
Proceedings of Machine Learning Research 288:1–22, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

KGAccel: A Domain-Specific Reconfigurable Accelerator for
Knowledge Graph Reasoning

Hanning Chen HANNINGC@UCI.EDU
University of California Irvine, Irvine, CA, USA.

Ali Zakeri ZAKERIJ@UCI.EDU
University of California Irvine, Irvine, CA, USA.

Yang Ni YNI3@UCI.EDU
University of California Irvine, Irvine, CA, USA.

Fei Wen FEI8WEN@GMAIL.COM
Texas A&M University, College Station, TX, USA.

Behnam Khaleghi BKHALEGHI@UCSD.EDU
University of California San Diego, La Jolla, USA.

Hugo Latapie HLATAPIE@CISCO.COM
Cisco Systems, San Jose, CA, USA.

Alvaro Velasquez ALVARO.VELASQUEZ@DARPA.MIL
University of Colorado Boulder, Boulder, CO 80309.

Mohsen Imani M.IMANI@UCI.EDU

University of California Irvine, Irvine, CA, USA.

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Recent hardware accelerators for graph learning have largely overlooked knowledge graph rea-
soning (KGR), which demands more complex models and longer training times than typical graph
tasks. Existing approaches rely on single or distributed GPUs to accelerate translational embedding
models, but these general-purpose solutions lag in handling reinforcement learning-based KGR. To
address this gap, we introduce KGAccel, the first domain-specific accelerator for RL-based KGR on
FPGA. We develop a knowledge-graph compression method and propose a resource-aware mech-
anism that enables high-speed training even on smaller FPGAs. KGAccel achieves up to 65×
speedup over CPU, 8× over GPU, and over 30× higher energy efficiency.
Keywords: Reinforcement Learning, Neuro Symbolic AI, Computer Architecture

1. Introduction

Knowledge graphs (KGs) play a crucial role in AI, structuring vast knowledge as multi-relational
graphs where entities and relations form factual triples (h, r, t). Open-source KGs like Freebase Bol-
lacker et al. (2008), DBpedia Auer et al. (2007), and YAGO Suchanek et al. (2007) store billions
of facts, supporting applications in Q&A Huang et al. (2019), recommendation Lee et al. (2020),
and information retrieval Wang et al. (2017). However, KGs remain incomplete, as incorporating
unlimited concepts and keeping pace with evolving real-world data is challenging.

Reasoning, the ability to infer new knowledge from evidence, has long been a goal in computing.
Early AI approaches focused on symbolic logic McCarthy et al. (1960); Xiong et al. (2022), later
applied in machine learning Lao et al. (2011). However, their lack of generalization led to the

© 2025 H. Chen, A. Zakeri, Y. Ni, F. Wen, B. Khaleghi, H. Latapie, A. Velasquez & M. Imani.

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

adoption of vector representations. In KGs, reasoning helps detect errors and infer new relations,
enabling advanced applications and automated knowledge discovery.

Training AI models for Knowledge Graph Reasoning (KGR) is computationally expensive, ne-
cessitating acceleration. While hardware accelerators exist for graph tasks like analysis Asiatici
and Ienne (2021), clustering Yan et al. (2020); Li et al. (2021), and mining Chen et al. (2021),
KGR remains underexplored. Prior efforts focused on speeding up translation models, such as
TransE Bordes et al. (2013) and TransR Lin et al. (2015), on GPUs. These models map entities and
relations into embeddings but struggle with complex multi-hop reasoning due to low accuracy.

Reinforcement learning (RL)-based models Xiong et al. (2017); Lin et al. (2018) offer higher
reasoning accuracy for KGR but suffer from long training times. Studies Cho et al. (2019); Roth-
mann and Porrmann (2022) show that reconfigurable platforms outperform GPGPUs in RL accel-
eration. However, existing RL accelerators Rothmann and Porrmann (2022) do not address KGR’s
large-scale graph data and complex state transitions. Additionally, KGR tasks have a dynamic and
sparse action space, requiring efficient on-chip resource utilization. Thus, developing domain-
specific RL accelerators for symbolic KGR is crucial.

In this paper, we propose KGAccel, an FPGA-based accelerator targeting KGR tasks. We imple-
ment both the knowledge graph environment and RL agent on a single FPGA. Here we summarize
our main contributions:

• The first domain-specific FPGA accelerator for RL-based KGR, achieving superior accuracy and
efficiency over prior GPU-based methods.

• An efficient CSR-based KG compression technique that reduces storage overhead and minimizes
costly off-chip memory accesses.

• A fine-tuned systolic array-based neural network accelerator integrating forward propagation and
weight updates in a single pass for efficient RL training.

• A context-switching mechanism validated on mid-tier FPGAs for flexible deployment across edge
and cloud environments.

We evaluate our approach by the task of missing link prediction, over two widely used knowl-
edge graph datasets. We implement our KGAccel on two different classes of FPGA platforms: the
large-size Xilinx Alveo U280 and the small-size Xilinx ZCU104. The results demonstrate that
KGAccel on Alveo U280 achieves an average of 65× speedup and 45× higher energy efficiency
compared to state-of-the-art RL-based reasoning models Xiong et al. (2017) on Intel Xeon Silver
4114. When deploying KGAccel on a resource-limited FPGA board ZCU104, it shows over 15×
speedup and over 50× energy efficiency improvement over the CPU platform.

2. Knowledge graph reasoning

2.1. Definitions

A knowledge graph (KG) is a directed graph G = {(es, r, eo) | es, eo ∈ ξ, r ∈ R}, where ξ
is the entity set and R is the relation set Lin et al. (2018). Figure 1.(a) illustrates a KG, where
each directed edge represents a fact triple (es, r, eo). For example, (Lionel Messi, born in,
Rosario) and (Jordi Alba, live in, Miami) encode real-world facts. Entities can belong

2

KGACCEL

Host CPU

KG
triple

.mem

FPGAPCIe

c
D

M
A

H
B

M

c

c

c

c

A
X

I
A

X
I

A
X

I

3
2

×
L

M

c
cURAM

cURAM

c

A
X

I In
terco

n
n

e
ct

cAXI Interconnect

c

C
o

o
rd

in
ato

r

P
o

licyN
N

L

111

222

333

333 444 555

666

777

222

TorchKGE

M

A
X

I
A

X
I

L

A
X

I
A

X
I

URAM

URAMURAM

URAM

PE PE PE

PE PE PE

PEPEPE888

Inter Miami CF

Lionel Messi

Rosario Argentina

Jordi Alba

Sergio Busquets

plays_for

born_in

locate_in

plays_for?

work_with

live_in

work_with

born_in?

work_with?

locate_in?

Miami

(a) Knowledge Graph (b) Symbolic Reasoning FPGA Accelerator

Figure 1: (a). An example of a knowledge graph with potential reasoning queries. (b). CPU-FPGA
knowledge graph reasoning (KGR) acceleration architecture. 1. Entity and relation word
embedding. 2. Transfer of embedding vector from host CPU to kernel FPGA via PCIe
interface and Xilinx DMA. 3. Entity embedding vectors preload. 4. Address access. 5.
Outgoing relations access. 6. Teacher’s guide for agent 7. Provision of state, reward, and
loss to RL agent. 8. Agent’s action probability distribution based on current policy.

to multiple triples, with relations forming directed edges—source nodes as subjects and destination
nodes as objects. In Rosario is located in Argentina, Rosario is the subject and
Argentina the object.

Reasoning tasks infer explicit formulas within a KG Xiong et al. (2017, 2024), differing from
clustering or pattern mining. As shown in Figure 1.(a), a KGR model can predict missing relations,
such as (Lionel Messi, born in, Argentina), a task known as link prediction. Another rea-
soning task is fact evaluation, where the model verifies statements. For instance, (Sergio Busquets,
plays for, Inter Miami CF) should be accepted, while (Miami, locate in, Argentina)
should be rejected. These models are crucial for complex Q&A systems. A comparison of path-
based and embedding-based KGR is in Appendix 7.1.

3. Reinforcement Learning for KGR

Reinforcement Learning is a powerful technique to solve decision-making problems such as robotics
control. Most RL models are built around two main structures: external environment and agent. The
environment for the KGR is modeled as a Markov Decision Process (MDP), based on Xiong et al.
(2017); Das et al. (2017). MDPs are formally represented as a 4-tuple (S, A, Pa, Ra), in which S
is the state space, A is the action space, Pa(s, s

′) = P (st+1 = s′ |st = s, at = a) is the probability
that action a in state s at time t will lead to state s′ at time t + 1, we have st ∈ S and at ∈ A, and
Ra(s, s

′) is the reward received after transitioning from state s to s′, due to action a. In contrast to
previous RL acceleration works that maintain the external environment on CPU Cho et al. (2019);
Yang et al. (2021), our work introduces an on-chip KG RL environment as presented in Section 4.3.

With regard to the agent, a new action distribution will be generated at each time step based
on the policy πθ(s, a) = p(a|s; θ), where θ is the policy parameter Ding et al. (2023). Depending
on the similarity of observational policy and target policy, the RL algorithm can be divided into
on-policy and off-policy categories. Since the action space in the pathfinding task for knowledge
graphs is generally very large, previous work Xiong et al. (2017); Das et al. (2017) suggests using

3

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

on-policy RL as the policy optimization strategy. For a comprehensive discussion on RL in the
context of KGR tasks, refer to Appendix 7.2.

4. Architecture Design of KGAccel

4.1. Accelerator design motivation

Although previous works mentioned the possibility of accelerating GNN targeting knowledge graphs Zhou
et al. (2022); Liang et al. (2020), these works cannot be directly applied to KGR (KGR) tasks. The
RL-based KGR algorithm has an inherent sparsity problem since the agent can only pick one action
from multiple potential relations at each time step. Furthermore, as each vertex only connects with
certain specific types of relations, the action space for the agent varies as it moves along different
vertices. Hence, a mechanism is needed to remove the sparsity during action selection processes.
Compared to the RL tasks in prior acceleartion works Cho et al. (2019); Meng et al. (2020), RL-
based KGR tasks incur large-scale graph data access during the state transition between time steps.
To reduce the expensive off-chip memory accesses, the objective is to store the entire knowledge
graph in on-chip storage.

4.2. CPU-FPGA Heterogeneous Acceleration Architecture

Figure 1 provides an overview of KGAccel on the Xilinx Alveo platform. The host CPU prepro-
cesses the input KG using a pre-trained embedding model like TransE Bordes et al. (2013), im-
plemented via TorchKGE Boschin (2020). Entities are represented as M -dimensional embedding
vectors, quantized to 16-bit fixed-point values, and stored in FPGA off-chip DRAM or HBM Choi
et al. (2021). To optimize memory bandwidth, we distribute entity vectors across 32 HBM pseudo
channels (PCs). KG triples, including entity neighbors, are stored in on-chip UltraRAM (URAM).
Due to KG sparsity, efficient neighbor access is challenging (see Section 4.3). For each KGR task,
KGAccel preloads entity embeddings into URAM, triggering a context switch when a vector is
missing (Section 4.6). An MLP-based policy network (PolicyNN) guides agent actions, while the
coordinator IP serves as both the RL environment and a training guide, issuing AXI access requests
to on-chip storage (Sections 4.5, 4.6).

4.3. KG compression and on-chip storage

The size of the knowledge graph (KG) could be huge. Here size is defined from two perspectives,
the entity size and the triple size. As discussed in section II-A, each graph node is an entity, and
the node-to-node combination is triple. Take FB15K-237 Toutanova et al. (2015) for example,
the entities’ size is over 10K and the triples’ size is over 300K. Suppose a 32-bit unsigned fixed-
point number represents each entity. The storage overhead of KG is on a megabyte(MB) level
without graph compression. For FPGA-based computing, an optimized KG representation and
storage format are necessary since on-chip storage resources are fast but limited.

To address KG sparsity, we use the Compressed Sparse Row (CSR) format Buluç et al. (2009).
As shown in Figure 2, consider a graph with |V| entities, |E| triples, and 11 relations. Entity e13
has only four outgoing edges, though the total relation count is 11. Storing edges in a standard
adjacency matrix leads to excessive zero entries and inefficient memory access due to varying edge
counts per entity. CSR efficiently represents KG using three vectors: vertex V , relation R, and
neighbor N . V has size |V|+1, while R and N have size |E|. For entity ei, V [i] gives the starting

4

KGACCEL

r5

r6

r10

r11

e13

KG triplet Matrix

equal to

1 5 6 10

0 0 30

11

040 44 31

Original KG

compress

1 13 14 |V|

5 6 10 11

1 |E|

i j

30 40 44 31

i j-1

KG CSR

e30

e40

e44

e31

t-1 t t+1

e0

e13

e|V|

neighbor

neighbor

neighbor
index

entity

relation
index

neighbor of e13

j = i+4

On FPGA

UltraRAM_entity

|V|

AXI Interconnect

AXI

i

j = i+4

13

14

111
222

333

Nv

AXI

NvNr

5 30
6 40
10 44

3111

i
i+1
i+2
i+3

|E|

UltraRAM_triple

444
AxSIZE=2

High sparsity Low sparsity
Access inefficient

(a) (b)

Low sparsity
Access efficient

Figure 2: Knowledge Graph (KG) compression and storage on FPGA. |E| and |V | represent the size
of triples and entities in KG, respectively. We also assume the total number of relations
(|R|) is 11, without loss of generality. (a) Knowledge graph compression from naive
adjacent matrix representation into CSR representation. (b) CSR represented knowledge
graph storage on FPGA on-chip storage. Here we use UltraRAM as an example. Process
1 and 3 represent AXI burst reading request. Process 2 represents vertex neighbor address
range calculation. Process 4 represents the access of the entity’s neighbor index and
corresponding relation.

index of its neighbors, and V [i + 1] − V [i] provides the range. If index j falls within this range,
R[j] and N [j] store the relation rj and neighbor tj of ei.

< ei, rj , tj >⊆ G == True when j ∈ Hi (1)

Figure 2 also presents the actual CSR format KG memory storage layout on FPGA UltraRAM.
Suppose each entity is represented by a 18-bits unsigned fixed point number. Since Xilinx Ultra-
RAM’s bit width is controlled by the user, for larger graph with more entities, increasing memory
width is necessary. The memory width of Vertex RAM NV is:

NV = ⌈log2(|E|)⌉ where |E| is triple size (2)

Figure 2.b presents entity’s neighbor access process. To access entity ith’s neighbor information,
as is shown in Figure 2, two AXI burst read requests are needed. The first request will be sent to
UltraRAMentity with i × NV + abase as AXI base address and 2 as AXI burst size. Based on
the two return value, we can get the base address and range for the current entity’s information in
UltraRAMtriple. Then the second AXI read request will be sent to UltraRAMtriple. After the
second AXI request is finished, we get the information of the entity’s every neighbor. The format
of AXI request is based on AMBA AXI4 protocol Prasanth and Raj (2014).

4.4. Policy network acceleration

This section presents the RL agent’s policy network design. At each time step, KGAccel inputs the
current state vector into the policy network to generate an action probability distribution, determin-
ing the relation connected to the current entity in KGR. Figure 3.(a) illustrates a fully connected
three-layer neural network. The input state matrix has dimensions B × E, where B is the batch size
and E is the state vector dimension. As discussed in Appendix Section 7.2.1, the state vector con-
catenates the source entity and distance embeddings, making E twice the embedding dimension. For

5

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

D1'
B PE

PE

PE

PE

D1

E D1

D2

D2

A

B

D2'

D2'
T
B

1st layer 2nd layer 3rd layer

(a) (b)

R
eLU

R
eLU

so
ftm

ax

B

D1'

rep
lica

Ma

Mu0

B

D1'

Ma

Mu1

Mu2 Mu3

Ma Ma

systolic array

Process Element IP

(c) (d)

MAC MAC

B

MAC

MAC

MAC

MAC

MAC

MAC

MAC

36K BRAM

o

i
D2' 32

bits

W
eigh

t U
p

d
ate w2 wD’w1

BxD’

D1'

Figure 3: Policy Network Architecture Design. (a) three-layer neural network structure. (b) second
layer data path. (c) Processing Element (PE) IP architecture design. (d) Systolic array IP
microarchitecture

(a)

e1
e2

e11

e12

e3 e4 e13

e14

e44 e45

e1 e2 e11 e12

Agent’s reasoning path

context switch

Off-chip DRAM

cliq
u

e 1
cliq

u
e 2

cliq
u

e 3

Embedding(e1~e4)

Embedding(e11~e14)

Embedding(e44~e45)

embedding

(b)

D
R

A
M

 co
n

tro
ller

A
R

M
 In

terco
n

n
ect

(c)

GP0

Agent

co
n

tro
l

d
etect

Controller

reward

action

A
X

I In
terco

n
n

e
ct

context switch request

Embedding(e1~e4)

Embedding(e44~e45)

On-chip BRAM

B
R

A
M

 C
o

n
tro

ller replace!

load

HP1

HP0

HP2

HP3

GP1

embedding vector

Zynq PS Zynq PL

KG Graph

et es

random pick

stochastic two way BFS

Teacher

Agent
control

guide

Environment

action reward

wrong!

detect

(A) Imitation Learning (B) FPGA on-chip context switch

Figure 4: (A) Imitation learning illustration. (B) On-chip storage context switch. Here we use
Xilinx Zynq platform as an example. Xilinx Zynq platform includes ARM core as pro-
cess system (PS) and FPGA logic (PL). The large off-chip DRAM is connected with PS.
Limited on-chip BRAM can only store part of knowledge graph embedding clique. (a)
Knowledge graph partitions. (b) Context switch between off-chip DRAM and on-chip
BRAM architetcure illustration. (c) RL agent’s reasoning path over knowledge graph.

a three-layer network, weight matrices have dimensions E×D1, D1 ×D2, and D2 ×A, where
A is the action space. The forward pass follows:

PA = softmax(W3 ∗ReLU(W2 ∗ReLU(W1 ∗ I))) (3)

Here PA is the action probability distribution. The action space in KGR equals the total KG
relations, making the output layer dimension large and requiring high hidden layer capacity. To op-
timize FPGA resources like LUTs and BRAMs, KGAccel splits hidden layer matrices. Figure 3.(b)
illustrates splitting the B×D1 ×D2 systolic array into T × T smaller B×D

′
1 ×D

′
2 arrays, where

D
′
1 = D1/T and D

′
2 = D2/T . With T = 4, each layer contains four Processing Elements (PEs),

each hosting four systolic arrays. Figure 3.(c) and Figure 3.(d) show the internal PE and systolic
array designs, respectively. BRAM is distributed across FPGA logic fabric to maximize utilization.
KGAccel ensures each systolic array IP’s weight matrix fits within 18K or 36K BRAM, the most
common sizes in Xilinx FPGAs. Section IV-D details policy network updates.

4.5. Policy network update and imitation learning acceleration

As is shown in Figure 3.(d), the policy network update module is integrated into the forward path.
KGAccel chooses not to maintain specific back propagation logic since, in the RL training process,
the model update is unnecessary for each time step. Therefore we choose to maintain an Adam
optimizer IP inside the coordinate IP and update the model inside the forward path. As we introduce

6

KGACCEL

imitation learning into our framework, the agent’s policy network update will be guided by a teacher.
Next, we will discuss it. As depicted in Figure 4.(A), the imitation learning framework comes to
play when the agent fails during its retraining. This happens when the agent is not able to find a path
during the maximum time limit of an episode. In such case, the supervised learning policy, i.e. the
teacher, suggests paths for the agent to learn, which helps the agent update much faster comparing
to vanilla RL training. Note that the negative reward of the episode due to failing is applied as
usual, but the considers teacher’s knowledge as well during its update at the end of the episode. We
provide more analysis of KGR challenge in Appendix section 7.3.

4.6. On-chip entity embedding vector switch

Our framework stores KG triples in on-chip URAM, while entity embedding vectors reside in
off-chip DRAM or HBM. As shown in Figure 1.(B), step 1, KGAccel employs a pre-trained text
embedding model for feature extraction, generating high-dimensional vectors. For instance, a 50-
dimensional vector for a KG with 10,000 entities requires nearly 2MB of storage, making full
on-chip storage impractical for edge devices like the Xilinx Zynq board. Inspired by Wen et al.
(2021b,a), we adopt a hierarchical memory scheme: on-chip URAM as primary storage and off-chip
DRAM as secondary. Figure 4.(B) illustrates the context switch process on Zynq, where KGAccel
partitions the KG into smaller cliques, loading one at a time into the FPGA kernel. If an entity’s
embedding vector is absent on-chip, KGAccel swaps stored vectors with the required ones. This
strategy enables small-scale FPGAs to handle large KGs efficiently.

5. Implementation and Experimental Result

5.1. KG datasets and experiment setup

Hardware platform We implement DeepPath Wang et al. (2014) as a KGR baseline on Intel Xeon
Silver 4114 (CPU) and NVIDIA GPUs (GTX 1660 Ti, RTX 3090) using TensorFlow Abadi (2016).
KGAccel is synthesized on Xilinx FPGAs: Alveo U280 (U280) and ZCU104, where GTX 1660 and
ZCU104 represent edge platforms, while RTX 3090 and U280 serve cloud platforms. For reasoning
accuracy, we use TransE Bordes et al. (2013) and TransR Lin et al. (2015) from TorchKGE Boschin
(2020). U280 offers more on-chip storage than ZCU104, impacting RL training speed due to context
switching (Section 4.6). For U280, we use Xilinx Vitis Kathail (2020) to manage CPU-FPGA
communication via PCIe and DMA, though overhead is minimal as the KG is stored on FPGA.
Implementation details are in Appendix 7.4.

Knowledge Graph Datasets Table 1 presents the datasets used in our experiments: FB15K-237 Toutanova
et al. (2015) and NELL-995 Wang et al. (2019), the most common KGs for evaluating reasoning
capabilities. Our agent infers entity relations from existing knowledge, with task details covered in
Section 5.2. Beyond basic parameters, we report dataset sparsity (inverse of density) and storage
overhead. Higher sparsity increases RL decision complexity. Overhead1 in Table 1 represents KG
triple storage, while Overhead2 accounts for adjacency matrix maintenance during training. With-
out optimization, this overhead is prohibitive for edge devices like FPGAs. Section 4.3 discusses
our compression method’s impact, further detailed in Section 5.3.

7

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Table 1: Knowledge graph datasets parameter
#Entity #Relation #Triples #Tasks Density Overhead1 Overhead2

FB15K-237 14505 237 310116 20 9.02% 1.18MB 13.11MB
NELL-995 75492 200 154213 12 1.0% 0.58MB 57.59MB

Figure 5: Success rate plots during retraining and testing stages of the algorithm, for NELL-995
and FB15K-237 datasets.

Figure 6: Reasoning results of the link prediction task for NELL-995 and FB15K-237 datasets.

5.2. KGAccel reasoning experiments and results

To evaluate KGAccel, we conduct link prediction, a standard KGR task addressing KG incom-
pleteness. The model is trained on NELL-995 and FB15K-237, performing reasoning across di-
verse entity-relation domains. For each task, all instances of a relation and its inverse are removed
and treated as queries. Training occurs in three stages: (1) supervised policy learning using bi-
directional BFS, (2) RL retraining with reward-based updates, guided by the supervised policy as
a fallback, and (3) testing without teacher assistance. Training runs for up to 500, 300, and 500
episodes per stage, respectively, with one task per episode. Figure 5 depicts success rate and mov-
ing success rate of the agent for its training. Success rate is determined by ratio of current number
of successful episodes to the total number of episodes, while moving success rate is calculated as
the ratio of current number of successful episodes to current number of episodes. Figure 6 shows
the mean average precision (MAP) results, used as an evaluation metric to compare our model with
two main embedding methods, TransE and TransR. We present more detailed analysis of reasoning
accuracy in Appendix Section 7.5.

8

KGACCEL

0

200

400

600

800

1000

0

20

40

60

80

x1

x5 x8
x16

x66

x4 x6
x16

x55

NELL-995
speedup

NELL-995
runtime

FB15K-237
speedup

FB15K-237
runtime

Sp
e

ed
u

p
 (

C
P

U
=1

)

R
u

n
ti

m
e

 (
m

in
)

x1

0% 20% 40% 60% 80% 100%

ZCU104

Alveo U280

ED DL IL PS PU

Execution Time Percentage

0

10

20

30

40

50

60
NELL-995 FB15K-237

IP
S

x1
x5

x7
x11

x31

x1
x4 x6

x9

x43

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 1011
Hop

D
R

A
M

 A
cc

es
se

s
(M

b
)

NELL-995 FB15K-237

1 2 3 4 5 6 7 8 9 1011

(a)

0

10

20

30

40

50

60

x1 x3.7 x1.6

x50
x45

E
n

e
rg

y
e

ff
ic

ie
n

cy
(C

P
U

=1
)

(b)

(c) (d) (e)

Figure 7: (a) Training latency/speedup of different platforms. (b) Breakdown of the execution time
of two FPGA platforms. Here, ED represents entity embedding time, DL represents
data loading from CPU to FPGA, IL represents imitation learning process, PS represents
path search process, and PU represents agent policy update. (c) Training throughput of
different platforms. (d) Energy efficiency of different platforms. CPU’s energy efficiency
is set as baseline. (e) Data switch size per episode with varying reasoning hop number.

5.3. The hardware performance of KGAccel

This section evaluates KGAccel’s acceleration in terms of latency, throughput, energy efficiency,
and memory footprint. Throughput is measured in inferences per second (IPS), following prior RL
acceleration works Cho et al. (2019); Meng et al. (2020); Yang et al. (2021). We emphasize memory
footprint on the edge FPGA (Xilinx ZCU104), as Alveo U280 has enough on-chip resources to store
KG triples, embeddings, and PolicyNN weights, minimizing memory access. In contrast, ZCU104
holds only part of the graph clique’s embeddings, occasionally triggering the context switch process
(Section 4.6) during training.

Training Latency Figure 7.(a) shows the average training latency per task across five platforms.
While ZCU104 has lower performance than Alveo U280 due to limited resources, both FPGA plat-
forms outperform GPUs by storing network weights and KG data on-chip, reducing data transfer
overhead. Increasing CUDA cores improved GPU training speed by only ∼ 1.6× due to the se-
quential nature of reasoning tasks, limiting parallelism. FPGA’s parallelism, reconfigurability, and
near-memory computing make it more suitable for KGR. KGAccel further optimizes efficiency by
analyzing action space before computation. Figure 7.(b) breaks down the total runtime on FPGA
platforms across five key training stages: entity embedding (ED), data loading (DL), imitation learn-
ing (IL), path search (PS), and policy update (PU). In CPU-FPGA setups, ED and DL occur on the
CPU, with ED using a pre-trained TransE model Bordes et al. (2013); Boschin (2020). Unlike prior
work Zheng et al. (2020), which stops at ED, our method continues through IL, PS, and PU, which
dominate computation time and are essential for improving reasoning accuracy.

9

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

RL Agent Reasoning Throughput Figure 7.(c) shows reasoning throughput (IPS) across five plat-
forms. Compared to RL accelerators for OpenAI Gym tasks Cho et al. (2019); Meng et al. (2020);
Yang et al. (2021), KGAccel’s throughput is lower due to two factors. First, unlike Gym tasks with
fixed action spaces, KGR’s available actions change dynamically. If the agent makes a wrong move,
it remains at the current entity, updating its policy via imitation learning, reducing exploration. Sec-
ond, IPS definitions differ: in standard RL, IPS measures environment interactions, whereas in
KGR, it tracks the agent’s reasoning path length per second. Unlike prior RL accelerators using
multi-threaded CPU environments, KGAccel stores the KG environment on FPGA, focusing on
finding a successful path.
Energy Efficiency Appendix Table 3 reports KGAccel’s power consumption on two FPGA plat-
forms, measured via Xilinx Power Estimator (XPE). ZCU104 consumes less power than Alveo
U280 due to fewer systolic array IPs and no HBM. Figure 7.(d) compares energy efficiency (IPS/W)
across platforms. CPU and GPU power usage is measured via Intel Powertop Larsson (2011) and
nvidia-smi Imani et al. (2020). GPUs suffer from high power consumption, making them less suit-
able for edge environments, while FPGAs offer superior efficiency. Using Xilinx XRT, we recorded
Alveo U280 at 59.3W, and a Hioki 3334 power meter measured ZCU104 at 19.2W.
Memory Footprint Due to limited on-chip resources, ZCU104 stores only part of the entity em-
beddings, prioritizing network weights and compressed KG triples (Section 4.6). When an entity’s
embedding is missing, the agent requests it from the host CPU, triggering a context switch. Con-
text switch frequency increases with reasoning hops; for single-hop reasoning, it occurs in 10%
of episodes. Figure 7.(e) shows the average switch size per hop. To mitigate this, an efficiency
reward (Appendix Section 7.2.1) helps shorten reasoning paths, reducing data transfers. Solutions
include using larger boards like Alveo U280 or enhancing CPU-FPGA bandwidth with optimized
interconnect IPs, which is a focus for future research.

6. Conclusion

In this paper, we propose the first FPGA acceleration work of KGR to the best of our knowledge. To
reduce the overhead of host CPU and kernel FPGA communication, we apply CSR-based compres-
sion to the original high-sparsity knowledge graph and maintain the knowledge graph within FPGA
on-chip storage. We implement on-chip imitation learning using systolic arrays to accelerate the
reinforcement learning agent’s training. Furthermore, we propose an on-chip storage replacement
mechanism and validate it on a small-sized FPGA, empowering edge computing devices to conduct
reasoning tasks.

Acknowledgments

This work was supported in part by the DARPA Young Faculty Award, the National Science Founda-
tion (NSF) under Grants #2127780, #2319198, #2321840, #2312517, and #2235472, the Semicon-
ductor Research Corporation (SRC), the Office of Naval Research through the Young Investigator
Program Award, the U.S. Army Combat Capabilities Development Command (DEVCOM) Army
Research Laboratory under Support Agreement No. USMA 21050, and Grants #N00014-21-1-2225
and N00014-22-1-2067. Additionally, support was provided by the Air Force Office of Scientific
Research under Award #FA9550-22-1-0253, along with generous gifts from Xilinx and Cisco.

10

KGACCEL

References

Martı́n Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, pages 1–1, 2016.

Mikhail Asiatici and Paolo Ienne. Large-scale graph processing on fpgas with caches for thousands
of simultaneous misses. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 609–622. IEEE, 2021.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pages 1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Armand Boschin. Torchkge: Knowledge graph embedding in python and pytorch. In International
Workshop on Knowledge Graph: Mining Knowledge Graph for Deep Insights, Aug 2020.

Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson. Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks.
In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architec-
tures, pages 233–244, 2009.

Jiayu Chen, Jingdi Chen, Tian Lan, and Vaneet Aggarwal. Multi-agent covering option discovery
based on kronecker product of factor graphs. IEEE Transactions on Artificial Intelligence, 2022.

Jiayu Chen, Jingdi Chen, Tian Lan, and Vaneet Aggarwal. Learning multiagent options for tabular
reinforcement learning using factor graphs. IEEE Transactions on Artificial Intelligence, 4(5),
2023. ISSN 2691-4581.

Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas Bourgeat, Chanwoo Chung, and Arvind Arvind.
Flexminer: A pattern-aware accelerator for graph pattern mining. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pages 581–594. IEEE, 2021.

Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee. Fa3c: Fpga-
accelerated deep reinforcement learning. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
499–513, 2019.

Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong. Hbm connect:
High-performance hls interconnect for fpga hbm. In The 2021 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pages 116–126, 2021.

11

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851,
2017.

Aolin Ding et al. Get your cyber-physical tests done! data-driven vulnerability assessment of robotic
vehicle. In 2023 53nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE Computer Society, jun 2023. doi: 10.1109/DSN58367.2023.00020.

Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya Haghi, Antonino
Tumeo, Shuai Che, Steve Reinhardt, et al. Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 922–936. IEEE, 2020.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embedding based
question answering. In Proceedings of the twelfth ACM international conference on web search
and data mining, pages 105–113, 2019.

Yu Huang, Long Zheng, Pengcheng Yao, Qinggang Wang, Xiaofei Liao, Hai Jin, and Jingling Xue.
Accelerating graph convolutional networks using crossbar-based processing-in-memory archi-
tectures. In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pages 1029–1042. IEEE, 2022.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Mohsen Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar,
and Tajana Rosing. Deep learning acceleration with neuron-to-memory transformation. In 2020
IEEE international symposium on high performance computer architecture (HPCA), pages 1–14.
IEEE, 2020.

Vinod Kathail. Xilinx vitis unified software platform. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 173–174, 2020.

Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning in a large scale
knowledge base. In Proceedings of the 2011 conference on empirical methods in natural lan-
guage processing, pages 529–539, 2011.

Petter Larsson. Energy-efficient software guidelines. Intel Software Solutions Group, Tech. Rep,
pages 1–11, 2011.

Dongho Lee, Byungkook Oh, Seungmin Seo, and Kyong-Ho Lee. News recommendation with
topic-enriched knowledge graphs. In Proceedings of the 29th ACM international conference on
information & knowledge management, pages 695–704, 2020.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. Proceedings of Ma-
chine Learning and Systems, 1:120–131, 2019.

12

KGACCEL

Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. Gcnax: A flexible and energy-
efficient accelerator for graph convolutional neural networks. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), pages 775–788. IEEE, 2021.

Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe Zhang, Tianchan Guan, Yijin Guan, Heng
Liu, Linyong Huang, Zhaoyang Du, et al. Hyperscale fpga-as-a-service architecture for large-
scale distributed graph neural network. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, pages 946–961, 2022.

Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian Huang. Accel-
erating distributed reinforcement learning with in-switch computing. In 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA), pages 279–291. IEEE, 2019.

Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and Xiaowei Li. Engn:
A high-throughput and energy-efficient accelerator for large graph neural networks. IEEE Trans-
actions on Computers, 70(9):1511–1525, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ting-Ru Lin, Drew Penney, Massoud Pedram, and Lizhong Chen. A deep reinforcement learning
framework for architectural exploration: A routerless noc case study. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 99–110. IEEE, 2020.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph reasoning with
reward shaping. arXiv preprint arXiv:1808.10568, 2018.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Twenty-ninth AAAI conference on artificial
intelligence, 2015.

Yi-Chien Lin, Bingyi Zhang, and Viktor Prasanna. Hp-gnn: Generating high throughput gnn
training implementation on cpu-fpga heterogeneous platform. In Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 123–133,
2022.

John McCarthy et al. Programs with common sense. RLE and MIT computation center Cambridge,
MA, USA, 1960.

Yuan Meng, Sanmukh Kuppannagari, and Viktor Prasanna. Accelerating proximal policy optimiza-
tion on cpu-fpga heterogeneous platforms. In 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 19–27. IEEE, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

13

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. arXiv preprint
arXiv:1712.02121, 2017.

M Prasanth and Juhi Raj. Synthesizable axi4 protocol checker. International Journal of Advances
in Engineering & Technology, 6(6):2587, 2014.

Marc Rothmann and Mario Porrmann. A survey of domain-specific architectures for reinforcement
learning. IEEE Access, 10:13753–13767, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning
to walk over graphs using monte carlo tree search. Advances in Neural Information Processing
Systems, 31, 2018.

Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Graphr: Accelerating graph
processing using reram. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 531–543. IEEE, 2018.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, pages 697–706, 2007.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David T Blaauw, Trevor N
Mudge, and Ronald G Dreslinski. Ndminer: accelerating graph pattern mining using near data
processing. In ISCA, pages 146–159, 2022.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings
of the 2015 conference on empirical methods in natural language processing, pages 1499–1509,
2015.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

Heng Wang, Shuangyin Li, Rong Pan, and Mingzhi Mao. Incorporating graph attention mechanism
into knowledge graph reasoning based on deep reinforcement learning. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2623–2631,
2019.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):
2724–2743, 2017.

14

KGACCEL

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Fei Wen, Mian Qin, Paul Gratz, and Narasimha Reddy. An fpga-based hybrid memory emulation
system. In 31st International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 2021a. doi: 10.1109/FPL53798.2021.00039.

Fei Wen, Mian Qin, Paul Gratz, and Narasimha Reddy. Openmem: Hardware/software cooperative
management for mobile memory system. In 2021 58th ACM/IEEE Design Automation Confer-
ence (DAC), pages 109–114, 2021b. doi: 10.1109/DAC18074.2021.9586186.

Siheng Xiong, Yuan Yang, Faramarz Fekri, and James Clayton Kerce. Tilp: Differentiable learning
of temporal logical rules on knowledge graphs. In The Eleventh International Conference on
Learning Representations, 2022.

Siheng Xiong, Yuan Yang, Ali Payani, James C Kerce, and Faramarz Fekri. Teilp: Time prediction
over knowledge graphs via logical reasoning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 16112–16119, 2024.

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690, 2017.

Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang, Dongrui
Fan, and Yuan Xie. Hygcn: A gcn accelerator with hybrid architecture. In 2020 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages 15–29. IEEE,
2020.

Je Yang, Seongmin Hong, and Joo-Young Kim. Fixar: A fixed-point deep reinforcement learning
platform with quantization-aware training and adaptive parallelism. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 259–264. IEEE, 2021.

Pengcheng Yao, Long Zheng, Zhen Zeng, Yu Huang, Chuangyi Gui, Xiaofei Liao, Hai Jin, and
Jingling Xue. A locality-aware energy-efficient accelerator for graph mining applications. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
895–907. IEEE, 2020.

Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. Gcod: Graph convolutional
network acceleration via dedicated algorithm and accelerator co-design. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 460–474. IEEE,
2022.

Bingyi Zhang, Hanqing Zeng, and Viktor K Prasanna. Decgnn: A framework for mapping decou-
pled gnn models onto cpu-fpga heterogeneous platform. In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 154–154, 2022.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 739–748, 2020.

15

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl Busart. Model-
architecture co-design for high performance temporal gnn inference on fpga. arXiv preprint
arXiv:2203.05095, 2022.

Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang. Graphvite: A high-performance cpu-gpu
hybrid system for node embedding. In The World Wide Web Conference, pages 2494–2504. ACM,
2019.

Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang, and Xue-
hai Qian. Graphq: Scalable pim-based graph processing. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 712–725, 2019.

16

KGACCEL

7. Appendix

7.1. Path-based KGR versus Embedding-based KGR

Graph convolutional neural networks (GCNs) are widely used to tackle multi-hop reasoning tasks Vashishth
et al. (2019). Nevertheless, such neural network models’ reasoning procedures are known to lack
transparency and interpretability. Consequently, there is a tendency to train RL agents to conduct
reasoning tasks on KGs by formulating path-finding between entity pairs as a sequential decision
making process Chen et al. (2023, 2022). In this work, we focus on RL-based pathfinding instead
of traditional embedding-based methods, since embedding-based models, such as TransE Bordes
et al. (2013), TransH Wang et al. (2014), and TransR Lin et al. (2015), are not suitable for complex
multi-hop relation reasoning tasks.

7.2. Reinforcement Learning for KGR

7.2.1. STATES, ACTIONS, AND REWARDS

Actions At each time step, the set of agent’s possible actions At ∈ A consists of current en-
tity et’s outgoing edges. Formally, the action space for each timestamp can defined as At =
{(r′, e′) | (et, r′, e′) ∈ G}. Given a query (es, r, et), the agent chooses one of the outgoing
edges at each time step, until it gets to the destination or the model’s time limit is reached.

States Entities and relations in knowledge graphs are naturally in the form of text (shown in Fig-
ure 1). Such raw data has to be processed for the model starting with assigning an embedding to
each entity and relation. It is crucial to use an approach that keeps the natural semantics of the
raw text data, as well as the relations between entities introduced in the KG; accordingly, we take
advantage of light-weight embedding-based algorithms such as TransE Bordes et al. (2013) as the
front-end feature extraction layer, as introduced in section 7.1. The result of the mentioned prepro-
cessing is a low dimensional (e.g. 50 dimensions) vector for each entity and relation. Given a query
triple (es, r, ed), embeddings es, r, and ed are calculated through the preprocessing layer. The
model then defines the current state of the agent as st = (et, ed− et), which includes both current
entity’s embedding vector et, and the vector representing current entity’s distance from destination
entity ed − et.

Rewards There are two types of rewards in RL agent training: global reward and efficiency reward.
Global reward rGlobal is the positive reward the agent receives when it reaches the final target before
the time limit is passed. rGlobal is defined as

rGlobal =

{
+1 if eT = ed

−1 otherwise
(4)

where eT is the entity that the agent ends up at and ed is the target entity. The efficiency reward is
also calculated as

rEfficiency =
1

length(p)
(5)

where p is the path that the agent finds during each episode. It is shown that short paths tend
to provide more reliable reasoning evidence and improve the efficiency of reasoning Xiong et al.
(2017).

17

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Table 2: Compare RL task between KGR and OpenAI Gym.

OpenAI Gym KGR

Action space Small Large
State dimension Low∼High High

Action-state sparsity Low High
Network size Small Large

7.2.2. SUPERVISED POLICY LEARNING

The number of different relations in a knowledge graph could sometimes be rather large. As an
example, the total number of different relations in FB15K-237 Nguyen et al. (2017) is 237, which
is the size of action space for the model. To resolve this problem, previous work Xiong et al. (2017)
suggests performing a supervised training on agent, to provide it with some initial trajectories with
positive rewards; this imitation learning Hussein et al. (2017) style of training significantly increases
agent’s learning speed. As a result, our algorithm first conducts a bi-directional breadth first search
(BFS) to generate several sample paths to guide the agent as a teacher. After the mentioned step,
the agent will interact with the environment by itself and choose the next time step action based on
its policy.

7.3. Comparison Between KGR with Traditional RL

In practice, one big challenge of KGR is that the relation set can be quite large. For a typical KG,
the RL agent is often faced with hundreds (thousands) of possible actions. Table 2 compares the
RL task of KGR with traditional OpenAI Gym tasks. In other words, the output layer of the policy
network of ten has a large dimension. Due to the complexity of the relation graph and the large
action space, conventional RL training through trial and error would lead to very poor convergence
properties for the RL model. After a long training, the agent fails to find any valuable path. Directly
training the agent to pick actions from the original action space can be a difficult task. AlphaGo first
trains a supervised policy network using expert moves. In our case, the supervised policy is trained
with a randomized breadth-first search (BFS).

For each relation, we use a subset of all the positive samples (entity pairs) to learn the super-
vised policy. For each positive sample (esource, etarget), a two-side BFS is conducted to find same
correct paths between the entities. We update the parameters for each path to maximize the expected
cumulative reward using Monte-Carlo policy gradient.

7.4. KGAccel network structure and resource utilization

The policy network (PolicyNN) we choose to deploy on FPGA is a three-layer multi-layer connec-
tion(MLP). The network structure is shown in Table 4. Specifically, A represents the total number of
relations in the knowledge graph, which is also action space size. The data precision that we choose
for each layer is 16-bits fixed-point number. Table 3 summarizes KGAccel resource utilization on
two different FPGA platforms. There are several points in Table 3 that need to be noticed. The
first is that, as is shown in Figure 1.(b), for the host CPU part, technically speaking ARM Cortex
is directly integrated into Zynq FPGA. The host CPU for ZCU104 means the ARM core will load
the entity embedding vector into the FPGA kernel. The second point is the definition of Parallelism

18

KGACCEL

Table 3: FPGA Resource Utilization on Xilinx U280 and ZCU104
Alveo U280 UltraScale+ ZCU104

Host CPU Intel Xeon 6226 ARM Cortex-A53
Batch Size 8 2
Parallelism 4x4 2x2

Component LUT FF BRAM URAM DSP LUT FF BRAM URAM DSP

PEs 736.8K 405.1K 812 0 4023 164.2K 114.7K 213 18 501
KGE 171.9K 106.6K 0 850 0 20.9K 14.6K 64 72 0

PCIe DMA 74.1K 68.5K 94 0 0 -
Optimizer 56.9K 75.7K 0 0 279 15.2K 17.9K 0 0 47

MPSoC - 14.5K 16.1K 0 0 0
HBM 4.2K 3.4K 2 0 0 -

Others 7.9K 3.2K 0 0 0 5.6K 3.1K 0 0 0
Total 1051.8(80.6%) 662.5(25.4) 906(44.9%) 850(88.5%) 4302(47.6%) 220.4K(95%) 179.5K(39.0%) 277(88.7%) 90(93.5%) 548(31.7%)

Frequency 200 MHz 180 MHz
Latency 2953 cycle 8711 cycle
Power 28.8 Watt 5.4 Watt

in Table 3. As is shown in Figure 3, each processing element (PE) IP includes T systolic array IPs,
and a single layer includes T PE IP. Here 8× 8 means that there will be 8 PE IPs for a single layer,
and each PE IP includes 8 systolic array IPs. The third point is that it is obvious to notice that some
component is unique to specific FPGA. For example, ZCU104 have MPSoC IP but not HBM. Also,
since for ZCU104, the communication between ARM CPU and FPGA is via ARM smart intercon-
nect inside MPSoC IP, therefore the PCIe DMA IP is not necessary. The last but not least point that
we want to clarify is that the latency in Table 3 just represents a single PolicyNN passing time, not
the whole KGR time.

7.5. Detailed KGAccel Reasoning Results Analysis

To evaluate the reasoning provided by the KGAccel, we explore an standard KGR task, link pre-
diction, which aims at predicting missing relations among entities of a KG and is widely studied in
literature, primarily tackling the problem of KG incompleteness. The model is trained on NELL-995
and FB15K-237, which are the main available datasets for link prediction. We perform reasoning
tasks on a number of relations within each dataset, while making sure that the selected tasks include
various domains of entities and relations. For each task, all of the instances of its corresponding
relation and its inverse are removed from the dataset, and are treated as a queries for the task. The

Table 4: Policy Network (PolicyNN) Structure

Layer Type # of parameter # of output features
0 Input 192
1.0 Fully-connected(FC1) 192x512 512
1.1 ReLU activation
2.0 Fully-connected(FC2) 512x512 512
2.1 ReLU activation
3.0 Fully-connected(FC3) 512xA A
3.1 Softmax

19

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

Table 5: Sample reasoning paths found by the RL model
Relation Sample reasoning paths

organizationHiredPerson
worksForInverse

personLeadsOrganizationInverse
mutualproxyfor

athleteHomeStadium
athletePlaysForTeam → teamHomeStadium

athleteledSportsTeam → teamPlaysInCity → stadiumLocatedInCityInverse
athletePlaysForTeam → teamPlaysSport → sportUsesStadium

filmLanguage
filmIsInCountry → countryLanguage
filmProducedBy → personLanguage

filmGenre → tvProgramGenreInverse → tvProgramLanguage

personBornInLocation
personBornInCity

personGraduatedFromUniversity → atLocation

filmDirectedBy
awardWonByInverse

filmWrittenBy → filmCrewRole → filmCrewRoleInverse

training is separated into 3 stages: supervised policy learning, retraining with rewards and testing
with updates. During the first stage, a supervised policy is trained using bi-directional BFS. The
RL agent is then retrained during the second stage, with rewards given based on its performance on
each episode, with the previously learned supervised policy used as a teacher to help if agent fails.
During the last stage, the agent is tested and updated, without having access to the teacher anymore.
The training is conducted for a maximum of 500, 300 and 500 episodes for each stage, respectively,
with each episode containing one task.

Figure 5 depicts success rate and moving success rate of the agent for its training. Success rate
is determined by ratio of current number of successful episodes to the total number of episodes,
while moving success rate is calculated as the ratio of current number of successful episodes to
current number of episodes. Figure 6 shows the mean average precision (MAP) results, used as an
evaluation metric to compare our model with two main embedding methods, TransE and TransR.
We present more detailed analysis of reasoning accuracy in Appendix Section ??.

Our approach has a significant improvement in performance comparing to embedding method
baselines on both NELL-995 and FB15K-237, validating the capability of our RL model in reason-
ing. Difference between performances of the models depends on the task. Specifically, the number
of paths available between entities for each task can affect the learning proficiency of our model;
the less paths available between entities, the less our model can find evidence in KG to reason with.
Table 5 contains several paths found by the model for various tasks from NELL-995 and FB15K-
237. It can be seen that the reasoned paths match with their respective relations, for which each task
is designed and performed.

It is also worth noting that the accuracy results that we achieve on NELL-995 tasks are for the
most part higher than FB15K-237 tasks. This is a result of the fact that paths in FB15K-237 are in
most cases consisted of several relations, whereas paths in NELL-995 are much shorter, with many
including no more than one relation.

20

KGACCEL

7.6. Related Works

7.6.1. HARDWARE ACCELERATION OF GRAPH APPLICATION

Graph data-related applications have drawn considerable attention recently. Domain-specific accel-
erator (DSA) targeting graph applications has shown great success in the top system and architecture
conferences in recent years. Previous works focus on accelerating graph analysis applications, such
as GNN Yan et al. (2020); Li et al. (2021); You et al. (2022); Huang et al. (2022); Li et al. (2022);
Geng et al. (2020); Zhou et al. (2022); Zhang et al. (2022); Lin et al. (2022), and graph analy-
sis tools, such as graph mining Zhuo et al. (2019); Song et al. (2018); Chen et al. (2021); Talati
et al. (2022); Yao et al. (2020). Specifically, work Yan et al. (2020) first proposes the design of
DSA targeting GNN training. Geng et al. (2020); You et al. (2022) focus on accelerating GNN on
the FPGA platform with load balance and sparsity reduction. Huang et al. (2022) proposes using
process in memory (PIM) to accelerate GNN by mapping vertex into crossbar-based architecture.
The latest work Li et al. (2022) also explores graph partitioning and acceleration on cloud-based
FPGA platforms. Mentioned GNN-related accelerators mainly focus on optimizing vertex to vertex
combination and aggregation operations, setting aside the vertex to relation combination. Acceler-
ation of knowledge graph learning application based on CPU-FPGA heterogeneous platform is first
proposed by Zhou et al. (2022). These works target graph learning applications such as vertex clus-
tering or classification. KGAccel on the other hand, is the first FPGA acceleration platform targeting
the reasoning task, which is inferring not-existing knowledge from existing datasets.

7.6.2. REINFORCEMENT LEARNING ACCELERATION

Integrating reinforcement learning (RL) into system and architecture designs has been the focus of
many studies recently Rothmann and Porrmann (2022); Li et al. (2019); Lin et al. (2020). Specif-
ically, conducting hardware-software co-design trying to map different RL algorithms on FPGA
shows large potential to increase the speed of agent’s training process. Both on-policy RL algo-
rithms, such as PPO Schulman et al. (2017) and A3C Mnih et al. (2016), and off-policy algorithms,
such as DDPG Lillicrap et al. (2015), have been accelerated on CPU-FPGA heterogeneous com-
puting platform Cho et al. (2019); Meng et al. (2020); Yang et al. (2021). However, compared to
the knowledge graph pathfinding problem that we discussed in this work, such OpenAI Gym tasks
have very limited action space, making the policy network training process much easier. Besides,
previous works Rothmann and Porrmann (2022) tend to maintain the RL environment on the CPU,
which results in CPU-FPGA communication overhead. Since KGR involves frequent interactions
between the agent and environment, it is sensible to maintain the RL environment on the FPGA
kernel to reduce the data movement overhead. Consequently, our work KGAccel tries to maintain
then knowledge graph triples (i.e., environment) on-chip and add an imitation learning teacher to
enhance the RL agent’s training process.

7.6.3. KNOWLEDGE GRAPH REASONING

Previous KGR acceleration works mostly work on graph embedding-based algorithms such as
TransE Bordes et al. (2013) and RotatE Sun et al. (2019). Both CPU Zhu et al. (2019); Boschin
(2020); Lerer et al. (2019) and GPU Zheng et al. (2020) acceleration works of graph embedding
have been previously proposed. Recently RL RL-based path finding algorithms Xiong et al. (2017);
Das et al. (2017); Lin et al. (2018); Shen et al. (2018) have shown great success over multi-hop KGR

21

CHEN ZAKERI NI WEN KHALEGHI LATAPIE VELASQUEZ IMANI

tasks. The mentioned designs try to train an agent with a deep neural network (DNN) based policy
to find the potential relation path based on the existing knowledge. Although such algorithms show
significant improvements in accuracy, their training execution time overhead is very high. Accord-
ingly, KGAccel proposes the first domain-specific accelerator targeting RL-based KGR algorithms.

22

	Introduction
	Knowledge graph reasoning
	Definitions

	Reinforcement Learning for KGR
	Architecture Design of KGAccel
	Accelerator design motivation
	CPU-FPGA Heterogeneous Acceleration Architecture
	KG compression and on-chip storage
	Policy network acceleration
	Policy network update and imitation learning acceleration
	On-chip entity embedding vector switch

	Implementation and Experimental Result
	KG datasets and experiment setup
	KGAccel reasoning experiments and results
	The hardware performance of KGAccel

	Conclusion
	Appendix
	Path-based KGR versus Embedding-based KGR
	Reinforcement Learning for KGR
	States, Actions, and Rewards
	Supervised policy learning

	Comparison Between KGR with Traditional RL
	KGAccel network structure and resource utilization
	Detailed KGAccel Reasoning Results Analysis
	Related Works
	Hardware Acceleration of Graph Application
	Reinforcement Learning Acceleration
	Knowledge Graph Reasoning

