
Proceedings of Machine Learning Research vol vvv:1–14, 2025

Neuro-Symbolic Behavior Trees (NSBTs) and Their Verification

Serena S. Serbinowska SERENA.SERBINOWSKA@VANDERBILT.EDU

Diego Manzanas Lopez DIEGO.MANZANAS.LOPEZ@VANDERBILT.EDU

Dung Thuy Nguyen DUNG.T.NGUYEN@VANDERBILT.EDU

Taylor T. Johnson TAYLOR.JOHNSON@VANDERBILT.EDU

Vanderbilt University, Nashville TN 37235, USA

Abstract
Neural networks have proven to be incredibly powerful and useful in a variety of domains. Unfortu-
nately, neural networks are also often opaque and difficult to reason about. This is undesirable in
safety-critical systems. An approach to help mitigate this is to utilize a neuro-symbolic approach
that combines the power of neural networks and symbolic structures. In this paper, we present
Neuro-Symbolic Behavior Trees (NSBTs). NSBTs are behavior trees that utilize neural networks.
We provide several examples of NSBTs, including grid-world examples and a representation of a
portion of ACAS Xu, an aircraft collision avoidance system. The grid world example considers over
6 million input states for the neural network, while the ACAS Xu example features 5 networks, each
with 6 layers of 50 neurons. Additionally, we implemented support for NSBTs in our BehaVerify
software tool, and verify certain safety and liveness properties for these NSBTs. Our verification
approach also demonstrates how future improvements could be made using existing neural network
verification techniques.
Keywords: Formal Model, Neural Networks, Behavior Trees, Verification,

1. Introduction

Behavior trees (BT s) are high level controllers that have become increasingly popular in robotics.
Hallen et al. (2024) presents lessons learned from using BT s in a robotic system that assembles
and places explosive charges while Rocamora et al. (2024) describes controlling drones that inspect
structures. Wu et al. (2024) uses BT s for sensitive machine insertion tasks.

Given the serious nature of such applications, it may come as a surprise that BT s originated
in the video game industry. BT s in video games were designed to control non-player characters
(NPCs) in complex simulated environments. The NPCs were expected to navigate virtual worlds and
interact with the player. For instance, in Halo 2, the developers used BT s in order to create enemies
with a diverse range of possible actions that could react to a complex world Isla (2005). This is not
dissimilar to an unmanned aerial vehicle navigating the real world, though the real world is likely to
be far more complex and the consequences for failure more dire.

Given the power of machine learning, it is natural to wonder how it can be used in conjunction
with BT s. Several papers present strategies for using large language models to generate BT s Li
et al. (2024). Others propose methods for generating BT s through reinforcement learning. We are
taking a different approach. We are interested in BT s that use neural networks (NNs). To that end,
we introduce Neuro-Symbolic Behavior Trees (NSBT s) as a subclass of a BT formalism known
as Stateful Behavior Trees (SBT) Serbinowska et al. (2024b). NSBT s can call NNs and use the
output to determine what action should be taken or to augment the value of a variable.

© 2025 S.S. Serbinowska, D.M. Lopez, D.T. Nguyen & T.T. Johnson.

SERBINOWSKA LOPEZ NGUYEN JOHNSON

Contributions We introduce NSBT s. We provide various examples of NSBT s, including a grid
world example and a simplified version of ACAS Xu (an aircraft collision avoidance system) Julian
et al. (2016). For grid world, 6250000 distinct inputs to a NN were considered. The ACAS Xu
example features 5 NNs, each with 6 hidden layers of 50 neurons each. We implement NSBT s in
the DSL of BehaVerify Serbinowska et al. (2024b). We then used BehaVerify and nuXmv Cavada
et al. (2014) to verify safety and liveness properties for NSBT s.

2. Related Work

Neuro-symbolic Artificial Intelligence and Systems Garcez and Lamb (2023) highlighted the
need for trustworthiness, interpretability, and accountability in AI systems. Neuro-symbolic ap-
proaches help address these needs. Neuro-symbolic AI, which integrates NNs with symbolic reason-
ing, has seen increased adoption due to its ability to combine the strengths of both approaches Garcez
and Lamb (2023); Sheth et al. (2023); Barnes and Hutson (2024). For example, neuro-symbolic
systems have been utilized to improve diagnostic accuracy and personalize treatment plans Barnes
and Hutson (2024). The incorporation of neuro-symbolic AI resulted in more stable and safer
behaviors in complex driving scenarios Sun et al. (2021); Gomaa and Feld (2023). More recently, a
neuro-symbolic system has been successfully applied in the realm of visual question answering and
natural language processing Mao et al. (2019); Hamilton et al. (2022).

Neural Network Verification NN verification Tran et al. (2019); Johnson et al. (2024); Lopez
et al. (2023, 2024); Katz et al. (2017, 2019) aims to ensure the correctness, robustness, and reliability
of neural models.Various verification techniques have been used to verify properties like adversarial
robustness, stability, and safety. NNV Tran et al. (2019); Johnson et al. (2024); Lopez et al.
(2023, 2024) employs reachability analysis to verify safety and robustness for feedforward and
convolutional networks while Reluplex Katz et al. (2017) and Marabou Katz et al. (2019) extend the
simplex algorithm to handle piecewise linear constraints introduced by ReLU activation functions,
enabling effective verification of safety conditions. Recent advancements, such as branch-and-
bound approaches Wang et al. (2021); Shi et al. (2025), further enhance verification scalability
and effectiveness for nonlinear activation functions. A critical challenge in NN verification lies
in handling numerical precision, as floating-point errors can lead to unsound verification results,
which are exploitable in practice Daggitt et al. (2024). Recent works address this by exploring
verification under floating-point arithmetic, explicitly accounting for rounding errors and numerical
stability Henzinger et al. (2021), or by focusing on fixed-point representations, which are crucial for
embedded systems due to their deterministic behavior and efficiency Jia and Rinard (2020, 2021).

Behavior Tree Verification Various methods (model checking, runtime monitoring, and others)
have been introduced to ensure the correctness, safety, and reliability of BT s in dynamic and
complex environments. Biggar and Zamani (2020) introduced a formal verification framework
based on Linear Temporal Logic (LTL), encoding BT s and their properties as logical formulae and
reducing the verification problem to LTL satisfiability. ArcadeBT Henn et al. (2022) automates
the verification process by encoding BT s as linearly constrained horn clauses and using the Z3
solver de Moura and Bjørner (2008) to verify safety properties. Other approaches focus on runtime
monitoring and model checking. Colledanchise et al. (2021) formalizes BT s using program graphs
and applies runtime monitoring to ensure correct behavior of a BT . Serbinowska et al. (2024a)
developed a methodology for generating flexible runtime monitors that handle LTL specifications

2

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

and integrate with BehaVerify Serbinowska and Johnson (2022) for formal verification. Wang et al.
(2024) introduced a novel approach using the Behavior-Interaction-Priority framework to model
BT s and verify formal properties. Existing methods often struggle with scalability, expressiveness,
or applicability to real-world systems. Furthermore, there is a lack of integrated tools that seamlessly
combine BT design, execution, and verification. These limitations motivate our research, which aims
to address these gaps by proposing a novel framework for BT verification that improves scalability,
expressiveness, and usability.

3. Preliminaries

3.1. Neural Networks

NNs are computational models inspired by the human brain, consisting of layers of interconnected
neurons. These models are widely used for tasks such as classification, regression, and function
approximation due to their ability to learn complex patterns from data. A fundamental type of NN is
the Feed-Forward Neural Network (FNN), where data flows in one direction, from the input layer to
the output layer through multiple hidden layers. In FNN, each neuron in the layer k−1 is connected
to neurons in the next layer k via weights Wk,k−1 and biases bk. The output is often passed through
the activation function f applied at each layer. Mathematically, the output of a neuron i is defined by:
yi=f

(
Σnj=1ωijxj+bi

)
where xj is the jth input of the ith neuron, ωij is the weight from the jth

input to the ith neuron, bi is the bias of the ith neuron. In this paper, our activation function f will be
ReLU, defined as ReLU(x)=max(0,x).

3.2. Behavior Trees

A Behavior Tree (BT) is a rooted tree. It does nothing until an external signal called a ‘tick’ arrives.
When a tick arrives, the root becomes ‘active’. The tick ends when the root returns a status. At any
time during the tick, exactly one node is active. When a node is active, it will either cause one of
its children to become active or return a status to its parent. The possible statuses are success (S),
failure (F), and running (R). Nodes that do not become active during a tick have a status of invalid
(I). Please refer to Figure 1 for an example BT and execution.

Composite Nodes Composite nodes (nodes with children) control the ‘flow’ through the BT .
Execution follows depth-first traversal but composite nodes can cause portions of the tree to be
skipped. These ‘skips’ occur when a child of a composite node returns R, the child of a selector
returns S , or the child of a sequence returns F . In these cases, the composite node will return with
the status that caused the skip without running the remainder of its children. Examples of this can be
seen in Figure 1, where a, a selector node, skips e when b returns S . Similarly, b, a sequence node,
skips d when c returns F . If no skips occur, a composite node will run children in order until it runs
out of children, at which point it will return a status. For a selector node, if no skips occur, it will
return F . For a sequence node, if no skips occur, it will return S .

Leaf Nodes Leaf nodes do not have children. Unlike composite nodes, users often define their own
leaf nodes. Leaf nodes can change the values of blackboard variables and can return statues based on
blackboard and environment variables (these are described below).

3

SERBINOWSKA LOPEZ NGUYEN JOHNSON

a

e

est :=S
x :=⌊x+y

2 ⌋

b

d

x :=x−1
dst :=S

c

cst :=(x>y?S :F)

Tick 1 1 1 1 1 1 1 2 2 2 2 2 2 2

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Active a b c b d b a a b c b a e a

Returns - - S - S S S - - F F - S S

x 6 6 6 6 5 5 5 5 5 5 5 5 6 6

y 0 0 0 0 0 0 0 7 7 7 7 7 7 7

Figure 1: (i?j:k) means if i then j else k. := is used to denote assignment. nst refers to the status of
node n. The shape and color of the node is used to denote its type: octagon means selector, rectangle
means sequence, and oval means leaf. Tick refers to the number of times the BT has received an
external tick signal which causes it to start executing. t tracks the number of ‘steps’ we have taken
through the execution. Active refers to which node is currently doing something. Returns refers to
the status the active node returns; a node can return success (S), failure (F), or running (R). We use -
to mean the node isn’t ready to return yet. x is a blackboard variable. y is an environment variable.

Blackboard The blackboard refers to the shared memory of the BT . Each node in the tree can
access the blackboard. Blackboard variables do not change unless an action node changes them. We
write blackboard variables in this color.

Environment The environment refers to everything outside of the BT . This could be the wind
speed and direction for a quad-copter, the temperature outside, or a data request from a connecting
client. Crucially, we assume that environment variables only change between ticks. We write
environment variables in this color.

3.3. Formal Definition

In Serbinowska et al. (2024b), we presented a formal definition for Stateful Behavior Trees (SBT s).
Here we will provide a simplified definition of SBT s and then explain how NSBT s relate to them.
A SBT is a tuple (V,r,E,SSBT ,sSBT ,ΣSBT ,δSBT) such that:

• (V,r,E) is a rooted tree. Here V is the set of nodes (vertices) in the tree, r is the root node, and E
is a function that maps parents to children (represented as sequences of nodes).

• SSBT is a set representing the possible states of the blackboard of SBT . For instance, if
we had two variables, one a Boolean and one an integer between 1 and 3, this set would be
{(⊤,1),(⊤,2),(⊤,3),(⊥,1),(⊥,2),(⊥,3)}. sSBT ∈SSBT is the initial state of the blackboard.

• ΣSBT is a set representing the possible inputs (the environment).
• ST is the set of all functions st : V 7→ {S ,R,F ,I }. Each st∈ ST is a function that maps each

vertex to a status. ST is not an element of the tuple; it arises from the elements.
• δSBT : V ×ST ×SSBT ×ΣSBT 7→ 2V×ST×SSBT . Here 2V×ST×SSBT is the power set of V ×
ST×SSBT . The function maps to sets to allow for nondeterminism. This function takes as input
the active node, a function representing the status of each node, the state of the blackboard, and
external input from the environment and produces an active node, a function representing the
current status of each node, and a state for the blackboard. This function must obey additional
rules to ensure it actually represents how behavior trees work (e.g. the next active node must be
either the parent or a child of the current node). Refer to Subsection 3.2 for the intuition of these
rules and to Serbinowska et al. (2024b) for a formal description.

4

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

prime_checker

new_in

new_inst :=(in=(len(arr)−1)?S :F)
in :=min(len(arr)−1,in+1)

out_eq

out_eqst :=
(out=net(arr[in])?S :F)

run_in

out :=net(in)
run_inst :=S

Figure 2: A basic NSBT that makes use of the NN net. net takes as input a single integer and
outputs ‘prime’ or ‘not prime’. The NSBT makes use of this to determine if an array of numbers
(arr) obeys the property that ∀i∈Z,0≤ i<len(arr) =⇒ (prime(i)⇐⇒ prime(arr[i])).

A Neuro-Symbolic Behavior Tree (NSBT) is a BT that utilizes at least one NN ; that is to
say a leaf node can use a NN either to determine the status that will be returned (S , F , or R) or to
determine the value of a variable in the blackboard. See Section 4 for examples. The definition for
SBT s permits this behavior; δSBT can depend on a NN to determine either the status of the active
node or the state of the blackboard. Thus NSBT s are a subset of SBT s.

While the existing definition of SBT s encompasses NSBT s, it is important to note that it is
a broad and abstract definition. In particular, Serbinowska et al. (2024b) demonstrated that if the
blackboard can store true mathematical integers, then SBT s are equivalent to Turing Machines. As
such, our practical implementation of SBT s within BehaVerify utilizes a Domain Specific Language
(DSL) that greatly restricts what can be used within SBT s. We have expanded our DSL to allow
for NNs to be used in BehaVerify. See Section 5 for a description of how NNs are handled in
BehaVerify and a discussion of verification results for the example NSBT s.

4. Examples

We provide three examples of NSBT s: prime position, grid world, and ACAS Xu. Prime position is
meant to help introduce and illustrate how NSBT s function. Grid world helps demonstrate some of
the performance differences between our various approaches of encoding NNs. ACAS Xu illustrates
how NSBT s can be used to handle real world tasks. We write networks in this color.

4.1. Prime Position

The prime position example (see Figure 2) is a basic introductory example. This NSBT features a
very basic NN ; it accepts as input a single integer and classifies it as prime or not prime. It has been
trained on integers between 0 and 9. The NSBT checks if an array of numbers obeys the property
that the ith number in the array is prime if and only if i is prime.

4.2. Grid World

In the grid world example, a drone operates on a 2d-grid. It moves one square at a time (up, down,
left, right) towards a target while avoiding obstacles. When it reaches a target or determines the
target is unreachable, a new target is generated. See Figure 3 for examples. The NSBT that controls
the drone can be seen in Figure 4.

4.3. ACAS Xu

ACAS Xu is optimized for unmanned aircraft systems and issues turn rate advisories to remote
pilots to avoid near midair collisions Marston and Baca (2015), defined as separation less than 100 ft

5

SERBINOWSKA LOPEZ NGUYEN JOHNSON

Figure 3: A drone (blue) avoids obstacles (black) in order to reach a target (green numbers). When a
target is reached, a new target is created. See Figure 4 for the NSBT that controls the drone.

control

next_act

new :=⊥
act :=dir(xd,yd,xt,yt)
next_actst :=S

tar_seq

new_tar

new :=⊤
act :=N
new_tarst :=R

need_tar

need_tarst :=
((xd=xt∧xd=xt)∨(act=N∧new=⊥))?S :F)

Figure 4: A NSBT that moves a drone (xd,yd) on a grid towards a target (xt,yt). N stands for no
action. If the drone reaches the target or determines it cannot reach the target , the drone requests
a new target. It uses the network dir to determine the direction the drone should go in (left, right,
up, down, no action) based on the location of the drone and target. It was trained using A* to
avoid obstacles and take an optimal path towards the target, though the training is grid specific. The
environment variables (xd, yd, xt, and yt) are updated by the environment between ticks.

AcasXu

seqSL

callSL

a :=SLnet
callSLst :=S

wasSL

wasSLst :=
(a=SL?S :F)

seqSR

callSR

a :=SRnet
callSRst :=S

wasSR

wasSRst :=
(a=SR?S :F)

seqWL

callWL

a :=WLnet
callWLst :=S

wasWL

wasWLst :=
(a=WL?S :F)

seqWR

callWR

a :=WRnet
callWRst :=S

wasWR

wasWRst :=
(a=WR?S :F)

seqC

callCnet

a :=Cnet
callCst :=S

wasC

wasCst :=
(a=C?S :F)

Figure 5: A NSBT representation of the aircraft collision avoidance system ACAS Xu. Based on
the previous output, one of five NNs is used to determine which way the aircraft should go. The
outputs are Clear, Weak Right, Weak Left, Strong Right, and Strong Left (C, WR, WL, SR, and
SL). Each NN takes as input (ρ,θ,ψ,vown,vint), representing the distance between the aircraft,
angle describing their relative positions, and their speeds.

vertically and 500 ft horizontally Holland et al. (2013). ACAS Xu assigns turn rate advisories based
on a set of input variables as described in Table 1. The first five variables describe 2D considerations,
the sixth variable brings the scenario into 3D (altitude difference), and the seventh variable promotes
advisory selection consistency.

Developed in Julian et al. (2016) and evaluated in Katz et al. (2017), 45 separate NNs were used
to compress the lookup table. Each network is denoted Nγ,β , where γ corresponds to the index (1 to

6

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

Variable Units Description
ρ ft distance between ownship and intruder
θ rad angle to intruder w.r.t ownship heading
ψ rad heading of intruder w.r.t ownship heading
vown ft/s velocity of ownship
vint ft/s velocity of intruder
τ s time until loss of vertical separation
aprev deg/s previous advisory

Table 1: Input state variables in ACAS Xu.
Note that τ and aprev are used only to de-
termine which NN is used. The remaining
inputs are used as inputs to the NNs.

5) of a specific value of previous advisory aprev ∈ {C,WL,WR,SL,SR} and β corresponds to the
index (1 to 9) of a specific value of time to loss of vertical separation τ ∈{0,1,5,10,20,40,60,80,100}
seconds. Thus, N5,1 corresponds to a NN in which aprev=SR and τ=0. Each network receives
inputs for the remaining five state variables (ρ, θ, ψ, vown, and vint) and outputs a value associated
with each of the five output variables ({C,WL,WR,SL,SR}). These represent actions: C means
do nothing, WL means 1.5 deg/s left, WR means 1.5 deg/s right, SL means 3 deg/s left, and SR
means 3 deg/s right. Each network has six hidden ReLU layers of 50 neurons Julian et al. (2016).
Thus each network has five inputs, five outputs, and six hidden layers of 50 neurons.

In this manuscript we model a simplified version of ACAS Xu as a NSBT (see Figure 5). We
assume that both aircraft are flying at the same fixed elevation, so only 5 NNs are considered,
corresponding to τ=0 (Naprev ,1). We created two models in BehaVerify: a simple model for ‘local
robustness’ and a basic closed-loop model.

‘Local Robustness’ A NN is locally robust at a given input if every other input that is ‘close’ to
that input produces the same output. More formally,

Definition 1 (Local Robustness) Let f : Rn → Rm be a NN , and let x ∈ Rn be an input to the
network. The network is locally robust at x with respect to a perturbation radius ϵ > 0 if for all
x′∈Rn such that ∥x′− x∥≤ϵ, the output of the network remains unchanged. Mathematically, this
can be expressed as: ∀x′∈Rn,

∥∥x′−x∥∥≤ϵ=⇒f
(
x′
)
=f(x), where ∥·∥ is a norm (e.g., L2-norm or

L∞-norm) defining the distance between inputs, and ϵ is the maximum allowable perturbation.

Taking inspiration from this, we created a model where each input to the NNs is restricted to a
small region of integers. Obviously this isn’t the same as local robustness; we are limiting our inputs
based on certain integer values. Details about the verification of this model can be found in Section 5.

Closed-Loop Model Unlike the ‘local robustness’ model, the closed-loop model seeks to ‘simulate’
how ACAS Xu would work in practice. That is to say, the closed-loop model has state variables
representing the positions of the aircraft and updates them based on their headings and speeds.
Additional details about the closed-loop model can be found in Subsubsection 5.1.2.

5. Verification and Results

BehaVerify (Serbinowska et al. (2024b)) allows the user to specify an SBT and the environment
it operates within using a Domain Specific Language (DSL). Additionally, the user can create
specifications using invariants, Linear Temporal Logic (LTL), and Computational Tree Logic (CTL).
BehaVerify can translate the user’s input into a nuXmv model Cavada et al. (2014), a state-based
model checker, as well as Python for implementation. We added support for NSBT s in BehaVerify.
This necessitated representing NNs in nuXmv. We implemented three strategies to accomplish this:
float, fixed, and table. Unfortunately, float proved too inefficient so we omit it here for brevity.

The fixed strategy involves simulating the NN within nuXmv. Each weight and bias is stored
using a fixed-point representation and the output of the network is then calculated directly. Suppose

7

SERBINOWSKA LOPEZ NGUYEN JOHNSON

we want to multiply 1.5 and .32 using 6 digits total with 3 for the fractional part. We would store
these values as 001500 and 000320 and multiply them to get 480000. ‘Digit shifting’ the result to
the right by the number of digits used for fractional part yields 000480. This value represents .48,
the result of 1.5∗ .32. In practice we use bits, not digits. Had we used 4 digits for the fractional
part, then the result would have been 015000∗003200=48000000, resulting in overflow. The user
configures the number of bits and it is the user’s responsibility to make sure overflow does not occur.
Performance implications of using a greater number of bits are discussed in Subsection 5.1.1.

The table strategy records and stores the output of the NN for each possible input during
translation. The inputs and outputs are included in nuXmv as a lookup table, replacing the NN .

5.1. Verification

5.1.1. GRID WORLD

INVAR: (xd,yd) ̸∈Obs CTL: AG(((xt,yt)∈Obs)∨(AF (xd=xt∧yd=yt)))
For the NSBT in Figure 4 we considered two specifications. Obs refers to the set of obstacles, AG
stands for always globally, and AF stands for always finally. The invariant states that the drone
is never in an obstacle. The CTL states that it is always the case that either the target is inside an
obstacle or is eventually reached. We ensured the drone does not start inside an obstacle and that
there are no ‘unreachable’ areas walled off by obstacles. We start with the smaller grid (see Figure 3).

BehaVerify first translates the input files written using the DSL into .smv files for use with
nuXmv. The .smv files are then used with nuXmv for verification. The timing results for this can be
found in Table 2. Note that the fixed point method gets slower as the size of the network increases.
Surprisingly, the results of Fixed-100-35 vs Fixed-140-48 are very similar. In the first case, we are
storing each fixed point number using 100 bits, 35 of which are dedicated to the fractional portion.
In the second case, its 140 and 48. This has a noticeable increase on file size (551.5 vs 666.8 KiB
at 300 neurons), but the impact on performance is minuscule. Thus it is better to err on the side of
caution and use more bits than is strictly necessary as the performance penalties are minimal. Finally,
we note that the table method boasts not only the best performance of the three methods, but is also
resilient to large network sizes. This also presents an avenue for future work (see Section 6).

We also used the table method on the larger grid (see Figure 3). The invariant specification was
verified in 29.32 seconds, 11.75 of which were spent building the model. After an hour, we terminated
the CTL verification attempt. While the invariant and CTL verification times were comparable on
the smaller grid, it is clear that the CTL specification is much more difficult to verify on larger grids.
We note that there are 6250000 possible combinations of drone and target on the larger grid and we
verified that the drone will never crash into an obstacle in under 30 seconds.

Counterexamples So far, our examples have had perfect networks. Imperfect networks can
introduce errors. Consider the network visualization presented in Figure 6. Having imperfect
networks will result in nuXmv finding counterexamples to our specifications, as seen in Figure 7.

5.1.2. ACAS XU

We only used the table method for ACAS Xu. We needed to normalize our inputs for ACAS Xu. For
example, suppose the aircrafts are 50000 ft apart. Then, our actual input is 50000−19791.091

60621 =0.498....
Since we were using the table method, this normalization was handled during the translation. Each
of the 5 inputs to ACAS Xu was normalized in this manner.

8

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

Neurons 100-35 140-48 Table

100 0.240 0.267 0.257
150 0.251 0.275 0.260
200 0.259 0.289 0.261
250 0.275 0.300 0.263
300 0.283 0.313 0.266

Neurons 100-35 140-48 Table

100 53.15 54.00 0.07
150 64.79 66.30 0.07
200 96.36 97.40 0.06
250 123.09 129.30 0.07
300 153.37 154.53 0.07

Neurons 100-35 140-48 Table

100 54.27 54.12 0.20
150 65.11 66.11 0.19
200 96.51 98.70 0.19
250 125.10 124.61 0.20
300 153.89 151.33 0.19

Table 2: Left: time to translate to .smv file Center: time to verify the invariant specification. Right:
time to verify the CTL specification. This is for the smaller grid (see Figure 3). Times are listed in
seconds. A-B means fixed point with A bits in total and B for the fractional portion. Verification
Results include the time nuXmv spent building the model and time spent verifying the specification.
Once the model was built, verifying the invariant condition took about .01 seconds and the CTL
condition about .15 seconds. The table approach is unaware of the size of the network; it only keeps
track of inputs and outputs.

Figure 6: A visualization of two grid-world networks. They take as input the a 4-tuple representing
the location of the drone and target. Green means target, black means obstacle. An arrow represents
the direction the NN would move the drone if it were in the square. A dot means no movement.
The images with red ovals correspond to networks that make mistakes. In the second image the
network can cause a collision (see red oval). In the last image the network can cause the drone to ‘get
stuck’ (see red oval). The training data did not include scenarios where the drone was in an obstacle.
nuXmv counter-example traces can be seen in Figure 7.

Figure 7: Counter-example traces generated by nuXmv for
the incorrect networks in Figure 6. The blue square is the
drone’s starting locations. The blue line traces the path the
drone took. The black squares represent obstacles. The
green number represents the drone’s target. Left: the drone
crashes into an obstacle. Right: the drone never reaches
the target, instead getting stuck.

‘Local Robustness’ For this model, we considered the following invariant conditions:

1.(aprev=C) =⇒ (anext=WL)

2.(aprev=SL) =⇒ (anext=WL)

3.(aprev=WL) =⇒ (anext=WL)

4.(aprev=WR) =⇒ (anext=WR)

5.(aprev=SR) =⇒ (anext=WR)

6.(aprev=C) =⇒ (anext=SR)
The first 5 are true and the last is false. Here aprev refers to the value a has at the start of the tick
(the previous output of ACAS Xu) while anext refers to the value at the end of the tick (the current
output of ACAS Xu). While we are using ‘prev’ and ‘next’ here, it is important to note that the actual
encoding BehaVerify uses for a situation like this would not involve operators like next or previous;

9

SERBINOWSKA LOPEZ NGUYEN JOHNSON

Ranges Total Translation Build Verification

[9975,100025],[-1,1],[89,91],[495,500],[700,705] 16524 1.611 2.63 2.62
[9950,100050],[-1,1],[89,91],[495,505],[695,705] 109989 9.247 20.64 12.22
[9925,100075],[-2,2],[88,92],[495,500],[700,705] 456775 38.347 115.27 —

Table 3: This table shows timing results for ACAS Xu. Total is equal to the result of multiplying
ranges, where ranges shows the ranges for ρ,θ,ψ,vown,vint. Translation, build, and verification are
all listed in seconds. Translation is the amount of time it takes to translate the input written using
the DSL into a .smv file for use with nuXmv. Build is the amount of time nuXmv takes to build the
model. Verification is the amount of time nuXmv takes to verify the model. Note that verification
for the largest model was aborted after 10 minutes.

these truly are invariant specifications that have no temporal aspect within BehaVerify. In essence,
if the plane is turning right, then it should continue to slowly turn right. If it is turning left, then
it should continue to slowly turn left. Note that the first 5 invariants are true only because we are
considering a small region of space (a mimicry of local robustness).

Table 3 is surprising; even though this model only has 456775 distinct NN inputs, it performed
far worse than the large grid world which has 6250000 distinct NN inputs. We suspect this arises
from the 5 NNs, each of which creates a table with 456775 entries. The fact that each of these
networks also affects the same variable may create unexpected complexity in nuXmv.

Closed Loop We note that the closed-loop model for ACAS Xu is a proof of concept. The positions
are heavily rounded, aircraft adjust heading instantaneously, and ACAS Xu is called every 6 seconds.
Thus the invariant specification, ρ≥200, is checked every 6 seconds. It is possible that aircraft crash
between those 6 seconds without our model noticing. In short, our closed-loop model of ACAS
Xu cannot be used to argue for the correctness of ACAS Xu. It serves as a demonstration for how
NSBT s can be used and provides groundwork for a verification approach that could be improved
upon in the future. It took 2.15 seconds to translate the model to a .smv file, 40.40 seconds to build
the model in nuXmv, and 8.88 seconds to verify the invariant specification. Note that closed loop
verification was much harder than ‘local robustness’ and required aggressive simplification.

6. Conclusions and Future Work

We presented NSBT s, introduced several examples, and demonstrated that BehaVerify is capable of
completing interesting verification tasks for the NSBT s using nuXmv. However, there is still work
to be done. We would like to improve the performance of BehaVerify with respect to large networks.
One approach is to utilize existing tools for NN verification as nuXmv is not specialized for NNs.
Instead of encoding the NSBT with the NNs, we could use NN verification on the NNs, and
create an assume-guarantee compositional verification framework providing only the proven pre and
post-conditions over the NNs for the encoding to nuXmv. This is not unlike the table approach; in
the table approach, for a specific input, we record the output. This can be thought of as a guarantee;
if this exact input is provided, the network will output this.

Additionally, our examples so far have focused on classification networks. This is because our
models have been discrete in nature. nuXmv supports the use of reals; however, thus far our attempts
to use reals with BehaVerify have yielded very poor performance results. As such, we are still
exploring how to improve our support for regression networks (and reals in general).

10

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

References

Emily Barnes and James Hutson. Natural language processing and neurosymbolic ai: The role of
neural networks with knowledge-guided symbolic approaches. DS Journal of Artificial Intelligence
and Robotics, 2024. URL https://api.semanticscholar.org/CorpusID:268581074.

Oliver Biggar and Mohammad Zamani. A framework for formal verification of behavior trees
with linear temporal logic. IEEE Robotics and Automation Letters, 5(2):2341–2348, 2020. doi:
10.1109/LRA.2020.2970634.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model
checker. In CAV, pages 334–342, 2014.

Michele Colledanchise, Giuseppe Cicala, Daniele E. Domenichelli, Lorenzo Natale, and Armando
Tacchella. Formalizing the execution context of behavior trees for runtime verification of delib-
erative policies. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 9841–9848. IEEE Press, 2021. doi: 10.1109/IROS51168.2021.9636129.

Matthew L. Daggitt, Wen Kokke, Robert Atkey, Natalia Slusarz, Luca Arnaboldi, and Ekaterina
Komendantskaya. Vehicle: Bridging the embedding gap in the verification of neuro-symbolic
programs, 2024. URL https://arxiv.org/abs/2401.06379.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3. doi:
10.1007/978-3-540-78800-3_24.

Artur d’Avila Garcez and Luís C. Lamb. Neurosymbolic ai: the 3rd wave. Artif. Intell. Rev., 56
(11):12387–12406, March 2023. ISSN 0269-2821. doi: 10.1007/s10462-023-10448-w. URL
https://doi.org/10.1007/s10462-023-10448-w.

Amr Gomaa and Michael Feld. Towards adaptive user-centered neuro-symbolic learning for multi-
modal interaction with autonomous systems. In Proceedings of the 25th International Conference
on Multimodal Interaction, ICMI ’23, page 689–694, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400700552. doi: 10.1145/3577190.3616121. URL
https://doi.org/10.1145/3577190.3616121.

Mattias Hallen, Matteo Iovino, Shiva Sander-Tavallaey, and Christian Smith. Behavior trees in
industrial applications: A case study in underground explosive charging. In 2024 IEEE 20th
International Conference on Automation Science and Engineering (CASE), pages 156–162, 2024.
doi: 10.1109/CASE59546.2024.10711822.

Kyle Hamilton, Aparna Nayak, Bojan Bozic, and Luca Longo. Is neuro-symbolic ai meeting its
promises in natural language processing? a structured review. Semantic Web, 15, 09 2022. doi:
10.3233/SW-223228.

Thomas Henn, Marcus Völker, Stefan Kowalewski, Minh Trinh, Oliver Petrovic, and Christian
Brecher. Verification of behavior trees using linear constrained horn clauses. In Jan Friso Groote

11

https://api.semanticscholar.org/CorpusID:268581074
https://arxiv.org/abs/2401.06379
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1145/3577190.3616121

SERBINOWSKA LOPEZ NGUYEN JOHNSON

and Marieke Huisman, editors, Formal Methods for Industrial Critical Systems, pages 211–225,
Cham, 2022. Springer International Publishing. ISBN 978-3-031-15008-1. doi: 10.1007/978-3-0
31-15008-1_14.

Thomas A. Henzinger, Mathias Lechner, and Ðord̄e Žikelić. Scalable verification of quantized neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3787–3795, May
2021. doi: 10.1609/aaai.v35i5.16496. URL https://ojs.aaai.org/index.php/AAAI/article/view/164
96.

Jessica E. Holland, Mykel J. Kochenderfer, and Wesley A. Olson. Optimizing the next generation
collision avoidance system for safe, suitable, and acceptable operational performance. Air Traffic
Control Quarterly, 21(3):275–297, 2013. doi: 10.2514/atcq.21.3.275. URL https://doi.org/10.251
4/atcq.21.3.275.

Damian Isla. Handling complexity in the halo 2 ai. Presented at the Game Developers Conference
(GDC), 2005. URL https://www.gamedeveloper.com/programming/gdc-2005-proceed
ing-handling-complexity- in- the-i-halo-2-i-ai. Accessed: 2025-03-01, talk available at
https://www.youtube.com/watch?v=m9W-hpxuApk.

Kai Jia and Martin Rinard. Efficient exact verification of binarized neural networks. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS ’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Kai Jia and Martin Rinard. Exploiting verified neural networks via floating point numerical error. In
Static Analysis: 28th International Symposium, SAS 2021, Chicago, IL, USA, October 17–19, 2021,
Proceedings, page 191–205, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-030-88805-3.
doi: 10.1007/978-3-030-88806-0_9. URL https://doi.org/10.1007/978-3-030-88806-0_9.

Taylor T. Johnson, Diego Manzanas Lopez, and Hoang-Dung Tran. Tutorial: Safe, secure, and
trustworthy artificial intelligence (ai) via formal verification of neural networks and autonomous
cyber-physical systems (cps) with nnv. In 2024 54th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks - Supplemental Volume (DSN-S), pages 65–66, 2024. doi:
10.1109/DSN-S60304.2024.00027.

Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer. Policy
compression for aircraft collision avoidance systems. 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pages 1–10, 2016. URL https://api.semanticscholar.org/CorpusID:
3123038.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak, ed-
itors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Publishing.
ISBN 978-3-319-63387-9.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,
and Clark Barrett. The marabou framework for verification and analysis of deep neural networks.
In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 443–452, Cham,
2019. Springer International Publishing. ISBN 978-3-030-25540-4.

12

https://ojs.aaai.org/index.php/AAAI/article/view/16496
https://ojs.aaai.org/index.php/AAAI/article/view/16496
https://doi.org/10.2514/atcq.21.3.275
https://doi.org/10.2514/atcq.21.3.275
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.youtube.com/watch?v=m9W-hpxuApk
https://doi.org/10.1007/978-3-030-88806-0_9
https://api.semanticscholar.org/CorpusID:3123038
https://api.semanticscholar.org/CorpusID:3123038

NEURO-SYMBOLIC BEHAVIOR TREES (NSBTS) AND THEIR VERIFICATION

Fu Li, Xueying Wang, Bin Li, Yunlong Wu, Yanzhen Wang, and Xiaodong Yi. A study on training
and developing large language models for behavior tree generation, 2024. URL https://arxiv.org/
abs/2401.08089.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. Nnv 2.0: The
neural network verification tool. In Constantin Enea and Akash Lal, editors, Computer Aided
Verification, pages 397–412, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-37703-7.

Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Clemens Blab, Marcelo Forets, Yuhao Jia,
Taylor T Johnson, Manuel Kranzl, Tobias Ladner, Lukas Linauer, Philipp Neubauer, Sophie
Neubauer, Christian Schilling, Huan Zhang, and Xiangru Zhong. Arch-comp24 category report:
Artificial intelligence and neural network control systems (ainncs) for continuous and hybrid
systems plants. In Goran Frehse and Matthias Althoff, editors, Proceedings of the 11th Int.
Workshop on Applied Verification for Continuous and Hybrid Systems, volume 103 of EPiC Series
in Computing, pages 64–121. EasyChair, 2024. doi: 10.29007/mxld. URL /publications/paper/Ws
gX.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The Neuro-
Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision.
In International Conference on Learning Representations, 2019. URL https://openreview.net/for
um?id=rJgMlhRctm.

Mike Marston and Gabe Baca. Acas-xu initial self-separation flight tests. 2015.

Bernardo Martinez Rocamora, Paulo V. G. Simplicio, and Guilherme A. S. Pereira. A behavior tree
approach for battery-aware inspection of large structures using drones. In 2024 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 234–240, 2024. doi: 10.1109/ICUAS6
0882.2024.10557083.

Serena S. Serbinowska and Taylor T. Johnson. Behaverify: Verifying temporal logic specifications
for behavior trees. In Software Engineering and Formal Methods: 20th International Conference,
SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings, pages 307–323, Berlin,
Heidelberg, 2022. Springer-Verlag. ISBN 978-3-031-17107-9. doi: 10.1007/978-3-031-17108-6
_19.

Serena S. Serbinowska, Nicholas Potteiger, Anne M. Tumlin, and Taylor T. Johnson. Verification of
behavior trees with contingency monitors. In Matt Luckcuck and Mengwei Xu, editors, Proceed-
ings Sixth International Workshop on Formal Methods for Autonomous Systems, Manchester, UK,
11th and 12th of November 2024, volume 411 of Electronic Proceedings in Theoretical Computer
Science, pages 56–72. Open Publishing Association, 2024a. doi: 10.4204/EPTCS.411.4.

Serena S. Serbinowska, Preston Robinette, Gabor Karsai, and Taylor T. Johnson. Formalizing stateful
behavior trees. In Matt Luckcuck and Mengwei Xu, editors, Proceedings Sixth International
Workshop on Formal Methods for Autonomous Systems, Manchester, UK, 11th and 12th of
November 2024, volume 411 of Electronic Proceedings in Theoretical Computer Science, pages
201–218. Open Publishing Association, 2024b. doi: 10.4204/EPTCS.411.14.

Amit Sheth, Kaushik Roy, and Manas Gaur. Neurosymbolic artificial intelligence (why, what, and
how). IEEE Intelligent Systems, 38(3):56–62, 2023. doi: 10.1109/MIS.2023.3268724.

13

https://arxiv.org/abs/2401.08089
https://arxiv.org/abs/2401.08089
/publications/paper/WsgX
/publications/paper/WsgX
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

SERBINOWSKA LOPEZ NGUYEN JOHNSON

Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
verification with branch-and-bound for general nonlinearities, 2025. URL https://arxiv.org/abs/24
05.21063.

Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. Neuro-symbolic program search for au-
tonomous driving decision module design. In Jens Kober, Fabio Ramos, and Claire Tom-
lin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of Pro-
ceedings of Machine Learning Research, pages 21–30. PMLR, 16–18 Nov 2021. URL
https://proceedings.mlr.press/v155/sun21a.html.

Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods – The
Next 30 Years, pages 670–686, Cham, 2019. Springer International Publishing. ISBN 978-3-030-
30942-8.

Qiang Wang, Huadong Dai, Yongxin Zhao, Min Zhang, and Simon Bliudze. Enabling behaviour
tree verification via a translation to bip. In Diego Marmsoler and Meng Sun, editors, Formal
Aspects of Component Software, pages 3–20, Cham, 2024. Springer Nature Switzerland. ISBN
978-3-031-71261-6.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural network robustness
verification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 29909–29921.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/fa
c7fead96dafceaf80c1daffeae82a4-Paper.pdf.

Yansong Wu, Fan Wu, Lingyun Chen, Kejia Chen, Samuel Schneider, Lars Johannsmeier, Zhenshan
Bing, Fares J. Abu-Dakka, Alois Knoll, and Sami Haddadin. 1 khz behavior tree for self-adaptable
tactile insertion. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pages 16002–16008, 2024. doi: 10.1109/ICRA57147.2024.10610835.

14

https://arxiv.org/abs/2405.21063
https://arxiv.org/abs/2405.21063
https://proceedings.mlr.press/v155/sun21a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/fac7fead96dafceaf80c1daffeae82a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fac7fead96dafceaf80c1daffeae82a4-Paper.pdf

	Introduction
	Introduction
	Contributions

	Related Work
	Related Work
	Neuro-symbolic Artificial Intelligence and Systems
	Neural Network Verification
	Behavior Tree Verification

	Preliminaries
	Preliminaries
	Neural Networks
	Neural Networks
	Behavior Trees
	Behavior Trees
	Composite Nodes
	Leaf Nodes
	Blackboard
	Environment

	Formal Definition
	Formal Definition

	Examples
	Examples
	Prime Position
	Prime Position
	Grid World
	Grid World
	ACAS Xu
	ACAS Xu
	`Local Robustness'
	Closed-Loop Model

	Verification and Results
	Verification and Results
	Verification
	Verification
	Grid World
	Grid World
	Counterexamples

	ACAS Xu
	ACAS Xu
	`Local Robustness'
	Closed Loop

	Conclusions and Future Work
	Conclusions and Future Work

