even if the CEGIS loop fails. Figure 1 illustrates the full architecture.

This section is organised as follows: Section 3.1 improves Theorem 8 in Debauche et al. (2024)
which provides some insight on the network structure needed to achieve a given precision. Sec-
tion 3.2 describes in details the CEGIS architecture and Section 3.3 covers the derivation of a valid
upper bound even if the CEGIS iterations end without a valid certificate.

3.1. Upper bounds on the structure of the network

In Debauche et al. (2024), we use the upper bound Theorem from McMullen (1970) to bridge the
gap between Theorems 2 and 4. However, this auxiliary result artificially increases the theoretical
bound. To overcome this problem, we prove a corollary of Theorem 2 using duality to get a bound
on the required number of facets for the approximating polytope, rather than the vertices.

Proposition 1 Let n, k be positive integers, and τ > 1 be a real number such that (7) is satisfied.
Then, for any symmetric, compact and convex set K ⊂ Rn with non-empty interior and containing
the origin, there exists a symmetric polytope P ⊂ Rn with at most 8D(n, k) facets such that

P ⊆ K ⊆ τ P. (12)

Proof Consider a symmetric, compact and convex set K with non empty interior in dimension
n ∈ N, a precision τ > 1 and an integer k ∈ N which satisfies relation (7). The polar3 of K,
denoted by K∗, retains its original properties. By Theorem 2, there exists P̃ ⊂ Rn with at most
8D(n, k) vertices such that P̃ ⊆ K∗ ⊆ τP̃ . Since duality reverses the inclusion, we have

(τP̃ )∗ ⊆ K∗∗ ⊆ P̃ ∗ ⇔ 1

τ
P̃ ∗ ⊆ K ⊆ P̃ ∗

where P̃ ∗ has as many facets as P̃ has vertices. Posing P := 1
τ P̃

∗ ends the proof.

3Given any subset A of Rn, the polar of A, denoted by A∗, is defined as A∗ :=
{
b ∈ Rn | a⊤b ≤ 1, ∀a ∈ A

}
.
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Figure 2 represents the evolution of the
precision error τ on the JSR approximation
as a function of the number of facets as
stated in Proposition 1. For comparison
purpose, we display the previous bound
obtained in Debauche et al. (2024). One can
see that we drastically reduce the number of
facets required to achieve a given precision.
Moreover, the difference is even more
pronounced as the dimension increases.

We can now derive theoretical guaran-
tees on the JSR approximation using CPWL
functions with a bounded number of pieces.

Figure 2: Evolution of the precision error (τ ) of ρP
with the number of facets of the corresponding poly-
topic sublevel set for n = 1, . . . , 6. Dashed lines
represent previous bounds, whereas solid lines show
the improved bounds proposed in the present work.

Theorem 5 (Improvement on Theorem 4) Let ρ(Σ) be the joint spectral radius of a finite set of
matrices Σ of dimension n ∈ N. For any τ > 1 and kτ ∈ N such that relation (7) is satisfied, the
following relation holds: 1

τ
ρP(Σ) ≤ ρ(Σ) ≤ ρP(Σ), (13)

where ρP is the optimum solution of (3) where the template is restricted to CPWL norms with at
most 8D(n, k) facets.

Proof Consider a finite set of matrices Σ ⊂ Rn×n of dimension n ∈ N, and ρ(Σ) its joint spectral
radius. By Theorem 1, for any ε > 0, there exists an ε-extremal norm ∥·∥⋆ such that expression (4)
is satisfied. This norm defines a convex set K ⊂ Rn (which contains the origin) that can be ap-
proximated by a polytope. By Proposition 1, for any positive integer k and any real number τ > 1
satisfying (7), there exists a symmetric polytope P ⊂ Rn with at most 8D(n, k) facets such that

P ⊆ K ⊆ τP.

Therefore, the (homogeneous) Minkowski function V (·) whose 1-level set is τP , satisfies that for
all x ∈ Rn, V (x) ≤ ∥x∥⋆ ≤ τ V (x), and then for any A ∈ Σ and any x ∈ Rn:

V (Ax) ≤ ∥Ax∥⋆ ≤ (ρ(Σ) + ε) ∥x∥⋆ ≤ (ρ(Σ) + ε) τ V (x).

Then, V (A) ≤ (ρ(Σ) + ε)τ for all A ∈ Σ and for any ε > 0, where V (A) denotes the extension of
V to matrices, analogous to a matrix norm induced by a vector norm. Therefore, we have that

1

τ
ρP(Σ) ≤ ρ(Σ) ≤ ρP(Σ),

where the second inequality is direct since we consider a subset of norms.

One can therefore bypass McMullen’s theorem, and directly combine Theorems 5 and 6 to derive a
tighter bound on the network’s structure to represent a Lyapunov function with a specified error.

Theorem 6 Let ρ(Σ) be the joint spectral radius of a finite set of matrices Σ of dimension n. For
any real τ > 1 and kτ ∈ N satisfying relation (7), there exists a CPWL function represented by a
bias-free ReLU neural network of depth ⌈log2(n+ 1)⌉+ 1 and width

O
(
[8D(n, kτ )]

n+1
)
,

which approximates ρ(Σ) with a precision of τ .
Proof This theorem directly results from the consecutive application of Theorems 2 and 4.
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3.2. CEGIS approach with formal verification
Since the search for a Lyapunov function can be written as a second order logical formula, we
propose a CEGIS implementation: an inductive loop between the learner which seeks a candidate
Lyapunov function with an optimised sample-based estimate of the JSR, and the verifier which
checks the validity of the Lyapunov inequalities over the whole domain for the candidate function.

3.2.1. LEARNER

The first component of our CEGIS architecture is the learner which trains a ReLU neural network
over a set of sample points S according to hyper-parameters θ of the network. The outcome of this
learning procedure is twofold since it instantiates a candidate Lyapunov function NNθ : Rn → R≥0

and provides a sample-based approximation of the JSR of Σ, denoted by ρ̂NN (Σ,S). The loss
function of the network is tuned to find the best approximation of the JSR (see (14) below). We set
the biases to zero, and thus, it is easily seen that any function encoded by the network is continuous,
radially unbounded and positively homogeneous by construction. We enforce the positivity of the
function by taking the absolute value of the output weights. Then, the gradient descent performs the
minimization of the JSR approximation provided by the network, i.e. the loss function is

ρ̂NN (Σ,S) := max
A∈Σ

max
x∈S

NNθ(Ax)

NNθ(x)
. (14)

This quantity corresponds to the maximum sample-based approximation of the value of NNθ(A)
over all the matrices A ∈ Σ. Note that this quantity might be an invalid upper bound on ρ(Σ) since
we compute it over a finite subset S of the state space, which is why a verification step is introduced.

3.2.2. VERIFIER

By construction, we know that the function represented by the network, that is NNθ(·), is a candi-
date Lyapunov function. Moreover, it follows from the loss function in (14) that, for all the sample
points in the training set S , the Lyapunov inequalities in (6) are satisfied by NNθ(·) and the sample-
based approximation of the JSR ρ̂NN (Σ,S). However, these inequalities must be satisfied over the
whole state space to be able to derive a valid upper bound on the JSR. Therefore, we use an SMT
solver to check their validity and ensure soundness. If the SMT solver provides a counterexample,
meaning a point where at least one of the Lyapunov inequalities is violated, this point (along with a
few other points supplied by the consolidator, as we discuss above) is added to the training sample
set for the next CEGIS iteration. Otherwise, the SMT solver confirms that there is no counterexam-
ple, and ρ̂NN (Σ,S) is a valid upper bound on the JSR. Then, the CEGIS process stops.

Note that by linearity of the dynamics and homogeneity of the Lyapunov function, it suffices to
check the Lyapunov inequalities on the unit ball. For computational efficiency, we use the infinity-
norm unit ball, as it admits a linear description, unlike the 2-norm which requires nonlinear con-
straints.

3.3. Post Processing

The verification step can be quite challenging and may not end successfully; here, we introduce a
novel technique to ameliorate an unsuccessful verification step in order to obtain a useful result.

In our setting, we generally rely on a small training sample set to speed up neural networm
computations. However this can lead to poor generalization beyond the training data, where the
neural network potentially fails to satisfy the desired properties outside the training data. As a result,
in such cases, the SMT solver might return a counterexample at each iteration and the CEGIS loop
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might end up without valid approximation on the JSR. This limitation motivates the introduction of
a norm that is constructed using the information learned from the sample points, and for which the
corresponding JSR approximation can be easily computed.
Proposition 2 Given a finite set of pairs S = {(xk, yk)}k∈I ⊂ Rn × R≥0, there exists a unique
polytopic norm ∥·∥S : Rn → R≥0 such that ∀k ∈ I, ∥xk∥S = yk. Moreover, given a finite set of
matrices Σ := {A1, . . . , AM} ⊂ Rn×n, the JSR approximation provided by this norm, denoted by
ρP,S(Σ) can be computed by solving Linear Programs.

Proof In what follows, we describe the construction of this norm, as illustrated in Figure 3.

We define the norm induced by S as the (unique and homo-
geneous) Minkowski function ∥·∥S : Rn → R≥0 whose 1-
sublevel set is given by

B∥·∥S := conv

({
vk :=

xk
yk

∣∣∣ xk ∈ S
})

.

By construction, the norm satisfies that ∥xk∥S = yk for any
pair (xk, yk) in S. Elsewhere, computing the norm ∥x∥S for
x ∈ Rn amounts to solving the following Linear Program

λ∗ = max λ

s.t. λx ∈ B∥·∥S
Figure 3: Illustration of the poly-
topic norm in Proposition 2.

and ∥x∥S = 1/λ∗. In turn, the JSR approximation provided by ∥·∥S can be computed as the
maximum induced matrix norm ρP,S(Σ) := maxA∈Σ ∥A∥S , where ∥A∥S is the maximum norm of
Avk over all the vertices vk of unit ball B∥·∥S .

In our case, we consider the training sample set S and the corresponding outputs of the neural
network on these points, i.e.,

SNN := {(x,NNθ(x)) | x ∈ S}.
Since the training process optimizes not only NNθ(x) but also NNθ(Ax), it is meaningful to in-
clude these points as well. To that end, we define the augmented sample set as

ΣSNN := {(Aix,NNθ(Aix)) | 0 ≤ i ≤ M,x ∈ S}
where A0 := In, the n-dimensional identity matrix. The corresponding JSR approximations are
denoted by ρP,SNN

(Σ) and ρP,ΣSNN
(Σ), respectively. In this setting, the network and the norm

coincide both on the original sample points and their images under the system matrices. We expect
the latter norm to yield a tighter upper bound on the JSR, at the cost of increased computational
effort due to the larger number of vertices involved.

Crucially, the computation of these induced norms allow us to provide correct upper bounds on
the JSR without the usage of SMT-solving. SMT-problems are in general NP-hard, so we provide a
fail-safe in case of a timeout failure in the verification step.

4. Tool evaluation with benchmarks
We test our algorithm on several switched systems and compare its precision with the ellipsoidal
approximation. All the experiments have been run on an Intel i7 laptop with 4 cores and 8GB of
RAM. The neural networks are implemented using PyTorch and trained using AdamW (Loshchilov
and Hutter (2017)), while we use Z3 (de Moura and Bjørner (2008)) as SMT solver.

We start with a 2-dimensional example with 2 matrices.
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Example 1 We consider the 2-dimensional linear switched system Σ1 := {A1, A2} ⊂ R2×2 in
(Debauche et al., 2024, Example 1) with 2 modes. The JSR is 8.6881 while ρQ(Σ1) is 9.5868.

Using our CEGIS algorithm, we approximate ρ(Σ1) with a ReLU neural network with 1 hidden
layer of 5 neurons, starting with 100 sample points and adding 20 after each SMT solver failure. The
process stopped after 10 loops, and the SMT solver validated the approximation of 8.7090.

We motivate the CEGIS loop by training a ReLU neural network (1 single hidden layer, 6 neu-
rons) with 20 initial sample points across 100 different seeds. We perform up to 10 loops of 200
learning iterations, adding 10 points after each SMT failure. For comparison, we let the network
learn for 2000 iterations without any verification step, and we compute the post processed JSR
approximations based on the last neural approximation. The results are summarized in Figure 4.

Figure 4(a) represents the evolution of the neural and post processed JSR approximation over
the learning iterations for one seed. In this example, the CEGIS loop does not stop but recur-
sively integrating counterexamples into the sample set prevents the network from reaching an in-
valid JSR approximation. Then, the neural approximation is more reliable, even without a formal
proof from the SMT. The CEGIS approach also improves the post processing; after 10 CEGIS iter-
ations, ρP,SNN

(Σ1) and ρP,ΣSNN
(Σ1) almost collapse and are 8.77265 and 8.79399 respectively,

compared to 12.07067 and 10.38091 without the CEGIS loop.
Figure 4(b) shows the box plot of neural and post processed JSR approximations with and with-

out the CEGIS approach for 100 different seeds. The results support the observations in Figure 4(a),
showing that the CEGIS approach seems to reduce (and ultimately prevent) overfitting, resulting in
a net decrease in the standard deviation of the JSR approximation (both neural and post processed).
In addition, the network always generates valid JSR approximations (even if the SMT fails) and
the precision of the post processed approximations is greatly improved. This is mainly due to their
sensitivity to overfitting, with higher values of ρP,SNN

(Σ1) and ρP,ΣSNN
(Σ1) often correlating to

invalid ρ̂NN (Σ1). Less overfitting brings the post-processed approximations closer to ρ̂NN (Σ1).

(a) (b)
Figure 4: Comparison of the neural and post processed approximations of the JSR of system Σ1

in Example 1 with (in green) and without (in red) the CEGIS approach. The horizontal black line
represents ρ(Σ1). (a) Evolution of ρ̂NN (Σ1) (above), ρP,SNN

(Σ1) and ρP,ΣSNN
(Σ1) (below) with

learning iterations for one seed, with vertical lines marking the completion of each CEGIS loop. (b)
Box plot of ρ̂NN (Σ1), ρP,SNN

(Σ1) and ρP,ΣSNN
(Σ1) for 100 different seeds. The dots represent

the mean. For clarity, outliers (+) above 16 are not displayed.
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System
Ellipsoidal

Neural approximation Post processing
approx.

Σ n M ρ(Σ) ρQ(Σ) ρ̂NN (Σ) θ1 Iters |S| Loops Time ρP,SNN (Σ) ρP,ΣSNN (Σ)

Σ1 2 2 8.6881 9.5868
8.7090 [5] 400 100 10 19 [16] 8.7141 8.7107

8.7298 [15] 400 300 0 7 [2] 8.7346 8.7298

Σ2 2 3 4.5340 4.7794
4.5367 [8] 200 100 5 12 [6] 4.5402 4.5439

4.5463 [10] 200 500 1 8 [2] 4.5471 4.5478

Σ3 2 4 1.000 1.000
1.0014 [7] 300 500 10 23 [20] 1.0007 1.0007

1.0016 [8] 300 500 0 3 [2] 1.0004 1.0004

Σ4 3 2 0.9506 1.0171
0.99⋆ [10] 500 800 6 46 [17] 1.0063 1.0049

1.01⋆ [9] 400 900 2 17 [6] 1.0471 0.9989

Σ5 3 3 0.9194 0.9411
0.94⋆ [10] 450 1000 4 223 [15] 0.9526 0.9394

0.95⋆ [10] 200 1000 3 168 [5] 0.9508 0.9438

Table 1: Evaluation of the numerical benchmarks of Section 4. For each system, the first line (white
background) outlines the scheme with the best approximation of the JSR while the second line (gray
background) outlines a sample execution with a good precision-computation time trade off. n is the
dimension of the system, θ := [n, θ1, 1] are the parameters of the neural network, Iters is the number
of learning iterations for each CEGIS loop, |S| is the initial number of sample points, Loops is the
number of CEGIS loops and Time is the computation time for the whole CEGIS algorithm with the
total learning time in brackets. The symbol ⋆ means that the neural JSR approximation has been
rounded up to 0.01 accuracy and increased by 0.01 before the validation check by the SMT solver.

Finally, we tested our algorithm on a variety of switched systems of varying complexity, by in-
creasing the dimension and the number of matrices. We consider the switched systems Σ2 in (Della
Rossa and Jungers, 2022, Example 3), Σ3 in (Guglielmi et al., 2005, Example 6.4) Σ4 in (Athana-
sopoulos and Jungers, 2019, Example 2) and Σ5 in (Guglielmi and Zennaro, 2008, Section 7). The
results, summarized in Table 1, show that our neural approach outperforms the ellipsoidal approx-
imation in most cases, notably proving stability for system Σ4, where the ellipsoidal method is
inconclusive. While the CEGIS loop terminates, we also compute the post-processed JSR to assess
its conservativeness. In practice, the difference between the post-processed and the neural approxi-
mation is typically on the order of 10−2, highlighting the usefulness of post-processing.

5. Conclusion

This paper presents an automatic and sound algorithm to study the stability of linear switched sys-
tems by approximating the joint spectral radius of the corresponding set of matrices. This method
leverages the strengths of two key components: the flexibility of neural networks and the sound-
ness of SMT solvers. Through several numerical examples, we show that our algorithm performs
competitively in low dimensions with the most common techniques, which is a first for a simulation-
driven technique. In addition, we address a classical limitation of CEGIS-based methods, namely
the absence of guarantees for procedure termination and thereby the supply of valid certificates, by
introducing a post processing step. These two approaches seem to complement each other since our
experiments reveal that each CEGIS loop enhances the post processed approximations, even when
the SMT fails. We conjecture that our approach, with a smart sampling technique and potentially a
tailored verifier, could significantly outperform current model-based approximation methods.
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