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Abstract
Markov population processes (MPPs) are the natural modeling choice in various application do-
mains where multiple interacting entities evolve stochastically over time, including biology, queue-
ing theory, finance, and robotics. Motivated by real-world scenarios where time-series data for
MPP models is increasingly available, we here employ a neuro-symbolic approach for discovering
explanations of such data in terms of local, agent-to-agent interactions. Concretely, we assume that
equidistant time-series measurements of a Markov population chain are given. Then, we propose
how to automatically learn the explanatory models written in form of Chemical Reaction Networks
(CRNs). Our approach is to use a symbolic representation of a CRN in form of a weighted bipartite
graph, and to employ a graph-based Variational Autoencoder (VAE) to jointly infer both the inter-
actions and the accompanying kinetic parameters. We demonstrate our proposed framework over
three simple case studies. Our contribution represents a proof-of-concept that interpretable models
of complex dynamical systems can be discovered in a fully automated and data-driven fashion, and
it is applicable both in scenarios where data is available via experiments, or when it is generated by
a black-box simulator.
Keywords: Chemical Reaction Networks; Variational Autoencoders; Graph Neural Networks.

1. Introduction

Markov population processes (MPPs) are the natural modeling choice in various application do-
mains where multiple interacting entities evolve stochastically over time, including biology, queue-
ing theory, finance, robotics. With the growing availability of data, advances in measurement tech-
nology, and the rise of deep neural network-based black-box emulators for complex systems, au-
tomating the discovery of explanations for population-level trajectories is becoming timely and
compelling. In particular, understanding how agents interact locally is crucial not only for model
interpretation but also for system design, verification, and control, thereby finding relevance in
emerging areas such as explainable AI (Rudin, 2019) or precision medicine (Martinelli et al., 2021).

In this work, we assume that equidistant time-series measurements of a Markov population
chain are given. Then, we propose a method to automatically learn the interaction mechanisms
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written in form of Chemical Reaction Networks (CRNs). CRNs are a simple yet versatile formal-
ism able to simulate any computable function (Cook et al., 2009). A typical example of a CRN is
an epidemiological model SIR: the susceptible agent (S) gets infected whenever it interacts with
another infected agent (S + I → 2I), and an infected agent can spontaneously recover (I → R).
Each reaction is equipped with a constant kinetic rate parameter that specifies the relative speed
of reactions competing in a well-stirred (spatially homogeneous) environment. The population dy-
namics of a CRN model evolves stochastically as a continuous-time Markovian process (Gillespie,
1977). Typically, the reactions of a CRN are proposed by the domain expert, and the kinetic rates
are estimated from experimental data. Yet, even the simplest CRNs easily become computationally
challenging, and a large body of work has dealt with abstractions allowing for scalable executions
of CRNs, verification (model-checking), control of CRNs, or inferring kinetic rates from data (Öcal
et al., 2019). Notably, recent efforts leverage machine learning approaches (Wen et al., 2023). Still,
all these approaches are typically black-box abstractions that do not inform on the local mechanisms
underlying the trajectories. In this work, our goal is to automatically infer an explicit representation
of a CRN, that is, to infer the reactions and the accompanying kinetic rates, in a purely data-driven
manner. Our approach is to use a symbolic representation of a CRN in form of a bipartite graph,
and to employ a graph-based Variational Autoencoder (VAE) (Scarselli et al., 2009) to jointly infer
the interactions and the accompanying kinetic parameters. The encoder infers the CRN reactions
and the decoder infers the reaction rates, and thereby the dynamics. We use the linear noise ap-
proximation algorithm (Singh and Grima, 2017) to compute the first two moments of the stochastic
dynamics. Our contribution represents a proof-of-concept that the microscopic interactions between
agents can be inferred from macroscopic, population-level data in a fully automated and data-driven
fashion. It is applicable both to scenarios where data is available via experiments, or when it is
generated by a black-box system.

Related works. CRNs have long been studied across various disciplines, most notably in the
context of systems and synthetic biology, epidemiology, and swarm robotics. Our idea for the
graph-based encoding is inspired by Neural Relational Inference (NRI) (Kipf et al., 2018). Related
works on CRNs include black-box emulations of trajectories induced by modeling gene regulation
and signal transduction in cells (Bortolussi and Palmieri, 2018; Bortolussi and Cairoli, 2019; Repin
and Petrov, 2021; Gupta et al., 2021; Cairoli et al., 2023; Cao et al., 2024). In (Martinelli et al.,
2021), the authors propose learning deterministic CRNs from time-series data via statistical infer-
ence. Synthesis of CRNs from high-level formal specification properties was proposed in (Cardelli
et al., 2017). To the best of our knowledge, we here propose the first technique for purely data-
driven inference of CRNs from time-series data. Several related techniques have been proposed
for temporal causal structure and representation learning (Barnard and Page, 2018; Li et al., 2024;
Bramley et al., 2018; Chen et al., 2024; Rahmani and Frossard, 2023; Heinze-Deml et al., 2018;
Valentin et al., 2020; Ng et al., 2019; Rottman and Keil, 2012; Absar and Zhang, 2021; Liu et al.,
2010), differing in their semantic interpretation and underlying theoretical foundations.

2. Background

2.1. Chemical Reaction Network

Consider a Chemical Reaction Network (CRN) with N species, denoted as S1, . . . , SN , that interact
according to M reactions, denoted as R1, . . . , RM , and let x(t) = (x1(t), . . . , xN (t)) ∈ X ⊆ NN
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denote the state of the population at time t, i.e. the count of individuals (or entities) of each species
present in the population at time t. Borrowing the chemical formalism, a reaction Rj , with j ∈
{1, . . . ,M}, is symbolically described as

Rj : a1jS1 + · · ·+ aNjSN
αj−→ b1jS1 + · · ·+ bNjSN , (1)

where aij and bij are known as stoichiometric coefficients, i.e., the number of entities of a species
that are consumed or produced in a reaction. The propensity function fj(x) determines the rate
of reaction Rj when the system is in state x and includes rate parameter αj . The update vector
νj describes the change of the system’s state when reaction Rj fires and it is defined as νj :=
[b1j − a1j , . . . bNj − aNj ]. We denote the volume of the system by Ω, meaning the total number
of individuals in the population. The dynamics of the CRN are described by the Chemical Master
Equation (CME), i.e., the probability of finding the system in state x at time t given that it was in
state x0 at time t0 can be expressed as:

∂px0

(
x(t) = x

)
∂t

=

M∑
j=1

[
fj(x− νj)px0

(
x(t) = x− νj

)
− fj(x)px0

(
x(t) = x

)]
, (2)

for every x0,x ∈ X , where X ⊆ Nn denotes the state space and αj denotes the parameter for the
propensity function fj(x). The CME describes the flow of probabilities. Therefore, the underlying
CRN dynamics are inherently stochastic. In a fixed volume, under the well-stirred assumption and
the continuum hypothesis, a simple description of reaction rates is provided by the law of mass
action: the reaction rate is proportional to the product of the concentrations of the reactants. The
constant of proportionality is called the rate constant. Under the mass action law, the propensity

functions can be written as fj(x) = αj
∏N

i=1

(
xi(t)
aij

)
. In general, the CME is a system with

countably many differential equations, therefore, its analytic or numeric solution is almost always
unfeasible. Since the CME cannot be computed exactly, we use linear noise approximation (LNA)
to approximate the probability flow of the CRN’s dynamics with a Gaussian distribution (Singh and
Grima, 2017), where the first two moments can be numerically integrated.

Linear Noise Approximation. The LNA builds on the ansatz that fluctuations around the average
of the counting process of an MPP are of order Ω1/2, where Ω is the population size (a.k.a. the
volume). The underlying idea is that, in the macroscopic limit (limit of large individual numbers),
we can say that (by Central Limit Theorem and the Law of Large Numbers) the standard deviation
of noise roughly scales as the square root of the number of individuals: x̂(Ω)(t) ≈ µ(t)+Ω−1/2ξ(t),
where x̂(Ω)(t) denotes the normalized state, i.e., x̂(Ω)(t) = x(t)

Ω , and ξ(t) is a noise term. The fluid
approximation of the CME is then expressed by the following ODE:

dµ(t)

dt
= F (µ(t)), (3)

where µ(t) = Et[x̂
(Ω)(t)], µ(t0) = x̂

(Ω)
0 and the drift is defined as F (µ(t)) =

∑M
k=1 νkfk(µ(t)).

The noise term ξ(t) is modeled as a zero-mean Gaussian distribution, i.e., ξ(t) = N (0, C(t)). The
covariance matrix C(t) evolves according to the following linear ODE:

dC(t)

dt
= J(t)C(t) + C(t)J(t)T +D(t), (4)
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where the Jacobian is defined as Jij(t) =
∑M

k=1 νki∂jfk(µ(t)) and the diffusion term is defined
as Dij(µ(t)) =

∑M
k=1 νkiνkjfk(µ(t)). These two ODEs, (3) and (4), can be numerically solved to

obtain how µ(t) and C(t) evolve. This results in approximating the counting process described by
the CME as a Gaussian process, where, at time t, x(t) is a multivariate Gaussian distribution with
mean µ(t) and covariance Ω−1C(t), i.e. x(t) ∼ N (µ(t),Ω−1C(t)).

Representation as bipartite graph. A CRN can be graphically represented as a colored bipartite
interaction graph as shown in Fig. 1 (left). Species and reactions denote two different types of nodes,
represented respectively as circles and squares in Fig. 1 . The edge color denotes the stoichiometric
coefficient associated with that edge: aij for edges from species to reactions and bij for edges from
reactions to species. The color can be seen as a label {0, 1, 2, . . . ,K}, where K ∈ N is the largest
allowed coefficient, i.e., the maximum number of individuals of a given species that can be involved
in a reaction1. The CME cannot be solved analytically but we can sample from it using the Gillespie
simulation algorithm (Gillespie, 1977) that produces stochastic trajectories that illustrate the exact
time evolution of the CRN. Fig. 1 (right) shows an example of such trajectories for the CRN
depicted by the bipartite graph in the middle of Fig. 1. The synthetic dataset used for training the
VAE consists of a pool of trajectories sampled from the CME via Gillespie simulations, capturing
the system’s state at discrete equidistant time points.

Figure 1: A CRN represented as a colored bipartite graph (left). An example of the matrix represen-
tation of a given CRN model with N = 3, M = 2 and K = 4 (middle). A few sampled trajectories
of the CRN obtained via Gillespie simulation - our synthetic time-series data (right).

3. Methods

The goal is to infer an explicit representation of a CRN from a pool of observed realizations of
an unknown MPP. The CRN structure and its dynamics are uniquely identified by the reactions
R1, ..., RM , and the rate parameters α1, ..., αM . We leverage the colored bipartite graph formu-
lation to encode reactions. In particular, each reaction node is univocally associated with one of
the M CRN reactions. Each edge (either in- or out-flowing) is associated with a one-hot encoding
of the associated stoichiometric coefficient. Therefore, the CRN structure can be identified by a
(M × 2N ×K)-dimensional tensor as shown in Fig. 1 (middle). Our learning framework consists
of a graph-based categorical Variational Autoencoder (VAE), in which the latent space represents
the CRN as bipartite interaction graph. In particular, we have a categorical distribution over these

1. The bipartite representation of CRNs resembles Petri nets, where places are species (tokens representing molecule
counts), transitions are reactions, firing rates are reaction rates, and marking is a system state. CRNs are semantically
equivalent to the stochastic Petri nets where transitions fire with exponentially distributed delays Heiner et al. (2008).
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graphs, i.e. the one-hot encoding is replaced by a probability vector specifying the probability as-
sociated with each coefficient in each edge. Fig. 2 shows a schematic view of the VAE architecture.
Let’s consider a heterogeneous graph G = (V,E), where V = (VS , VR) is the set of nodes, VS

for species and VR for reactions, and E = (ES→R, ER→S) is the set of edges, where ES→R are
edges from species to reaction nodes whereas ER→S are edges from reaction to species nodes.
Let L = {0, 1, 2, . . . ,K − 1} be the set of possible edge types (colors), i.e., the stoichiometric
coefficients of the reactions.

Dataset. The dataset consists of observed realizations of the MPP evolution at equidistant time
instants [t0, . . . , tT ]. Given a fixed time step ∆t, tj+1 = tj +∆t for every j ∈ {0, . . . , T − 1}. The
input to the VAE is a pool of n trajectories stored in dataset X = {x1

0:T , . . . ,x
n
0:T }, where xi

0:T =
(xi(t0), . . . ,x

i(tT )), and xi(t) = (xi1(t), . . . , x
i
N (t)) denotes the state of observable species at time

t. To ease the learning we work with normalized states, i.e., the concentration of individuals of a
certain species over the total volume. Mathematically, the normalized data are x̂Ω(t) := x(t)

Ω .

Latent space. The latent space Z ⊆ {0, 1}|E|×(K+1) of the VAE can be visualized as space of
tensors z of size |E| × K, where |E| denotes the number of edges in the bipartite graph. In its
fully-connected version, |E| = M × 2N . Each edge eij between nodes vi and vj is associated with
a row in z, representing the one-hot encoding of the associated stoichiometric coefficient (as shown
in Fig. 1 (middle)). In other words, zij is a discrete categorical variable representing the edge type
between vi and vj (one-hot representation for K edge types). For example, if the stoichiometric
coefficient for edge eij is 2, then zij = [0, 0, 1, 0, . . .]. The VAE places a discrete distribution over
this latent space, representing the likelihood of every coefficient for each edge.

Prior. The first step lies in choosing a prior distribution p(z) over the latent space Z. For
simplicity, we define it to be a factorized uniform distribution over L, i.e. over edge types,
p(z) =

∏M
i=1

∏2N
i=1 p(zij), where p(zij) = [ 1K , . . . , 1

K ]. However, one can decide that some
stochastic coefficients are more likely than others. For instance, assigning a higher probability to 0
enforces sparsity. So another possible prior is p(zij) = [2−1, 2−2, . . . , 2−K+2, 2−K+1, 2−K+1].

Encoder. The encoder predicts the interactions given the trajectories. In practice, the encoder
learning task can be framed as a (multi-label) edge classification task. It learns to classify all the |E|
edges simultaneously. Its architecture is a graph convolutional network (GCN) (Zhang et al., 2019)
designed to output a parametric and categorical distribution qϕ(z|x) that performs edge classifica-
tion. The goal is to infer pairwise interaction types zij given observation x. We apply the GCN on
the fully connected graph to predict the latent graph structure qϕ(zij |x) = softmax(genc,ϕ(x)ij,1:T ),
where genc,ϕ(x) is a GCN passing messages over the fully connected graph (with no self-loops).
Given n trajectories x1

0:T , . . . ,x
n
0:T , where xj

0:T =
(
xj(t0),x

j(t1), . . . ,x
j(tT )

)
, the encoder com-

putes the following message-passing operations: for every v ∈ V and for every e ∈ E

v : h1
j = gemb(y

j
0:T ) e → v : h2

j = g1v

( ∑
i:(i,j)∈E

h1
(i,j)

)
v → e : h1

(i,j) = g1e([h
1
i ,h

1
j ]) v → e : h2

(i,j) = g2e([h
2
i ,h

2
j ]).

We can directly compute the node embedding h1
j only for observable species. However, since re-

action nodes are not directly observable, we embed them in learnable latent vectors sharing the
same dimensionality as xj

0:T , so that the same embedding function gemb can be used. In practice,
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yj
0:T = xj

0:T if v is a species node, and yj
0:T = remb(x

j
0:T ) if v is a reaction node. Alternatively,

one can encode reactions in a different latent space and then introduce an ad-hoc node embedding
function gremb. Functions remb (or gremb), gemb, g

1
e , g

1
v , g

2
e are one-dimensional convolutional neu-

ral networks (CNN) (Li et al., 2021), therefore, their inputs and outputs have fixed dimensions. The
posterior distribution over edge types is computed as qϕ(zij |x) = softmax(h2

(i,j)), which is a vector
of probabilities over L that sums up to one for every i ∈ {1, . . . ,M} and j ∈ {1, . . . 2N}. The
parameter ϕ in the GCN genc,ϕ summarizes all the GCN parameters.

Remark 1 If we do a single message-passing step in the GCN, the posterior qϕ(zij |x) depends
only on h1

(i,j) an in turn on xi
0:T and xj

0:T , ignoring interactions with other nodes, while h2
(i,j) uses

information from all the graph allowing to disentangle multiple interactions.

Sampling from the latent distribution qϕ(zij |x) without breaking the differentiability of the VAE
computational graph requires a trick. First, we need to make a continuous approximation of the
discrete latent variables so that we can use the reparameterization trick and back-propagate to obtain
gradients. This trick is known as the Gumbel trick (Jang et al., 2016) and consists in sampling a
vector g ∈ RK of i.i.d. samples from a Gumbel(0, 1) distribution so that zij = softmax((h2

(i,j) +

g)/τ), where τ is the temperature. To summarize, the encoder qϕ(z|x) infers the interaction graph
from the trajectories in X assuming an initial fully-connected bipartite graph using a GCN that
maps the trajectories x to pairwise categorical distributions zij . The resulting latent categorical
distribution qϕ(zij |x) = softmax(genc,ϕ(x)ij,1:T ) with GCN genc,ϕ(x) is an explicit representation
of the distribution over possible CRN structure given the observations x.

Remark 2 The encoder’s flexibility in learning the full graph from data, in principle, allows for
some species to be unobserved. In such cases, we reconstruct missing information for the unob-
served nodes using a parametric function that infers their initial state from the observed trajectories.
The experiments in this paper focus only on fully observable CRNs.

Decoder The decoder should learn the parameters governing the dynamics given the proposed
interaction graph. We are considering Markovian systems so the stochastic dynamics can be written
as follows:

pθ(x0:T |z) =
T−1∏
t=0

pθ(x(t+ 1)|x(t), z).

From the graph z, we easily retrieve the stoichiometric coefficients aij and bij of each reaction and
thus the related update vector νj . The rate functions can be expressed as polynomials of the form:

fj(x(t)) = αj

N∏
i=1

(
xi(t)

aij

)
,

and we can easily compute the partial derivatives needed for the LNA. Thus we have an algebraic
equation for the drift F , the Jacobian J and the diffusion matrix D from which we obtain dµ(t)

dt and
dC(t)
dt . If we can solve them continuously, we have an expression for µ(t) and C(t), so that

pθ(x1:T |z,x0) = N (µ1:T ,Ω
−1C1:T ).
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Time is discretized over the time grid [t0, . . . , tT ] (the same as our observations x) so we can think
about using the forward explicit Euler method (a.k.a. Runge-Kutta of order one) as a numerical
procedure to solve ODE with a given initial value. Given x(t0), we know that µ(t0) = x(t0)
and that C(t0) = 0. In general, we could solve the ODE with a finer time discretization but this
implies higher computational costs at training time. One optimal strategy would be to regulate the
discretization scheme based on the kinetic rates, the higher the rate the finer the grid. The rationale
is that high rates translates in fast reactions and thus in a rapidly changing dynamics. The Euler
scheme produces the following iterative estimate for k ∈ {0, T − 1}:

µ(tk+1) = µ(tk) + ∆tk · F (µ(tk)), (5)

C(tk+1) = C(tk) + ∆tk · (J(tk)C(tk) + C(tk)J(tk)
T +D(k)).

where ∆tk = tk+1 − tk. Euler method is a first-order method, which means that the local error
(error per step) is proportional to the square of the step size.

The decoder pθ(z) is composed of a multi-layer perceptron (MLP) that maps the categorical
latent distribution qϕ(z|x) over CRN formulae into reaction rates α1, . . . , αM that fully determine
the dynamics of the system.

Figure 2: Diagram of the graph-VAE.

Loss. The rationale of a VAE is to minimize the Kullback-Leiber (KL) divergence (Joyce, 2011)
between the true and the proposed distribution. However, as the true posterior is unknown, we
derive from the KL formula a lower bound of the marginal log-likelihood of our data. This lower
bound, known as the Evidence Lower Bound (ELBO) (Heard, 2021), is defined as:

ELBO(θ, ϕ|x) = Eqϕ(z|x)[log(pθ(x|z))]−KL[qϕ(z|x)||pθ(z)]. (6)

The parameters ϕ and θ that maximize the ELBO also maximize the marginal log-likelihood of
data. The loss is defined as the negative ELBO, i.e., L(θ, ϕ|x) = −ELBO(θ, ϕ|x). The first term,
known as reconstruction error, can be estimated as the negative log-likelihood of our data w.r.t. the
multivariate Gaussian resulting from the LNA:

T∑
t=1

(x(t)− µ(t))TC(t)−1(x((t)− µ(t))

2
+

1

2
det

(
C(t)

)
.

The second term, known as regularization term, is added to the first and computes the KL divergence
between the proposed posterior, qϕ(zij |x), and the prior distribution, pθ(z), over the discrete latent
space Z. The KL term for a uniform prior and a softmax distribution is the sum of entropies:∑

i ̸=j

H(qϕ(zij |x)) =
∑
i ̸=j

K∑
k=1

qϕ(zij |x)(k) · [log (qϕ(zij |x)(k)))− log (p(zij(k)))] .
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We can leverage automatic differentiation tools to compute gradients of the loss via backpropagation
and perform gradient-based optimization.

Training and Evaluation. For each trajectory, we sample a CRN model from the latent distribu-
tion and compute the LNA of the dynamics. Training is performed by optimizing the weights of the
VAE through backpropagation. At test time, the most likely CRN graph is used together with the
resulting reaction rates to make predictions.

Identifiability. In general, different CRN graphs may lead to similar dynamics (Craciun and Pan-
tea, 2008). To tackle this, we introduce the measure of likelihood of data w.r.t. the LNA multivariate
Gaussian approximation of the inferred networks. In practice, this measure can serve as a tool for
model selection. Given that we use the LNA approximation for the models, our methodology will
not differentiate between models that are equally distant from the true distribution. A detailed study
of the identifiability of CRNs from time-series data is subject to future work. For now, we introduce
CRN divergence, a measure that quantifies how much the inferred model differs from the true model
when the latter is known. We define it as the KL divergence between LNA Gaussian distributions
of the inferred and the true model.

4. Experiments

To validate the proposed method, we conduct experiments on synthetic model-based trajectories.
We generate multiple initial states and trajectories by simulating from a known ground-truth model
using the aforementioned Gillespie algorithm. In this implementation, we assume prior knowledge
of the number of species and reactions in the system. However, in a more general setting, one could
allow for additional species and reactions, enabling the algorithm to infer the most likely system that
explains the given data. To enhance training stability, we implement an alternating training scheme
in which one network is frozen while updating only the other. Specifically, we train the encoder
alone for 10 epochs, followed by training the decoder alone for 5 epochs, alternating throughout.
Additionally, to prevent the network from rapidly converging to suboptimal solutions we scale the
activation functions of the final layer of the encoder and decoder (sigmoid or softmax) to obtain a
slower saturation.

In the following, we demonstrate the applicability of our framework to three case studies of
increasing complexity. For each experiment, we first show the true model, then outline the training
and testing parameters, and finally present the inferred CRN. Table 1 summarizes key experimental
results of each experiment. To illustrate the quality of inference, Fig. 3 compares trajectories gen-
erated by the ground-truth model (solid lines) with the dynamics of our inferred model, represented
as the LNA mean (dashed lines).

One-reaction network. The first case study considers a simple network consisting of a single
reaction, where species A transforms into species B at rate α1 = 0.2. The true CRN is given by:

R1 : 1A
0.2−−→ 1B.

We simulated this system with a total volume of Ω = 200, generating training data consisting of
1500 trajectories. These were obtained from 150 randomly sampled initial states, with 10 trajec-
tories per initial state. Time-series measurements were collected over a time horizon of T = 11
time units, with data samples taken at intervals of ∆t = 0.5 time units. The graph-based VAE was
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trained as described in Section 3 and validated on an independent dataset of 1000 trajectories from
100 randomly sampled initial states. After training, the VAE converged to the correct network with
rate 0.1904. This inferred model retains the same reaction structure as the true model but exhibits
a slightly slower reaction rate. Fig. 3 (left) visualizes sample trajectories from the ground-truth
model, where species A is shown in blue and species B in red. The close alignment of the inferred
trajectories indicates that the model effectively captures the system’s dynamics. Table 1 reports a
KL divergence of 0.0718, quantifying how far the inferred model is from the true model. The low
KL divergence demonstrates the accuracy of the inference result, indicating that the inferred CRN
is satisfactory with respect to the data.

Birth-death. Next, we analyze a simple birth-death model, where species A converts to species B
at rate α1, while species B transforms back into species A at a higher rate α2. The true CRN is
given by:

R1 : 1A
0.25−−→ 1B, 1B

0.75−−→ 1A.

As the complexity of the system increases, we expand the training dataset to 5000 simulated trajec-
tories from 100 randomly sampled initial states.The parameters for time steps, data points, and total
volume remain unchanged: ∆t = 0.5, t = 21, and Ω = 200. The validation set consists of 1000
trajectories generated from 10 different initial states. The VAE converged to the correct network
with rate 0.1968 for reaction R1 and 0.5855 for reaction R2. Although the inferred reaction rates
are slightly lower than those in the true CRN, the overall system dynamics are captured well. Fig. 3
(middle) illustrates sample trajectories, highlighting the strong alignment between the inferred and
true dynamics. Furthermore, the KL divergence of 0.1394 indicates a reasonable approximation of
the true system, further demonstrating the effectiveness of the proposed inference method.

Cascade. In the final experiment, we infer a cascade model, where species A transforms into species
B, and B further transforms into species C. The true CRN is defined as:

R1 : 1A
0.7−−→ 1B, 1B

1.3−−→ 1C.

For this experiment, we generated a training dataset consisting of 7500 simulated trajectories with
150 different initial states, and a time horizon of T = 8 time units, while keeping the other parame-
ters unchanged. The validation set includes 5000 trajectories with 100 different initial states. After
50 epochs of training, the VAE converged to the following inferred network

R1 : 1B
0.6664−−−−→ 1C, R2 : 1A

0.7854−−−−→ 1C.

Here, the inferred network structure differs from the true CRN, as the model bypasses the interme-
diate step of transforming A to B, instead directly converting A into C. Despite this structural dif-
ference, the inferred dynamics closely match those of the true model, as illustrated in Fig. 3 (right).
This case study highlights a fundamental challenge in causal inference: distinguishing between di-
rect causation and an indirect effect caused by a common intermediary. This issue frequently arises
in biological systems, where different mechanistic explanations can produce nearly identical ob-
served dynamics. Our result suggests that the VAE struggles with identifiability in this case - when
multiple CRNs generate similar behaviours, the method may not infer the correct reaction graph.

This result underscores the challenge of identifiability: when different CRNs yield similar be-
haviours, the VAE may not infer the true model but can still infer a valid approximation that explains
the data very well.
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Experiment Training Trajectories Epochs Training Time CRN Divergence
One-reaction 1500 50 1:13h 0.0718
Birth-death 5000 50 5:19h 0.1394

Cascade 7500 50 25h 15.8102

Table 1: Training results for all three experiments.

Figure 3: Simulated trajectories (colored) compared to inferred dynamics, represented by the LNA
mean (black dashed lines), for randomly sampled initial states. The shaded area represents the LNA
variance around the mean. Experiments: one-reaction network (left), birth-death (middle), cascade
model (right).

5. Conclusion

We proposed how to automatically learn the explanatory models written in form of Chemical Reac-
tion Networks (CRNs), from time-series measurements of a Markov population chain. We used a
symbolic representation of a CRN as a bipartite graph, and we employed a graph-based Variational
Autoencoder (VAE) to jointly infer the interactions and the accompanying kinetic parameters. Our
contribution represents a proof-of-concept that the microscopic interactions between agents can be
inferred from macroscopic, population-level data in a fully automated and data-driven fashion. Our
framework is applicable both in scenarios where data is available via experiments, or when it is
generated by a black-box emulator. As such, it is relevant for applications in fields ranging from
epidemiology (Crepey et al., 2022), swarm robotics (Hamann et al., 2016), all the way to emerging
areas such as explainable AI (Rudin, 2019) and precision medicine (Martinelli et al., 2021).

We aim at extending the framework towards automatically inferring more complex CRNs. We
are actively investigating the scalability and identifiability bottlenecks of the proposed method. In-
creasing the number of species, reactions, or possible stoichiometric coefficients significantly ex-
pands the space of possible graphs and the dimensionality of the latent space, making the training
procedure more challenging. Nonetheless, the flexibility of our framework in terms of graph rep-
resentation allows us to incorporate prior knowledge by fixing parts of the graph before learning,
which reduces the number of dimensions for more complex CRNs. If either the structure (mech-
anisms) or the rates are known, one part of the VAE can be fixed (Encoder or Decoder), allowing
the remaining network to infer the missing information. To improve performance, we intend to
incorporate attention mechanisms to focus on specific parts of the input. To better preserve the
inherent ordering information of coefficients, we are investigating the possibility of modelling the
latent space using an ordinal representation rather than a categorical one. In the future, we want to
demonstrate the power and effectiveness of our framework on case studies typical for modeling in
epidemiology and systems biology.
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