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Abstract
We introduce the concept of a neuro-symbolic pair—neural and symbolic approaches that are
linked through a common knowledge representation. Next, we present taxonomic networks, a
type of discrimination network in which nodes represent hierarchically organized taxonomic con-
cepts. Using this representation, we construct a novel neuro-symbolic pair and evaluate its perfor-
mance. We show that our symbolic method learns taxonomic nets more efficiently with less data
and compute, while the neural method finds higher-accuracy taxonomic nets when provided with
greater resources. As a neuro-symbolic pair, these approaches can be used interchangeably based
on situational needs, with seamless translation between them when necessary. This work lays the
foundation for future systems that more fundamentally integrate neural and symbolic computation.
Keywords: Neuro-Symbolic Pairs; Taxonomic Networks; Concept Learning

1. Introduction

Research on neuro-symbolic AI explores the integration of neural and symbolic methods to com-
bine their complementary strengths and mitigate their respective weaknesses. Symbolic AI is char-
acterized by its use of high-level symbolic representations that closely correspond to the cognitive
symbols humans use (Newell, 1980). This paradigm emphasizes techniques for explicitly lever-
aging and manipulating these symbols to support capabilities such as inference and planning. A
widely recognized limitation of symbolic AI is its reliance on knowledge engineering to construct
these representations. While hand-authoring limits scalability, it produces symbols that are explic-
itly linked to human meanings. As a result, symbolic systems are often interpretable by design, and
when their symbolic knowledge is accurate, their outputs are reliably correct.

Neural AI approaches, in contrast, are predominantly data-driven, relying minimally on knowl-
edge engineering.1 While this data-driven focus has enabled neural methods to achieve impressive
performance and widespread adoption, the correspondence between their learned internal represen-
tations (i.e., neurons and their activations) and human meaning is often unclear. Complicating this
further, neural networks typically learn distributed representations (Hinton, 1986), in which higher-
level human symbols are encoded across multiple, or even all, internal neurons. This characteristic
is why neural representations are often referred to as sub-symbolic—a single cognitive symbol is

1. However, much of the progress in neural AI research stems from the development of new neural architectures and
data-processing techniques, which could be considered forms of engineered knowledge.
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typically represented through the collective activation of many neurons. As a result, neural AI sys-
tems are inherently less interpretable than symbolic AI systems. The absence of internal symbols
that correspond with human cognitive symbols, coupled with a lack of explicit mechanisms for
symbol manipulation, often leads to unreliable outputs.

Several efforts have sought to bridge these paradigms. For example, Kautz (2022) reviews six
approaches for building neuro-symbolic systems, though his analysis primarily focuses on combina-
tion, where one approach (neural or symbolic) serves as a sub- or co-routine of the other. More re-
cent reviews continue to emphasize the integration of distinct neural and symbolic modules (Sarker
et al., 2022; Bhuyan et al., 2024). While such combined systems are straightforward to construct,
they retain the fundamental weaknesses of each component—for instance, the neural component
may still suffer from interpretability and reliability issues, while the symbolic component may still
depend on hand-authoring. While combination has its merits, we argue that unification approaches
that blur the boundaries between the neural and symbolic paradigms deserve further exploration.

To this end, we introduce the concept of neuro-symbolic pairs—neural and symbolic ap-
proaches that have linked representations, allowing models to be translated between them. What
makes such a pairing possible is the use of a symbolic representation that can also be instantiated
within a neural framework. Developers can use these pairs to seamlessly switch between different
paradigms, selecting the one that best suits their current needs. For instance, a developer could use
a neural approach to learn a model from a large amount of data, then translate the learned model
into a symbolic framework for deployment.

In the following sections, we formalize the concept of neuro-symbolic pairs and outline the
requirements for their implementation. We then propose taxonomic networks, a type of discrim-
ination network where the nodes represent categories that are organized taxonomically, as a novel
representation can serve as the foundation for such a pairing. Next, we present a neuro-symbolic
pair for taxonomic networks and evaluate the distinct performance characteristics of the paired ele-
ments. We conclude with a discussion of broader implications and potential next steps.

2. Background

Our methodology is inspired by recent work on mechanistic interpretability. Elhage et al. (2022)
explores the concept of monosemantic neurons—those that activate exclusively in response to a sin-
gle feature. An example is a neuron that activates only when presented with multimodal stimuli
representing Halle Berry (Kim et al., 2018). As this example suggests, monosemantic neurons often
closely correspond to cognitive symbols. Consequently, neural networks that incorporate these neu-
rons exhibit more symbolic-like behavior and are arguably more interpretable (Cunningham et al.,
2023). Elhage et al. (2022) conduct several experiments to investigate the conditions necessary for
learning neural networks with monosemantic neurons. They explore the phenomenon of superpo-
sition, where neural networks—particularly smaller ones—compress a larger set of features into
a smaller set of neurons. They hypothesize that neural networks in superposition tend to develop
polysemantic neurons—which activate in response to multiple features. Their findings suggest that
monosemantic neurons are more likely to occur in larger networks (those with more neurons than
features) and in networks that employ techniques such as regularization and sparse coding (Cun-
ningham et al., 2023) to encourage features to align with individual neural activations. Under the
right conditions, it may be possible to learn neural networks that function like symbolic systems—
employing internal representations that more closely correspond to cognitive symbols and offering
greater mechanistic interpretability.
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We also draw inspiration from prior work on generative-discriminative classifiers. Ng and Jor-
dan (2001b) introduce this concept and show that naı̈ve Bayes and logistic regression form what
they call a generative-discriminative pair. Under certain assumptions, they demonstrate that naı̈ve
Bayes searches the same hypothesis space as logistic regression—both search for a linear hyper-
plane in the feature space. Furthermore, they derive a formula for translating a given naı̈ve Bayes
model (the generative model) into a logistic regression model (the discriminative model) that makes
identical predictions.2 Although the two approaches share the same hypothesis space, they exhibit
different performance characteristics. Naı̈ve Bayes learns probabilistic prototypes for each class,
and these prototypes only implicitly (via Bayes rule) determine the linear decision boundaries be-
tween classes. In contrast, logistic regression learns a decision boundary directly, without assuming
a specific distributional form for the class prototypes—whereas naı̈ve Bayes assumes they follow a
normal distribution with independent features. Ng and Jordan (2001b) further show that while these
approaches form a pair, they do not necessarily learn the same models. They find that naı̈ve Bayes
converges to its asymptotic performance with substantially less data than logistic regression but that
logistic regression ultimately achieves better performance when naı̈ve Bayes’ assumptions are vio-
lated and sufficient data is available. They conclude by arguing that this generative-discriminative
pair allows developers to leverage the strengths of both approaches—using naı̈ve Bayes in low-data
scenarios and transitioning to logistic regression as more data becomes available.

3. Neuro-Symbolic Pairs

Building on these earlier ideas, we propose the concept of a neuro-symbolic pair. We define the
formation of such a pair as consisting of:

1. Identifying a representation that can be instantiated within both neural and symbolic terms;

2. Developing neural and symbolic approaches that operate over this shared representation; and

3. Defining translation operations that convert a model from one framework (neural or symbolic)
into the other.3

Based on prior research on mechanistic interpretability, we hypothesize that as neural networks be-
come sparser—with more of their neurons becoming monosemantic—they will increasingly resem-
ble their symbolic counterparts. In other words, in the limit of increasing sparsity, neural networks
may effectively function as symbolic systems. Although sparse coding-based learning is much more
intensive than conventional learning, it often produces better models, even with less data (Coates
and Ng, 2012; Hannan et al., 2023). However, even if a neural network becomes functionally
symbolic, it would still lack specialized symbol manipulation, potentially limiting its capabilities.
Our neuro-symbolic pairs framework provides a solution by allowing seamless translation between
paradigms. For instance, developers could use sparse neural approaches to acquire knowledge
from large amounts of data—something not easily accomplished using symbolic methods—and
then translate this neural model into a symbolic system that offers advanced symbol manipulation
capabilities and the potential for incorporating additional hand-authored knowledge.

Examples of neuro-symbolic pairs already exist in the literature. For example, logistic regres-
sion can be viewed as a neural network without a hidden layer, while naı̈ve Bayes, which learns
a prototype for each label, represents a simple symbolic system. These approaches form a neuro-
symbolic pair because Ng and Jordan (2001b) demonstrated that they have equivalent representa-

2. Each naı̈ve Bayes model corresponds to a unique logistic regression model, but the reverse mapping is one-to-many.
3. While bidirectional translation is desirable, as with generative-discriminative pairs, it may not always be feasible.
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tions and that naı̈ve Bayes models can be translated into comparable logistic regression models.
Another example comes from Silva et al. (2020), who explore differentiable decision trees. Their
work establishes a neuro-symbolic pair for univariate decision tree learning, where they use a neural
network to learn a decision tree and then translate it into a symbolic system for use in reinforcement
learning. Although both of these prior works provide examples of neuro-symbolic pairs, they do not
describe their work in these terms. We argue, however, that the concept extends far beyond these
early examples and has significant broader potential.

4. A Neuro-Symbolic Pair for Taxonomic Nets

Taxonomic networks are a type of discrimination network in which nodes represent taxonomic
categories arranged hierarchically based on shared attributes. These networks facilitate efficient
categorization and generalization by structuring knowledge in a tree-like format, where broader
concepts progressively refine into more specific subcategories—mirroring human concept organi-
zation (Corter and Gluck, 1992).

4.1. Symbolic Instantiation of Taxonomic Nets

A classic symbolic approach to learning taxonomic networks is Cobweb (Fisher, 1987), an incre-
mental, unsupervised method that dynamically partitions data. Unlike clustering algorithms with
a fixed number of categories, Cobweb continuously refines its hierarchy, forming prototypes adap-
tively. Recent extensions of Cobweb have demonstrated its effectiveness in continual learning and
low-data scenarios. For example, we developed Cobweb/4V (Barari et al., 2024) to support incre-
mental formation of visual concepts, and showed that it can achieve performance comparable to
neural networks while being more robust to catastrophic forgetting during continual learning. Sim-
ilarly, we developed Cobweb/4L (Lian et al., 2024) to support efficient language learning. Our ap-
proach efficiently acquires word representations, outperforming several neural methods, even with
significantly less training data. These findings underscore the potential of symbolic approaches for
taxonomic networks.

4.1.1. REPRESENTATION

Our prior approach (MacLellan et al., 2022; Barari et al., 2024; Lian et al., 2023, 2024) represents
concepts using probabilistic prototypes, where each node in the hierarchy encodes the statistical
properties of all instances categorized under it. We assume that each prototype is normally dis-
tributed with independent features. To track these distributions, each concept node c maintains mean
(µc) and variance (σ2

c ) vectors, which are incrementally updated as new instances are assigned to
the concept.

4.1.2. PERFORMANCE

To categorize an instance x, the system performs a best-first search. Starting from the root, it
expands the n nodes from the taxonomy that best represent the instance and have the most predictive
power. At each search step, it selects and expands the node c∗ with the highest collocation score,
defined as s(c) = p(c|x)p(x|c) (Jones, 1983). Letting C∗ represent all the nodes expanded during
categorization, Cobweb estimates the probability of each attribute xi as the collocation-weighted

4



TAXONOMIC NETWORKS

mixture of the expanded nodes’ stored probability distributions:

p(xi | C∗) =
∑
c∈C∗

p(xi | c)
exp{s(c)}∑

c∈C∗ exp{s(c)}

4.1.3. LEARNING

To update the hierarchy, each new training instance x is categorized down the tree. At each branch,
our approach considers four possible operations to update the hierarchy: (1) adding the instance to
one of the existing children, (2) creating a new node that merges two of the children and inserting
the instance into the merged node (the original children become children of the new node), (3) split-
ting the concept that best matches the instance and promoting its children, and (4) creating a new
child to store the instance. The system chooses the operation that maximizes the Kullback–Leibler
divergence (DKL) between the probability distributions stored at the parent concept (cparent) and
each child concept (cchild) according to the following formula:∑

child

p(cchild)DKL (p(x|cchild) ∥ p(x|cparent))

where p(x|c) ∼ N(µc,Σc) and Σc = diag(σ2
c ), under the assumption that the features are inde-

pendent and normally distributed. In lay terms, this measure maximizes the information gained
by knowing the concept label c for an instance over the label of its parent. It is the unsupervised
equivalent of the information gain measure used in decision tree learning.

4.2. Neural Instantiation of Taxonomic Nets

To construct a neural-symbolic pair, we developed a novel neural architecture that has representa-
tional equivalence with our symbolic approach. It uses a neural network that is organized in a tree
structure, where each neuron corresponds to a taxonomic concept.

4.2.1. REPRESENTATION

Neural taxonomic nets encode both a gating function gθ(x) ∈ [0, 1] and a linear layer that approxi-
mates the class distribution pϕ(y|x) at each node. Following prior work on neural soft decision trees
(Jordan and Jacobs, 1993; Frosst and Hinton, 2017; İrsoy and Alpaydın, 2014; Wan et al., 2020),
gθ(x) = σ(xW + b) is a linear layer with parameters W and b followed by a sigmoid activation
that encodes the left branch probability. Consequently, the right branch probability can be inferred
as 1− g(x). While we focus on binary trees in our work, this architecture can be extended to trees
with branching factor > 2 by replacing the sigmoid with a softmax function.

To control the smoothness of gating decisions, we introduce a temperature τ ∈ (0,∞) such that
τ = 1 gives the original sigmoid and τ < 1 approximates the step function. To support categorical
decisions (i.e., gθ(x) ∈ {0, 1}) while allowing proper gradient flow, we use the straight-through
trick (Jang et al., 2017). We also introduce stochasticity in the gating function to avoid greedy paths
and encourage the exploration of other branches. Following Jang et al. (2017), we add a small
Gumbel noise G scaled by α that controls the strength of the noise to the output from the linear
layer. As a result, the probability of taking the left branch given x at node c is:

pc(x) = σ

(
(xWc + bc) + αG

τ

)
.
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Figure 1: Neural taxonomic net with three levels. Path probability P l
c that x arrives at node c at

level l and its weights are highlighted in yellow. Weights for classification are highlighted in blue.

We can further define the path probability P l
c(x) as the probability that x reaches a specific node

c at level l in the tree. P l
c(x) = pc(x) · P l−1

parent(x), where P 0
root(x) = 1. Figure 1 shows an example

of a three-layer neural taxonomic net with path probabilities.
Finally, the class distribution at each node c is parametrized by a linear layer that maps from the

feature space (H) to the class space (K): pc(y|x) = xYc+dc, where Yc ∈ RH×K and dc ∈ RK .

4.2.2. PERFORMANCE

Neural taxonomic nets leverage the entire tree to make predictions. At each level l, the tree combines
pc(y|x) for each node c at that layer weighted by its path probability P l

c(x). In the categorical
setting, prediction will be based on a single path, where only the nodes along a path given x are
used. For all nodes at level l and for each level of the tree:

p(y|x) =
∑
l

∑
c∈l

P l
c(x) · pc(y|x)

4.2.3. LEARNING

We train neural taxonomic nets end-to-end using gradient descent and back-propagation to update
the gating functions and classifiers. The learning objective is the sum of negative log-likelihood of
pc(y|x) at each node, weighted by path probabilities. Formally, the loss function L is given by:

LCE(x, y) =
∑
l

∑
c∈l

P l
c(x) ·

[
− log

exp
(
ℓc,y(x)

)∑K
k=1 exp

(
ℓc,k(x)

)] ,

where ℓc,k(x) is the probability for class k at node c: ℓc,k(x) =
[
xYc + dc

]
k
.

To avoid trivial decisions that send all examples down a single path, we add a regularization
term that encourages splitting at each node, similar to an approach by Frosst and Hinton (2017).

6



TAXONOMIC NETWORKS

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 2: A three-level neural taxonomic net trained on FashionMNIST. The right image at each
node shows the learned gating weights, and the left image displays the average of all test samples
that pass through it (prototypes). The color bar on the top of each node shows the learned class label
distribution (the root node is uniform because there are an equal number of examples in each class).

The regularization is the KL divergence between the predicted activation distribution Al(c) =
softmax(

∑
x P

l
c(x)) and the uniform activation distribution Ul(c) = 2−l at the layer l: C =∑

l DKL (Al ∥ Ul). The final loss function is L = LCE − λC, where λ weights the strength of the
regularizer.

4.3. Translating Between Approaches

These two approaches form a neuro-symbolic pair because it is possible to translate a model from
one approach into an equivalent model in the other. For simplicity, let’s assume the taxonomic nets
are binary, corresponding to our earlier descriptions. Since each branch in the symbolic framework
is essentially a naı̈ve Bayes classifier, there is a direct mapping to the corresponding gating function

gθ(x) = σ(xW+b). In particular, W =
(µleft−µright)

σ2
parent

and b = ln p(left)
p(right) +

(µ2
right−µ2

left)

2σ2
parent

. Similarly, the

classification distribution, pϕ(y|x), at each node c is set to p(y|c).
The reverse direction is not as straightforward because the neural decision tree does not store

the distributional information (µc and σc) for each node c. As a result, there are an infinite number
of symbolic models that correspond to a particular neural model—each corresponds to a symbolic
model with centroids that are different distances from the separating hyperplane that divides them.4

To identify the best translation, we start by classifying all the data using the neural approach. We
then choose the parameters at each branch such that the prototype centroids (the µs) best align with
the average of all the data points assigned to each node while still being consistent with correspond-
ing neural decision boundary. We set the variances (the σ2s) to correspond to the sample variance
for all the points classified under each neural node.

4. The decision boundary is the hyperplane that is orthogonal to the line between the two children’s centroids and
equidistance from each centroid.
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Approach \ Data MNIST FashionMNIST CIFAR-10
Symbolic Learning 96.42%±0.06% 84.04%±0.08% 33.73%±0.07%

Neural Learning 96.29%±0.03% 86.72%±0.08% 37.95%±0.76%

Table 1: Model accuracies with standard errors computed from 8 random seeds across three datasets.

5. Experiments

5.1. Datasets

We evaluate taxonomic networks instantiated within both the symbolic and neural frameworks using
three datasets of increasing complexity and dimensionality: MNIST, FashionMNIST, and CIFAR-
10. MNIST contains 70,000 28×28-pixel gray-scale handwritten digits, providing a structured, low-
dimensional dataset to assess clustering proficiency with minimal feature overlap. FashionMNIST
follows the same data format as MNIST, but contains everyday clothing objects that have more
complex features and intra-class variations. CIFAR-10 contains 60,000 32× 32-pixel color images
of everyday object classes. All three datasets have 10 labeled classes from which we reserve 10,000
images for testing.

5.2. Methods

For learning taxonomic nets within the symbolic framework, we process every instance individually
(i.e. batch size = 1), with one-hot class labels imprinted on the first 10 pixels of each image. During
prediction, we collect the first 10 pixel values as the predicted class label distribution. When using
the neural framework, we use batch learning, so we utilize batches of 128 and initialize the tree with
8 layers. During training, we use the Adam (Kingma and Ba, 2017) optimizer with a learning rate
of 2 × 10−3. We also use the following hyper-parameters: τ = 0.3, α = 0.3, λ = 110, which
were identified with hyper-parameter search. We run each experiment 8 times, each with a different
random seed. Within each run, we set the number of epochs to 10.

5.3. Results

5.3.1. COMPARISON OF ACCURACY

The symbolic approach finds the best taxonomic nets on MNIST with an average accuracy of
96.42%. However, our neural approach finds better taxonomic nets in FashionMNIST and CIFAR-
10 with accuracies of 86.72% and 37.95% respectively. We see the neural approach better handles
more complex datasets like FashionMNIST and CIFAR-10 compared to it’s symbolic counterpart.

5.3.2. COMPARISON OF LEARNING CURVES

To investigate the learning dynamics between the symbolic and neural approaches, we plot their
learning curves on each dataset in Figure 3. For each approach, we fix the ordering of the training
data using a random seed and record its test accuracy at every power of two data points. The neural
approach starts at 27 data points because its batch size is 128. Our results comply with the previous
findings that a generative approach (comparable to our symbolic method) will have better perfor-
mance with fewer data than a discriminative approach (comparable to our neural method) while
reaching worse asymptotic accuracy when more examples are provided (Ng and Jordan, 2001a).
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Figure 3: Learning curves for the symbolic and neural approaches. Accuracies are averaged over 8
random seeds with standard errors.

5.3.3. COMPARISON OF COMPUTE, RUN TIME AND MODEL MEMORY FOOTPRINT

We also evaluated compute efficiency of the symbolic and neural approaches across three dimen-
sions: compute resources, wall time, and memory footprint. Our symbolic approach learns incre-
mentally, processing one datum at a time. This makes it well-suited for CPUs, which are optimized
for sequential processing. Frequent tree-based operations, such as merging and splitting, also benefit
from architectures like Apple’s unified memory design, which enables efficient memory manage-
ment. As a result, the symbolic approach utilized a single Apple M4 Pro core, while the neural
approach employed an NVIDIA A40 GPU. Across the three datasets, the symbolic approach took
86.05s on MNIST, 89.46s on FashionMNIST, and 233.80s on CIFAR-10. In contrast, the neural
approach took 133.14s, 130.58s, and 168.88s, respectively. These times are averaged over five runs.
The neural approach scales better with higher-resolution images in CIFAR-10 due to GPU accel-
eration, whereas the symbolic approach, running exclusively on a single CPU, faced scalability
limitations. For memory usage, the symbolic approach peaked at around 700MB, while the neural
approach (with an 8-layer taxonomic net and a batch size of 128) peaked at around 500MB.

6. Discussion

Our results highlight several trade-offs between our two approaches, showing that one is not strictly
better than the other. Across all three datasets, the symbolic approach is more data-efficient, achiev-
ing higher accuracy with less data. While the neural approach is less data-efficient, it finds higher-
performing taxonomic nets. This mirrors prior research on generative-discriminative pairs. Ng and
Jordan (2001b) found that generative approaches achieve their asymptotic performance with less
data, but discriminative approaches tend to perform better with more data. Our symbolic approach
is generative because it learns the distributional form of the prototypes, and the neural variant is
discriminative because it learns the decision boundaries at each branch. Our results suggest that this
prior work generalizes to more complex models like taxonomic nets.

The symbolic approach is more computationally efficient because it selectively manipulates
its internal symbols. For example, during learning, it sorts each image down the tree and only
updates the nodes along a single categorization path, leaving other nodes untouched and avoiding
unnecessary computation. Similarly, during inference, it utilizes best-first search to expand only
the most relevant portions of the tree. In contrast, the neural approach performs full computation at
every node during both learning and inference. While this is less efficient, it compensates through
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hardware scalability. Its neural framework makes it possible to leverage GPUs for both training and
inference, letting it train on larger images (CIFAR) using less wall time than the symbolic approach.
We have explored parallelizing the symbolic variant, but its commitment to discrete choices (e.g.,
which branch to choose) makes it difficult to translate onto tensor processing hardware.

Given these tradeoffs, it is fortunate that these approaches form a neuro-symbolic pair, as we can
translate between paradigms to suit our needs. For example, the symbolic approach is more efficient
during training (less data and compute needed), but it is harder to scale up because it cannot leverage
GPUs. Therefore, we can learn a taxonomic net more cost effectively using the symbolic approach,
then translate it (see Section 4.3) into a neural model for scalable inference during deployment.
Alternatively, we might imagine using the neural approach to learn high-performing taxonomic nets
from large amounts of data and then translate them into symbolic models that can learn online
without catastrophic forgetting (Barari et al., 2024).

Central to our approach is the taxonomic network representation, which enforces semantics that
correspond to human symbols; nodes represent hierarchically organized taxonomic concepts. By
linking our two approaches via taxonomic networks, we aim to realize mechanistic interpretability.
Nodes in a taxonomic tree are monosemantic by design. During inference, each example is cate-
gorized down the tree, primarily activating only a single node (or a few nodes) in each layer. As
Figure 2 shows, nodes represent taxonomic prototypes at increasing levels of specificity, with clear
categories, such as shirt, pants, and shoes, developing at intermediate levels. We argue this structure
will result in more interpretable concepts, even when learned using data-driven, neural methods.

7. Conclusions and Future Work

Rather than focusing on the integration of distinct neural and symbolic components, our work seeks
a more fundamental unification of these paradigms. To achieve this goal, we introduce the concept
of neuro-symbolic pairs. These are linked neural and symbolic approaches that share a common
knowledge representation, making it possible to translate models from one paradigm into the other.
We introduce taxonomic networks, tree-based networks where each node corresponds to a taxo-
nomic category, and present a novel neuro-symbolic pair that utilizes these networks. We evaluate
the performance characteristics of the pair and find that each approach works best under different
circumstances. Fortunately, our pair-based framework enables translation across approaches, so we
can realize the best characteristics of both.

We believe that our neuro-symbolic pairs concept is broadly applicable. For example, other
approaches, such as statistical relational learning (De Raedt and Kersting, 2010; De Raedt et al.,
2020), could be potentially framed in terms of neuro-symbolic pairs. Looking into the future, we
are interested in extending our pair for taxonomic networks to better support compositionality and
representation learning; e.g., using processing techniques like convolution (MacLellan and Thakur,
2022). We hope that our work inspires the development of additional pairs, such as matched neuro-
symbolic variants for hierarchical task planning, and lays the foundation for new types of neuro-
symbolic computation.
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