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Abstract
As AI systems grow in complexity, achieving computationally efficient and interpretable decision-
making is crucial. Neuro-Symbolic AI (NeSy) offers a promising framework by integrating sym-
bolic representation with neural learning, but its execution on traditional hardware remains inef-
ficient due to memory bottlenecks and high computational costs. We envision a future where In-
Memory Computing (IMC)-based acceleration fundamentally transforms Neuro-Symbolic policy
acceleration by mapping it onto hardware-associative memory, enabling O(1) complexity decision-
making with drastically reduced energy consumption and latency. Our preliminary results show
that IMC-based symbolic policies achieve up to 100× speedup and six orders of magnitude better
energy efficiency than CPU and GPU implementations. Furthermore, we discuss how probabilis-
tic symbolic policies can be realized within IMC architectures, enabling AI systems to handle
uncertainty while maintaining efficiency. This paper advocates for a paradigm shift in AI accelera-
tion—moving beyond traditional von Neumann architectures toward memory-centric computation,
unlocking real-time, scalable, and interpretable decision-making for next-generation AI applica-
tions.
Keywords: Neuro-Symbolic AI, In-Memory Computing, Hardware-Accelerated AI, Energy-Efficient
AI
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Figure 1: The figure on the left illustrates the exponential growth in the computational demands of
neural network policies, highlighting an unsustainable trend in power and resource consumption.
In contrast, the figure on the right showcases the steady advancements in In-Memory Computing
(IMC) architectures, which are becoming increasingly capable of handling complex workloads.
These trends underscore the timeliness and necessity of transitioning from purely neural network-
based policies to neuro-symbolic policies, as modern IMC architectures now offer the efficiency
and computational capacity required to support such hybrid models effectively.

1. Introduction

The reinforcement learning paradigm has proven effective at designing closed-loop controllers
based on the feedback from the task at hand in the form of a reward. Further, the introduction of neu-
ral networks essentially gave birth to deep reinforcement learning and led to several groundbreaking
works, surpassing human capabilities, such as AlphaGo (Silver et al. (2017)), and DQN (Van Has-
selt et al. (2016)). Not only did deep RL-based controllers breach the ceiling of performance, but at
the same time, they allowed RL-based policies to be used in a wide variety of applications. With the
growing applicability, apart from the performance of the RL-based controller, several other issues
have become attention, such as interpretability, safety, and energy consumption of controllers.

Most of the time, while designing the controller, the energy consumption is not considered, and
it has become the default assumption that the platform used for the deployment of the controller will
have enough resources to support the controller. This assumption no longer holds with the steady
increment in the size of neural network (NN)-based controllers. Consequently, researchers have
started focusing on Neuro-Symbolic reinforcement learning. Neuro-Symbolic (NeSy) paradigm
uses interpretable structures such as finite state machines or decision trees to represent the controller.
Such interpretable structures, by taking advantage of specialized hardware development, such as In-
memory computing, could be used to reduce the energy consumption of controllers in general.

To alleviate the computational inefficiencies of traditional hardware for NeSy AI, we employ
In-Memory Computing (IMC) architectures to accelerate controllers. Unlike traditional CPUs and
GPUs, which suffer from high data movement overhead due to the von Neumann bottleneck, IMC
executes computations within memory itself with reduced latency and power. By mapping NeSy
policies onto IMC, we demonstrate that symbolic structure computations—such as decision-tree
inference and rule-based logic execution—can be performed in O(1) complexity using specialized
hardware. Not only is this energy efficient, but it enables real-time operation of interpretable sym-
bolic policies. This work presents a comparative analysis that stresses the performance enhancement
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Table 1: Generalized Neuro-Symbolic Architectures (Hamilton et al. (2024); Bhuyan et al. (2024))

Category Example Architectures
Rule-Based & Symbolic AI Integration Decision Tree-Augmented Neural Networks, Deep Symbolic Regres-

sion
Automata & Sequential Processing Neural Turing Machines (NTM), FSM-Enhanced RNNs
Program Synthesis & Inductive Learning Neural Program Induction, Program Synthesis Networks
Logic-Based Neural Networks Logic Neural Networks (LNN), Logic Tensor Networks (LTN), Tensor

Product Representation (TPR)
Graph & Knowledge Representation Mod-
els

Graph Neural Networks (GNNs) with Symbolic Reasoning, Recursive
Neural Knowledge Networks (RNKN)

Reinforcement Learning & Decision-
Making

AlphaZero, Neuro-symbolic Policy Learning

Neural-Symbolic Compilation & Theorem
Proving

Neural Theorem Provers (NTP), Expression Trees from Neural Models

of IMC-based NeSy controllers over their NN-based equivalent, highlighting the scalability of IMC
for low-power artificial intelligence applications.

In this paper, we propose the use of a Neuro-Symbolic decision tree controller, followed by its
deployment on IMC, to demonstrate the benefits of energy consumption and execution time. In
section 2, we discuss development in NeSy reinforcement learning and IMC architecture. Subse-
quently, in section 3, we describe the entire pipeline of our proposed method. Further, in section
4, we present a comparison between the energy consumption and throughput performance of NeSy
controller and NN-based controller. Lastly, we delineate the challenges proposed by the current
state of IMC architecture and discuss areas for improvement.

2. Related Works

2.1. Neuro-Symbolic Approach

NeSy approach comprises of several different methods (see Table 1). In the literature, for decision
making, most of the NeSy approaches rely on using controllers based on discrete structures such
as grammar. A grammar G is defined as {T ,N ,P,S}. Here, T denotes the set of terminal sym-
bols. Terminal symbols are tantamount to constants and can be replaced by any other symbol while
evaluating grammar. N represents the set of non-terminal symbol. Non-terminal symbols functions
as variables and can be replace with other non-terminal or terminal symbols. Further, P denotes
production rules that are mapping from the set of non-terminal symbols to a combined set of all
the symbols. Lastly, S is a the state symbol. Once a grammar is assumed for a particular task,
finite-state machine (Inala et al. (2020)), decision tree (Silva et al. (2020); Bastani et al. (2018); Vos
and Verwer (2024)), or simple program (Verma et al. (2019, 2018)) could be obtained as the con-
troller. Inala et al. (2020) uses a finite-state machine to obtain a hierarchical controller for tasks that
require repetitive actions. It uses grammar to define the state-switching conditions and controller
applicable in the state. Further, several works focus on program synthesis using grammar. Verma
et al. (2019) uses a NN policy and imitation learning to perform updates to the programmatic policy.
Moreover, Carvalho et al. (2024) learns programmatic policy by performing a search in the space of
programmatic policy using search methods such as beam search, hill climbing, and etc. A decision
tree could be seen as a special case of programmatic policy where the program only consists of
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if-and-else statements. Our work uses decision tree policy, which we discuss in more detail in the
next subsection.

2.2. Decision Tree-based Controller

Qiu and Zhu (2022) uses a grammar with if-and-else statements with affine conditions to obtain
decision tree policy. The work proposes to learn the probability of introducing nested if-and-else
conditions, increasing the decision tree’s depth. Moreover, if-and-else conditions are also evaluated
based on learned probability. Finally, the action is produced as a weighted sum of actions according
to the probability of all if-and-else statements across all trees up to a certain depth. The previous
work is an example of learning a stochastic decision tree. However, there are several works that
explore deterministic trees and will be more suitable for taking advantage of the current state of
IMC architecture. Vos and Verwer (2024) obtains the decision tree by using a decision tree classifier
(DTC). First, the decision tree acts in the environment and produces trajectory. Later on, the actions
in the trajectory are modified using the objective function of the Proximal Policy Optimization
(Schulman et al. (2017)) algorithm. The next action generator becomes a target for the decision
tree classifier corresponding to a particular state, and DTC is learned using supervised learning.
Further, Bastani et al. (2018) proposes a method to learn decision tree policy by distilling from a
NN-based policy. In this work, we focus on demonstrating how we can obtain symbolic policies
with performance comparable to NN policies and show their efficiency with specialized hardware
such as IMC architecture. Therefore, algorithm proposed by Bastani et al. (2018) is used as the
base for our work. Next, we will discuss the development related to IMC architecture that supports
symbolic policy.

2.3. Hardware Acceleration for Neuro-Symbolic AI

NeSy AI poses distinctive computational challenges that demand hardware acceleration tailored
beyond general deep learning accelerators such as GPUs and TPUs. Unlike deep neural networks
(DNNs), which are built on enormous matrix multiplications structured for parallel computation,
NeSy models use symbolic structures incorporating rule-based decision-making, graph traversal,
and logical operations. These tasks incur heavy memory access overhead and computational non-
uniformity, which render them inefficient on general AI accelerators. One such strategy is IMC,
which sidesteps the data transfer bottleneck by computing directly in the memory itself (Khan et al.
(2024)). IMC architectures are especially suited to executing decision trees, finite-state machines,
and symbolic policies, all of which are typical elements in NeSy models. New studies show that
symbolic models tuned for IMC can achieve comparable performances to deep learning models
at significantly lower energy consumptions, as demonstrated through experiments with decision
tree classifiers on IMC accelerators (Pedretti et al. (2021); Yin et al. (2021)). Also, new hardware
architectures, such as Resistive RAM (ReRAM)-based IMC, Ferroelectric Field-Effect Transistors
(FeFETs), and coupled oscillator arrays, offer novel approaches to advancing the implementation
of tasks related to symbolic reasoning. These hardware options provide high-density storage of
memory, parallelization of logic, and symbolic computation at low energy, making them highly
compatible with NeSy workloads.

A unified hybrid computing paradigm that unifies neural accelerators with special-purpose
symbolic processors is essential to developing NeSy AI. Neuromorphic chips and logic-based co-
processors are viable options for handling tasks with high reasoning demand, while still maintaining
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Figure 2: General workflow of accelerating Neuro-Symbolic policies using Compute-in-Memory
(IMC) hardware. The left section illustrates diverse task environments requiring decision-making,
such as robotics and autonomous control. The middle section represents different Neuro-Symbolic
models and policy expressions, including decision trees, finite state machines (FSMs), and Logic
Neural Network (LNN) structures. The right section depicts the deployment of these policies onto an
IMC-based accelerator, leveraging crossbars, content-addressable memory (CAM), and specialized
logic arrays for efficient symbolic reasoning and real-time execution.

low power consumption. As NeSy AI evolves, hardware-software co-design approaches will be es-
sential for improving efficiency, scalability, and real-time execution in diverse applications such as
robotics, autonomous systems, and edge AI. Future work needs to concentrate on enhancing het-
eregoneous architectures and developing hardware-efficient symbolic execution techniques to fully
harness the power of NeSy AI. In the next section, we will talk about the symbolic policy generation
pipeline used by us.

3. Proposed Methodology

The approach presented in this work focuses on the replacement of energy-hungry NN policies with
symbolic policies that can be efficiently accelerated by leveraging specialized hardware. As shown
in Figure. 2, a two-step process is followed: first, a NN policy is distilled into a symbolic policy
using the VIPER algorithm (Bastani et al. (2018)), ensuring interpretable decision-making capabil-
ities. Then, the symbolic policy is embedded into an IMC architecture, leveraging its parallel ex-
ecution and memory-aware execution to enhance performance while reducing power consumption.
This approach enables the use of NeSy models in low-power, real-time decision-making scenarios.
In the following, we will discuss how to distill NN policy into symbolic policy and then deploy it
on IMC.

3.1. Neural Network to Symbolic Policy

We use the VIPER algorithm proposed in Bastani et al. (2018). In this work, first, a NN policy
is trained using the Deep Q-Learning algorithm (Van Hasselt et al. (2016)) for tasks with discrete
action space. Subsequently, the DAGGER algorithm (Ross et al. (2011)) is used to imitate the NN
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policy using the decision tree policy. Here, the decision tree policy is a classifier because of the
discrete action space. During training, trajectories are generated from a mixture policy consisting of
both NN policy and decision tree policy. As the training progresses, the contribution of NN policy
is annealed to allow the decision tree policy to take over. This specific way of training ensures
that the decision tree policy is able to perform even on the state trajectory that deviates from the
trajectory generated by the NN policy. At the end of the training, we obtain a deterministic policy
with branching of nodes dependent on checking a single boolean condition. The use of simple
operation in the decision tree policy makes it amenable to IMC architecture.

3.2. IMC-Based Acceleration

IMC-based architectures provide a possible solution to accelerating NeSy models by eliminating
data movement overhead and enabling O(1) complexity operations. Crossbar-based IMC is best
suited for Type I operations such as addition and multiplication with vector-matrix multiplications
for high-performance computing. CAM-enhanced IMC with O(1) complexity lookup enables fast
symbolic rule lookups and Type II operations such as comparison-based logic (<, >, =) and hier-
archical decision-making. Apart from these, Ternary Content-Addressable Memory (TCAM) goes
one step further in enabling CAM’s functionality with the support of multi-value symbolic match-
ing, which finds application in probabilistic rule evaluation in NeSy AI. Moreover, Associative
Processing Units (APUs) facilitate pattern-based symbolic reasoning and decrease dependency on
deterministic rule tables while improving flexibility in symbolic policies (Fouda et al. (2022); Austin
(1996)).

In order to effectively enhance symbolic decision policies, this study investigates the poten-
tial for deterministic trees to be executed on IMC accelerators through logic execution on Analog
Content-Addressable Memory (aCAM). aCAMs support the parallel evaluation of several decision
nodes, thereby condensing memory lookup latency to O(1), a key benefit for symbolic reasoning
applications (Pedretti et al. (2021)). This method enables the complete execution of decision trees
in memory, thereby minimizing costly data transfers and lowering energy consumption by a consid-
erable amount (Yin et al. (2021)). At the circuit level, there is a discussion of how symbolic policies
are implemented physically. Decision trees are encoded into lookup tables (LUTs) and then instan-
tiated in content-addressable memory (CAM) architectures, thereby enabling state-based decisions
to be executed quickly.

4. Case Study

The proposed IMC architecture demonstrates an order-of-magnitude improvement in latency and
energy-efficiency compared to conventional CPU and GPU systems. The arrangement reduces data
movement overhead and enhances real-time AI performance, making it extremely scalable to diverse
NeSy models beyond the evaluated benchmarks.

4.1. Deterministic Policy Acceleration

We conducted experiments using DQN (Van Hasselt et al. (2016)) and VIPER (Bastani et al. (2018))
algorithm on four different control tasks with discrete action space: CartPole, Xor, TrafficIntersec-
tion, and Frozenlake8x8. For DQN, we use NN with 3 layers and for decision tree, we use decision
tree classifier from Scikit Learn python package (Pedregosa et al. (2011)) with no limit on the depth.
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Figure 3: Illustration of the workflow from a reinforcement learning control task (CartPole) to
the synthesis of a deterministic decision-tree policy, followed by its deployment onto a compute-in-
memory (CIM) accelerator. The CIM architecture stores and evaluates the decision tree nodes within
analog content-addressable memory (aCAM) arrays to achieve efficient inference performance.

Our decision tree policy includes Type II operations involving logical tests (<, >, =) and binary
rule checks (see Figure. 3).

In hardware, Type II operations can be accelerated using Analog CAMs. Analog CAMs with
6T2M cells, comprising of six transistors (T1–T6) and two memristors (M1, M2), allow analog
data storage, and range based comparison which support Type II operations in memory (Li et al.
(2020)). We evaluate energy efficiency, latency, and throughput using HSPICE simulations. Python-
and HSPICE-based simulations analyze aCAM performance, while CACTI modeling validates en-
ergy consumption at the peripheral and SRAM levels. Additionally, we synthesized key Verilog
modules using Synopsys Design Compiler, obtaining realistic power estimates under standard-cell
constraints. Each environment required a customized CAM array size and memory configuration,
optimizing efficiency. Experimental results show that CAM-based processing achieves superior
power efficiency with minimal peripheral overhead. The pre-charge, compare, and discharge oper-
ations facilitate fast symbolic rule evaluation, while memristor tuning at 1/64 precision (0.015 per
step) enables 64-level storage, balancing hardware efficiency and accuracy. While real-world mem-
ristor variations may introduce minor fluctuations, our analysis assumes an ideal scenario to assess
intrinsic system capabilities.

We benchmarked CPU (Intel Xeon E5-2687W v4) and GPU (NVIDIA TITAN RTX) infer-
ence performance across four environments (CartPole-v1, Xor, TrafficIntersection, FrozenLake8x8)
using decision trees (Scikit-learn) and deep reinforcement learning models (JAX/Flax).
Each model ran 1000 inference iterations, measuring latency and power via nvidia-smi (GPU)
and psutil.cpu percent() (CPU). Hardware specs were retrieved using platform and
nvidia-smi. DQN used jax.device put() for CPU/GPU inference, while decision trees
ran on CPU. Trimmed mean (removing top/bottom 25%) was computed for latency and power.

Our results demonstrate that IMC-based NeSy models achieve ∼100× lower latency and over
six orders of magnitude better energy efficiency than conventional CPU and GPU implementations
(see Table. 2). IMC accelerators maintain competitive reward performance while drastically re-
ducing power consumption, confirming their viability for high-speed, efficient decision-making in
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NeSy AI. These findings highlight IMC’s potential for energy-constrained applications, paving the
way for NeSy AI in edge computing, robotics, and autonomous systems.

Table 2: Comparison of Execution Power, Throughput, and Energy Per Decision

Task Setup Model Process Power Throughput Energy
(nm) (mW) (Dec/s) (nJ/Dec)

CartPole-v1

CPU NN 14 2.936E+04 3.636E+03 8.075E+06
CPU NeSy 14 2.693E+04 1.783E+03 1.511E+07
GPU NN 12 1.074E+05 1.567E+03 6.852E+07
IMC NeSy 65 1.063E+01 1.250E+05 8.503E+01

Xor

CPU NN 14 2.934E+04 3.636E+03 8.068E+06
CPU NeSy 14 3.140E+04 1.635E+03 1.933E+07
GPU NN 12 1.081E+05 1.593E+03 6.784E+07
IMC NeSy 65 4.911E+00 1.250E+05 6.139E+01

TrafficIntersection

CPU NN 14 2.908E+04 3.448E+03 8.348E+06
CPU NeSy 14 2.928E+04 1.724E+03 1.698E+07
GPU NN 12 1.090E+05 1.564E+03 6.960E+07
IMC NeSy 65 1.158E+01 1.250E+05 9.232E+01

Frozenlake8x8

CPU NN 14 2.921E+04 3.425E+03 8.473E+06
CPU NeSy 14 2.845E+04 1.698E+03 1.678E+07
GPU NN 12 1.061E+05 1.566E+03 6.774E+07
IMC NeSy 65 6.457E+00 1.250E+05 8.072E+01

4.2. Probabilistic Policy Acceleration

VIPER Bastani et al. (2018) allows us to distill NN into deterministic decision tree policy. How-
ever, for the decision tree to be applicable for more complex tasks, we need a stochastic variant as
proposed in Qiu and Zhu (2022). The stochastic variant assigns probability for trees with different
depth as well as to the evaluation of if-and-else condition. Effectively, the final output is a weighted
average of different actions produced with different probabilities. Hence, we obtain a powerful pol-
icy compared to the deterministic decision tree policy. In this work, we didn’t obtain the results by
implementing the stochastic decision tree on IMC architecture. However, we will discuss how our
work can be extended to incorporate stochastic trees.

Mapping stochastic decision trees to IMC requires specialized memory and rule-checking for
probabilistic operation evaluation. Unlike deterministic trees, where decision nodes execute fixed
boolean conditions, stochastic trees require sampling from probability distributions. This can be im-
plemented using Ternary Content-Addressable Memory (TCAM), which supports multi-level state
encoding, or by incorporating stochastic computing units (SCUs) within the IMC. CAM-based par-
allel lookup can efficiently retrieve probability-weighted actions, reducing the latency of probabilis-
tic decision-making.

To support random sampling operations, we propose integrating low-power digital random num-
ber generators (RNGs) or memristor-based entropy sources directly within IMC. These RNGs can
drive Monte Carlo sampling for probabilistic branching decisions in hardware, eliminating the need
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Table 3: Comparison of Decision tree (NeSy) and DQN (NN) policies

Task Reward Performance Drop(%)
NeSy (a) NN (b)

CartPole-v1 384.12 305.57 -25.7
Xor 979.93 980.28 0.003

TrafficIntersection 27.65 31.16 11.2
Frozenlake8x8 0.456 0.401 -13.7

Note: The performance drop is computed as (NN Reward − NeSy Reward)/NN Reward × 100. Negative
values indicate NeSy outperforms NN.

for external computation. Additionally, probabilistic rule tables can be preloaded into CAM arrays,
enabling ultra-fast lookups with O(1) complexity.

Future IMC architectures could also leverage stochastic ferroelectric or phase-change memory
devices, which inherently exhibit tunable probabilistic switching behaviors, making them ideal for
implementing uncertainty-driven decision-making. By embedding stochastic trees within IMC, we
can extend NeSy AI to handle complex, uncertain environments while maintaining energy efficiency
and real-time execution.

5. Challenges and Prospects

Using VIPER (Bastani et al. (2018)) algorithm, we are able to show that we can obtain performance
comparable to NN policy (see Table 3) on control task with discrete action space using deterministic
decision tree and reap the benefits of computational efficiency (see Table 2) using IMC architecture.
However, to obtain controllers for more complicated task, we need to use stochastic decision tree
(Qiu and Zhu (2022)). The IMC architecture used in the current work doesn’t support sampling
from a probability distribution. Therefore, we were not able to demonstrate the performance on
more complex control task. Although, we have briefly explained how to handle stochastic policies
on hardware, there is still a need of concerted effort on extending the capabilities of IMC architecture
to support probabilistic operations.

Further, in this paper, we discuss purely symbolic policy by distilling a NN-based policy. In
order to reap the benefits of both NN policies and symbolic policies, the focus can be shifted to
neuro-symbolic policies. For example, finite state-machines (FSM) with a small NN policy for each
state could be used. The computational demands of FSM-based policies would be lower due to the
usage of symbolic components and a small NN. However, to support the execution of FSM-based
policy there is a need for hybrid hardware architecture that can support both IMC operation and the
needs of small NN. Therefore, we need to focus on developments from both the algorithmic and
hardware front.

As a future work from the algorithmic side, we would like to work on FSM-based policy by
combining the contribution of Qiu and Zhu (2022) in utilizing small NN with symbolic policy and
contribution of Inala et al. (2020) in learning an FSM. As an additional step toward accommodating
both symbolic and NN models on the same platform, we envision developing a unified system-
on-chip (SoC) for accelerating a variety of neuro-symbolic workloads. On the hardware side, our
approach involves integrating circuits such as content-addressable memories (CAMs), crossbar ar-
rays, and systolic arrays in a single computing substrate. CAMs can natively handle discrete lookups
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Figure 4: Trade-off between symbolic AI and neural AI components yield a neuro-symbolic policy,
then mapped onto an SoC-based hardware accelerator composed of specialized modules for both
logical and arithmetic operations. This hardware-software co-design targets high reward, low energy
cost, and robust real-time performance in a unified framework.

for symbolic models like decision trees or state machines, while crossbars and systolic arrays can
be leveraged for neural operations. By co-locating these specialized compute blocks, we aim to
minimize data movement and optimize a holistic metric that balances energy cost, chip size, and re-
ward performance. This fully integrated design would permit a range of policy expressions—from
purely symbolic to hybrid neuro-symbolic models—to run efficiently under strict power or latency
budgets, making it suitable for edge scenarios and real-time control.

Ultimately, our plan is to develop a complete methodology, as illustrated in Figure 4, which
spans the compilation of neuro-symbolic models to hardware, the design of custom SoC modules
for logic and arithmetic, and the tuning of final applications for maximum energy-efficiency and
interpretability. By refining each link in this chain, we seek to deliver a robust framework that pro-
vides a trade-off between symbolic AI’s inherent explainability and neural AI’s adaptiveness that
collectively thrive on a specialized, compact, and low-power substrate. We believe this hardware-
algorithm co-design strategy will empower next-generation AI applications, enabling real-time, in-
terpretable decision-making at scale.

6. Conclusion

This vision paper advocates for a paradigm shift toward In-Memory Computing (IMC)-based ac-
celeration for Neuro-Symbolic AI, enabling specialized hardware to efficiently execute symbolic
policies with O(1) complexity decision-making. Our analysis demonstrates that IMC-based sym-
bolic policies achieve up to 100× lower latency and six orders of magnitude better energy efficiency
compared to traditional CPU and GPU execution. By extending IMC architectures to support prob-
abilistic symbolic policies, we open the door for AI systems capable of real-time reasoning under
uncertainty. This work highlights the urgent need for co-designing AI models with specialized hard-
ware, paving the way for next-generation energy-efficient, real-time, and interpretable AI that can
be deployed in edge computing, robotics, and autonomous systems.
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