
Proceedings of Machine Learning Research vol 288:1–18, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Interpretable Imitation Learning via
Generative Adversarial STL Inference and Control

Wenliang Liu* WLIU97@BU.EDU
Danyang Li * DANYANGL@BU.EDU
Department of Mechanical Engineering, Boston University, Boston, MA, USA

Erfan Aasi EAASI@MIT.EDU
Daniela Rus RUS@MIT.EDU
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Roberto Tron TRON@BU.EDU
Department of Mechanical Engineering, Boston University, Boston, MA, USA

Calin Belta CALIN@UMD.EDU

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
Imitation learning methods have demonstrated considerable success in teaching autonomous sys-
tems complex tasks through expert demonstrations. However, a limitation of these methods is their
lack of interpretability, particularly in understanding the specific task the learning agent aims to
accomplish. In this paper, we propose a novel imitation learning method that combines Signal
Temporal Logic (STL) inference and control synthesis, enabling the explicit representation of the
task as an STL formula. This approach not only provides a clear understanding of the task but also
supports the integration of human knowledge and allows for adaptation to out-of-distribution sce-
narios by manually adjusting the STL formulas and fine-tuning the policy. We employ a Generative
Adversarial Network (GAN)-inspired approach to train both the inference and policy networks, ef-
fectively narrowing the gap between expert and learned policies. The efficiency of our algorithm is
demonstrated through simulations, showcasing its practical applicability and adaptability.
Keywords: Temporal logic, Control synthesis, Imitation learning, Generative adversarial network

1. INTRODUCTION

Imitation learning is a machine learning technique that enables autonomous systems to learn tasks by
mimicking expert behavior and is increasingly popular for teaching complex tasks to robotic systems
efficiently. This paper focuses on imitation learning using offline data, i.e., no interaction with the
expert is required during the learning process. In this setting, imitation learning can be categorized
into two main types: behavioral cloning Pomerleau (1991), which utilizes supervised learning to
learn a policy from state-action pairs, and Inverse Reinforcement Learning (IRL) Ng et al. (2000),
which infers the reward function that the expert optimizes and applies Reinforcement Learning (RL)
to find a control policy. Although behavioral cloning is conceptually simple, it mimics the expert
without uncovering the underlying task. Hence, it lacks adaptability to situations not covered in
the training data. IRL can recover a reward function, but it is computationally expensive, prone to
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overfitting, and difficult to interpret. Therefore, it is challenging to assess the correctness of the
reward function and manipulate it to incorporate human knowledge or adapt to new scenarios.

Temporal logics, including Linear Temporal Logic (LTL) Baier and Katoen (2008) and Signal
Temporal Logic (STL) Maler and Nickovic (2004), are widely used for control system specifications
due to their expressiveness. STL inference is the process of deriving formal descriptions of system
behaviors from observed data in the form of STL formulas Baharisangari et al. (2021). The STL
inference approach classifies system behaviors as desired or undesired based on whether they satisfy
the inferred formula Bombara and Belta (2021); Aasi et al. (2022). In this paper, we propose
a method that combines STL inference with control synthesis to enhance the interpretability of
imitation learning. Our approach infers an STL formula that describes the task an expert aims to
accomplish, and learns a control policy to satisfy this formula in a dynamic environment, where
agent dynamics can be either known or learned, and environment dynamics are unknown. Since
STL formulas closely resemble natural language, our approach provides some understanding of the
objective of the policy. Moreover, they can be manually adjusted to align with expert knowledge
or adapt to new conditions. The policy can also be fine-tuned in new scenarios using the learned or
modified STL formulas, enabling out-of-distribution generalization without new expert data.

One of the main challenges in combining the STL inference and control tasks is the need to
have both positive (expert demonstrations) and negative (incorrect behaviors) examples in order to
infer an STL formula classifier. The goal is to push the decision boundary (in the form of an STL
formula) as close to the positive data as possible to align the synthesized control policy with the
expert’s policy. However, negative examples are often unavailable or insufficient. Although we can
record negative data or manually generate them using a simulator, they can hardly be comprehensive
enough. To address this concern, we incorporate Generative Adversarial Networks (GANs) Good-
fellow et al. (2014) into our framework. We consider the policy network as the generator and the
inference network as the discriminator. The policy generates fake (negative) data, and the STL for-
mula distinguishes them from positive data. We show that by iteratively training the two networks,
the learned policy gradually approaches the expert’s policy.

The contributions of this paper are as follows: (1) We develop an interpretable imitation learning
approach for dynamic environments by integrating STL inference with control synthesis, where the
tasks that the expert aims to accomplish are explicitly learned as STL formulas. (2) We incorporate
GANs into our framework to gradually bridge the gap between expert and learned policies. (3) We
illustrate the efficacy of our algorithm through three case studies. We show that the inferred STL
formula can be adjusted to incorporate rules from human knowledge, and the policy can be retrained
and adapted to unseen scenarios.

2. Related Work

STL inference and control synthesis, as separate areas, have received significant attention recently.
Early efforts in STL inference focused on mining optimal parameters for predefined formula tem-
plates Asarin et al. (2012); Jin et al. (2013); Jha et al. (2017); Hoxha et al. (2018). Recent studies
have proposed general learning frameworks to infer both formula structures and their parameters,
using techniques such as lattice search Kong et al. (2016), decision trees Bombara and Belta (2021);
Aasi et al. (2022), enumeration-based methods Mohammadinejad et al. (2020), and neural net-
works Chen et al. (2022); Li et al. (2023). Other method involves using “landmarks” to build a
policy summary Sreedharan et al. (2020). On the other hand, control synthesis from STL formulas
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can be solved using mixed integer programming (MIP) Raman et al. (2014); Sadraddini and Belta
(2015), or gradient-based optimization Pant et al. (2017); Haghighi et al. (2019); Gilpin et al. (2020).
Recently, learning-based control methods under STL specifications have been proposed, including
Q-learning Aksaray et al. (2016) and model-based methods Yaghoubi and Fainekos (2019); Liu
et al. (2021); Leung and Pavone (2022); Liu et al. (2023). The latter considered static environments,
while in this paper we consider a learning agent in a dynamic environment.

Integrating STL inference with control synthesis has gained limited attention in existing litera-
ture. One related study Xu et al. (2018) learns advice in the form of STL formulas from success-
ful and failed trajectories, and design an advisory controller to satisfy the inferred STL formulas.
However, this approach is restricted to a specific template of STL formulas and requires expert in-
tervention during the learning process. In their method, decision trees are used for inference, and
the controller is synthesized using a MIP solver. In contrast, our approach enables the template-free
learning of STL formulas, and both inference and control synthesis are based on neural networks,
leading to a simpler training process and more efficient online execution using offline data only.

The combination of GANs and imitation learning was first proposed as Generative Adversarial
Imitation Learning (GAIL) in Ho and Ermon (2016) and has been studied extensively in the lit-
erature, e.g., Baram et al. (2017); Wang et al. (2017). Similar to the existing works in imitation
learning, these approaches lack interpretability. To the best of our knowledge, this paper is the first
to use GANs to integrate temporal logic inference and control synthesis.

3. Problem Statement and Approach

We consider a discrete-time system consisting of an agent and its environment. The state of the
system at time t ∈ [0, T ] ∩ Z is denoted as x(t) =

(
xag(t), xenv(t)

)
, where xag(t) ∈ Rna is the

state of the agent, xenv(t) ∈ Rne is the state of the environment, and T ∈ Z>0 is the time horizon
that we are interested in. Let the dynamics of the agent (independent from the environment) be:

xag(t+ 1) = f
(
xag(t), u(t)

)
, (1)

where u(t) ∈ U ⊂ Rm is the control input at time t, U is a set capturing the control constraints. We
assume U is a box constraint and f is a differentiable function. Let P0 : X0 → R≥0 be a known
probability distribution of the initial state for the agent over a set X0 and P : (Rne)T+1 → R≥0

be an unknown distribution of the environment trajectory. Let xt1:t2 = [x(t1), . . . , x(t2)] denote a
sequence of system states from time t1 to t2 and x = x0:T denote the whole trajectory. We assume
the state x can be fully observed by the agent at all times. The agent model (1) can be either known
or separately learned using the method in Liu et al. (2023). We consider both cases in Sec 6.

Assume we have a dataset D = {(xi, li)}Ni=1 of system trajectories, all of length T , where
li ∈ {1,−1} is the label with 1 indicating expert demonstration and −1 indicating undesired be-
haviors. We allow the dataset to contain only positive samples. Our goal is to generate an in-
terpretable description of the expert’s objective and a control policy that resembles the expert’s
strategy. This description is captured by an STL formula ϕ interpreted over y = [y(0), . . . , y(T )],
where y(t) = h

(
x(t)

)
is the feature extracted from the system state and h : Rna+ne → Rny is a

known differentiable function. In this paper, we consider a fragment of STL with the syntax:

ϕ ::= ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♢[t1,t2]ϕ | □[t1,t2]ϕ, (2)

where µ is a predicate µ := a⊤y(t) ≥ b, a ∈ Rny , b ∈ R, and ϕ, ϕ1, ϕ2 are STL formulas. The
Boolean operators ¬,∧,∨ are negation, conjunction and disjunction, and the temporal operators ♢
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and □ represent eventually and always, respectively. ♢[t1,t2]ϕ is true if ϕ is satisfied for at least one
time point t ∈ [t1, t2] ∩ Z, while □[t1,t2]ϕ is true if ϕ is satisfied for all time points t ∈ [t1, t2] ∩ Z.

The quantitative semantics Donzé and Maler (2010), also known as robustness, of an STL for-
mula ϕ, denoted as r(y, ϕ), is a scalar that measures how strongly the formula is satisfied by a signal
y. The robustness is sound, which means that r(y, ϕ) ≥ 0 if and only if ϕ is satisfied by y.

Consider a history-dependent policy u(t) = π(x0:t). We assume the agent’s policy depends on
the environment but does not influence it. Our goal can be formulated as:
Problem 1 Find an STL formula ϕ that classifies the positive and negative data in a set D, and
find a policy u(t) = π(x0:t) that maximizes r(y, ϕ), i.e., the robustness of ϕ, where y(t) = h

(
x(t)

)
.

We parameterize both the STL robustness function and the policy using neural networks (de-
tailed in Sec. 4), referred to as an inference network r(y, ϕθI ) = I(y; θI) and a policy network
u(t) = π(x0:t; θP ), where θI and θP are the neural network parameters, and ϕθI is an STL formula
which can be extracted from the inference network parameters θI . Then we divide Prob. 1 into two
subproblems, the inference problem and the control problem, and formulate them as:

Problem 2 [Inference] Given a datasetD, find the optimal parameters θ∗I for the inference network
I(y; θI) such that the inferred STL formula ϕθI minimizes the misclassification rate (MCR): θ∗I =
argminθI MCR(ϕθI , D).

Problem 3 [Control] Given system (1) and the inference network I(y; θI), find the optimal pa-
rameters θ∗P for the policy network π(x0:t; θP ) that maximize the expected robustness of ϕθI :

θ∗P =argmax
θP

Exag(0)∼P0,xenv∼P I(y; θI)

s.t. xag(t+ 1) = f
(
xag(t), π(x

0:t; θP )
)
, y(t) = h(x(t)).

(3)

Solving Prob. 2 and Prob. 3 in one shot may not lead to an accurate STL formula describing
the expert’s behavior and a policy close enough to the expert’s policy. The STL formula ϕθI can
be considered as the decision boundary of a binary classifier. In order to accurately explain the
underlying task, this decision boundary is expected to be as close as possible to the positive data.
However, the recorded or manually designed negative data can hardly be comprehensive enough
to push the decision boundary toward the positive data, because there exists many patterns of un-
desired behaviors of the system. For instance, it is possible to generate negative data for specific
incorrect behaviors, such as a vehicle running a red light, while there are many other undesired
behaviors—such as stopping in the middle of the road or frequent acceleration and deceleration. To
address this challenge, we propose a generative adversarial training approach. We frame Prob. 1
as a game between an inference network and a policy network. At each iteration, the policy net-
work generates new trajectories, which are then added to the dataset as negative samples, and the
inference network is retrained with this updated data. The policy network aims to generate expert-
like trajectories that are difficult for the inference network to classify, while the inference network
learns to differentiate between expert and non-expert behaviors. This setup mirrors the roles of the
generator and discriminator in a Generative Adversarial Network (GAN), as illustrated in Fig. 1.

4. Neural Network Architectures

4.1. STL Inference Based on Neural Networks

In this paper, we apply the TLINet Li et al. (2023, 2024) as the inference network, which is a
template-free model that provides flexibility in learning various structures of STL formulas. A
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Figure 1: An overview of the Generative Adversarial STL Inference and Control: red arrows represent
inference network training, while blue arrows indicate policy network training.
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Figure 2: An example of a 5-layer inference network.

TLINet consists of multiple layers, each containing modules corresponding to specific types of
operators. These modules are categorized into three types: predicate, temporal and Boolean. The
predicate module learns the predicate type and spatial parameters; the temporal module learns the
type of temporal operator and temporal parameters; and the Boolean module learns the type of
Boolean operator and the structure of the formula. This capability provides flexibility in generating
STL formulas, as it is not constrained by a fixed network structure. TLINet allows for flexible
combinations of layers, enabling it to describe diverse behaviors. Fig. 2 shows an example of the
TLINet structure.

A TLINet can be transferred to an STL formula ϕθI by decoding its parameters θI and trans-
lating modules to compositions of ϕθI . A detailed decoding and translation example is provided in
Appendix A. With a given signal y as input, the output of a TLINet is an estimated robustness value
r̃(y, ϕθI ) = I(y; θI), where r̃(y, ϕθI ) is a smooth approximation of the true robustness. We use
Sparse Softmax Li et al. (2024) and Averaged Max Li et al. (2024) to approximate the robustness,
which allows to incorporate gradient-based methods and can guarantee soundness. Thus, r̃(y, ϕθI )
is able to represent a rigorous classifier, i.e., r̃(y, ϕθI ) is positive if and only if the input signal
belongs to the positive class and satisfies the STL formula ϕθI .

4.2. Recurrent Neural Network Control Policy

In general, to satisfy an STL specification, the control policy needs not only the current state but also
past states Liu et al. (2021). For example, if a robot is required to move back and forth between two
regions, then in the middle of the two regions the robot will need the history information of which
region it has just visited to decide where to go. Hence, we apply a Recurrent Neural Network (RNN)
policy π(x0:t; θP ), where θP is the RNN parameters. Similar to Yaghoubi and Fainekos (2019), we
apply a hyperbolic tangent function on the output of the RNN to satisfy the control constraint U .

5. Training of Inference and Policy Networks

Now we elaborate the training processes of the networks, i.e., the solutions to Prob. 2 and Prob. 3.
Then we detail the joint training of the two networks using the generative adversarial approach.
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5.1. Training of Inference Network

Following Li et al. (2024), we solve Prob. 2 by minimizing the following loss function:

θ∗I , ϵ
∗ = argmin

θI ,ϵ

1

N

N∑
i=1

ReLU
(
ϵ− li · I(yi, θI)

)
− β1ϵ+ β2Reg(θI), (4)

where ϵ > 0 is the margin,Reg is a regularizer to adjust formula complexity, which is a combination
of a bi-modal regularizer Murray and Ng (2010) as well the traditional ℓ2 regularizer. β1 > 0, β2 ∈
R are two hyperparameters to control the compromise among formula complexity, maximizing the
margin ϵ, and minimizing theMCR. The loss function (4) satisfies that it is small when the inferred
formula is satisfied by the positive data and violated by the negative data, and it is large otherwise.
The margin ϵ is a quantitative measurement of the separation of signals by ϕθI . The loss function
encourages a large margin to better distinguish the positive and negative data.

5.2. Training of Policy Network

Model-based training of an RNN control policy in a static environment was introduced in Liu et al.
(2023). In this paper, we extend this method to dynamic environments. To solve Prob. 3, we need
to estimate the expectation in (3). We first sample a set of M initial agent states {x̄jag(0)}Mj=1 from
the known distribution P0. Next, since the distribution P is unknown, we sample M environment
trajectories {x̄j

env}Mj=1 from the dataset D. We use the agent dynamics (1), policy network π, and
the sampled environment trajectories to roll out the system trajectories from the sampled initial
agent states. Then we use the mean value to estimate the expectation, attaining:

θ∗P =argmax
θP

1

M

M∑
j=1

I
(
ȳi; θI

)
s.t. x̄jag(t+ 1) = f

(
x̄jag(t), π(x̄

0:t,j ; θP )
)
, ȳj(t) = h

(
x̄j(t)

)
,

(5)

where the closed-loop dynamics can be substituted into the objective to form an unconstrained
optimization problem. Since both inference I and policy π are based on neural networks, and the
dynamics (1) are differentiable, the gradient of the objective can be backpropagated to the policy
parameters. At each optimization step, we resample the initial states and environment trajectories
to get an unbiased estimation of the objective and optimize it using Adam Kingma and Ba (2014).

5.3. Generative Adversarial Training

In this section, we describe the generative adversarial training approach used to iteratively refine
both the inference and policy networks to improve the overall solution. We begin by training the
inference network, followed by training the policy network. Next, we sample a set of initial states
and environment trajectories, apply the learned policy, and roll out system trajectories, which are
assigned negative labels and added to the dataset. This process (called an iteration) is repeated
until convergence. If the original dataset contains only positive data, we first generate negative-
labeled trajectories using a random policy and follow the same procedure. To improve the stability
of training, we balance the positive and negative samples by randomly selecting an equal number of
negative samples as expert demonstrations from the pool of collected negative data at each iteration.
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During training, as the policy network improves, trajectories resembling the expert demonstra-
tions are added to the negative dataset. This can cause an increase in the MCR of the inferred
STL formula, which may, in turn, degrade the performance of the policy network. To mitigate this
issue, we introduce a performance score based on Dynamic Time Warping (DTW) Sakoe and Chiba
(1978) to assess the control policy. Specifically, we apply the learned policy π to the same initial
conditions and environment trajectories as those used in the expert demonstrations and compute the
similarities between the generated trajectories xi,π and the expert demonstrations xi, which gives
us a performance score r(π) for the policy π:

r(π) = −
∑

{i|li=1}

DTW (xi,π,xi), where

xi,π(0) = xi(0), xienv(t) = xi,πenv(t), x
i,π
ag (t+ 1) = f

(
xi,πag (t), π(x

i,π
0:t ; θP )

)
.

(6)

We select the policy with the highest performance score as the final policy, with the corresponding
STL formula as its interpretation.

6. Experiments

In this section, we evaluate our algorithm through three case studies. The first one involves a nav-
igation task with random goal and obstacles. We compare our algorithm with Behavioral Cloning
(BC) and show out-of-distribution generalization of our approach. In the second, we apply our ap-
proach to tasks in the MuJoCo environments with unknown dynamics, and compare its performance
with GAIL. The third one includes a self-driving vehicle in a dynamic environment. We show how
user-generated formulas can be integrated into the policy to incorporate human knowledge and how
the policy can be efficiently adapted to previously unseen scenarios through formula modification.
Some detailed setup and results of experiments are omitted here and given in Appendix B. Videos
of the experiments can be found at https://youtu.be/peQSizAwNAo. The implementation
is available at: https://github.com/danyangl6/IGAIL.

6.1. Random Navigation

Consider a unicycle robot moving in a 2D environment with known discrete-time dynamics as
shown in Fig 3. The state of the robot xag = (px, py, θ) contains its 2D position px, py and orienta-
tion θ, and the control u = (v, ω) includes the forward velocity v and angular velocity ω. The initial
state is uniformly sampled from [1.5, 2.5]2 × [−0.01, 0.01]. The environment contains two goal re-
gions and one obstacle region, each with a radius of 0.5. They are centered at random y-coordinates
uniformly sampled from [0.5, 3.5] (with fixed x-coordinates). The robot must first visit the closer
goal region, then the other one, and always avoid the obstacle, with py ∈ [0, 4]. This behavior is
specified by an STL formula (unknown to the learner), which is provided in Appendix B. The envi-
ronment state includes the static locations of the goal and obstacle regions, i.e., xenv(t) = xenv(0),
∀t ∈ [0, T ]. We collect a dataset of 1000 positive robot trajectories with a time horizon T = 24
using an expert policy trained through model-based policy search Liu et al. (2023).

We evaluate our algorithm from 6 random initializations of both networks. The learned STL for-
mula (given in Appendix B) closely reproduces the specification the expert aims to satisfy. Fig. 3(a)
shows a sampled trajectory generated using the learned policy starting from the same initial state
as the expert demonstration. Table. 1 lists the robustness of the learned policy with respect to the
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(a) (b)

Figure 3: (a) Expert demonstration and sampled trajectory using the learned policy. (b) Sampled
trajectory using the learned policy after fine-tuning in an OOD environment.

Ours BC Expert Ours (OOD) BC (OOD)
Robustness 0.19± 0.13 0.31± 0.08 0.33± 0.06 0.12± 0.16 −0.12± 0.13
Suc. rate 85.4± 14.5% 97.5% 99.2% 72.7%± 22.7% 17.1%

Table 1: Robustness and success rate (mean±std) of the learned policy w.r.t. the true STL formula

ground-truth STL formula and the success rate of satisfying it, evaluated over 1000 random initial
states for each network initialization. We compare the learned policy with the expert policy and
BC policy trained using the same set of expert demonstrations. Our policy achieves relatively high
robustness and success rate. Although its performance does not match that of BC, it provides a
reasonable description of the task using the STL formula. This interpretability is absent in BC.

To demonstrate the out-of-distribution (OOD) generalization of our approach, we modify the
environment by changing the x coordinates of the 3 regions (y coordinates are still random) as
shown in Fig. 3(b). Without any new expert data, we fine-tune the policy network in this new
environment with the same inferred STL formula. We compare the performance with the BC policy,
which cannot be retrained due to the lack of available data. The statistics in Table. 1 show that after
fine-tuning, our policy maintains relatively high robustness and success rate, while the performance
of the BC policy dropped significantly.

6.2. MuJoCo Tasks

We evaluate our algorithm against baselines on 2 control tasks, the Inverted Pendulum with x ∈ R4

and the Reacher with x ∈ R11, as shown in Fig. 4 (detailed in Appendix B). All environments are
simulated with MuJoCo Todorov et al. (2012) and the system dynamics are unknown and learned
together with the policy as in Liu et al. (2023). Each task comes with a true reward function, defined
in the OpenAI Gym Brockman (2016). As modern RL approaches, such as PPO Schulman et al.
(2017), can generate high-quality policies for these tasks, we first run PPO on each task to create
1000 expert trajectories, each trajectory is truncated or padded to 50 steps. We test our algorithm on
this dataset and compare it with the standard GAIL Ho and Ermon (2016). Learned STL formulas
(given in Appendix B) effectively describe the tasks in an interpretable manner. The rewards gained
by our approach, GAIL, and the expert policy are given in Table 2. The statistics of our algorithm
are computed over 5 network initializations, with 1000 trajectories generated for each initialization.

For the Inverted Pendulum task, both our approach and GAIL reach the maximum reward
achievable in 50 steps. For the Reacher task, our approach slightly outperforms GAIL. However,
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Figure 4: Inverted Pendulum
(left) and Reacher (right).

Task Ours GAIL Expert
Pendulum 50.0± 0.0 50.0± 0.0 50.0± 0.0
Reacher −4.76± 1.94 −5.04± 2.22 −4.31± 1.65

Table 2: Rewards (mean±std) obtained by different polices.

(a)
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(b)

Figure 5: (a) The autonomous driving scenario simulated in Carla. (b) Sampled trajectories of ego and other
vehicles’ positions after training in the original and unseen scenarios. The top figures show the situations
when there are pedestrians, and the bottom figures show the situations when there is no pedestrian.

for MuJoCo tasks such as Swimmer and Walker, which are hard to express by the STL fragment in
(2), our approach does not reach good reward levels. In future work, we plan to investigate ways to
enhance the expressivity of the inference network to address this limitation.

6.3. A Self-Driving Scenario

Inspired by Aasi et al. (2022), we consider the following scenario: a self-driving vehicle (ego) drives
in an urban environment alongside another vehicle driven by a “reasonable” human in the adjacent
lane. The initial position of the other vehicle is always ahead of the ego, and both are headed
toward an unmarked crosswalk. If a pedestrian crosses, the other vehicle brakes to stop; otherwise,
it continues moving without deceleration. Due to foggy weather and the other vehicle obstructing
the view, ego needs to infer the presence of a pedestrian by observing the behavior of other vehicle
(see Fig. 5(a)). Under the assumption that ego only moves forward, we simplify its dynamics as a
double integrator (assumed to be known). The system state x(t) ∈ R4 is the concatenation of the
agent state xag(t) =

(
peg(t), veg(t)

)
and the environment state xenv(t) =

(
pot(t), vot(t)

)
, where

peg(t) and veg(t) are the position and velocity of ego; pot(t) and vot(t) are the position and velocity
of the other vehicle. The control u(t) is the same as ego’s acceleration aeg(t) ∈ U ⊂ R. We
use the autonomous driving simulator Carla Dosovitskiy et al. (2017) to generate a dataset of 800
trajectories, containing both positive and negative labels, and they both include situations with and
without pedestrians (200 data for each situation). The time horizon T = 57.

Incorporate known critical rules: Some critical rules from human knowledge can be manually
incorporated as supplementary formulas into the inferred STL formula to make the policy satisfy
them. Here, we formulate the speed limit rule as ϕsl := □[0,57]

(
(veg ≤ 10) ∧ (veg > −1)

)
. We

encode ϕsl into the inference network as a conjunction to the inferred formula: ϕ̃θI = ϕθI ∧ϕsl. We
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test the learned policy in Carla and track the output of the policy. Sampled trajectories are shown
in Fig. 5(b) and the inferred formula is provided in Appendix B, which clearly reveals the logic the
ego should obey. Since we apply a more complex inference network structure in this case, we use
dual annealing Xiang et al. (1997), a global optimizer to find one good initialization of θI and then
run our algorithm. In this case, we do not have a ground-truth STL formula or reward function,
so we do not compute statistics of the learned policy. But as shown in Fig. 5(b), the ego vehicle
successfully stops in front of the pedestrian when it detects the deceleration of the other vehicle.
Otherwise, it continues driving without slowing down.

Unseen scenarios: We can adapt the policy to similar but unseen scenarios by tuning the in-
ferred formula. Assume that the speed limit is restricted to 4 due to road construction. This is
an unseen scenario and both the other and the expert-controlled ego vehicles violate the new rule.
We modify the formula ϕsl by replacing veg ≤ 10 with veg ≤ 4 and retrain the policy network.
Sampled trajectories, shown in Fig. 5(b), indicate that the new policy successfully adheres to the
updated speed limit while maintaining compliance with previous rules.

7. Discussion

As demonstrated, our method can generate a control policy while simultaneously providing a task
description using STL formulas. However, this interpretability comes with trade-offs in perfor-
mance for several reasons. First, the inference network is not a universal classifier, making it less
suitable for tasks that are difficult to describe with an STL formula, such as the Swimmer and
Walker tasks in MuJoCo. Our approach is better suited for imitating expert demonstrations under
spatial-temporal requirements. Second, the inference network requires more expert demonstra-
tions compared to traditional imitation learning. Small dataset can result in a conservative, under-
approximated STL formula. Finally, the policy is trained based on the information provided by the
inference network. When negative data become more and more similar to expert demonstrations, the
inferred formula may degrade, which negatively impacts the policy’s effectiveness. Consequently, a
performance score is needed to select the most suitable policy, though our observations suggest that
the policy chosen by this score is not always the best one in the training process. We believe that
performance could be further improved with a more robust selection criterion.

Our approach prioritizes interpretability, offering insight into the objectives of the expert rather
than simply mimicking its behavior. This interpretability enables the integration of safety constraints
as supplementary STL formulas. Additionally, it offers flexibility and adaptability; once the task
is described, the policy can be fine-tuned in a new but similar environment with the learned or
manually adjusted STL formula. This is highly sample-efficient, as there is no need to generate new
expert demonstrations, which is typically a challenging aspect of imitation learning.

8. Conclusion and Future Work

We proposed an interpretable imitation learning method that combines STL inference and control
synthesis in a generative adversarial manner. We use three case studies to demonstrate that our
method can uncover the underlying rules from the expert demonstrations in the form of an STL
formula, and learn the policy to satisfy these rules. We also showed that we can manually add
and adjust rules to adapt the policy for unseen scenarios. Future work includes improving the
computational efficiency and increasing the expressiveness of the inference network.
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Appendix A. Decoding and Translating TLINet

Consider a TLINet with five layers, as illustrated in Figure 6. In this example, the network begins
with a predicate layer with two predicate modules, followed by a Boolean layer with two modules,
then two temporal layers each with two modules, and finally a Boolean layer containing a single
module. The parameters include spatial parameters a and b, a selector κ for the type of operator,
temporal parameters t1 and t2, and Boolean parameter w that determines module activation. For
instance, in the final layer, w = [0, 1] indicates that the first module is deactivated and the second
module is activated in this Boolean operation. The structure of the STL formula is determined by the
activation of modules, guided by the learned Boolean parameters. Such a network can be succinctly
translated into an STL formula ψ = □[0,10]♢[3,7]((x > 0.9) ∧ (x < −0.7)).

(a, b) (a, b)

(κ,w) (κ,w)

(κ, t1, t2) (κ, t1, t2)

(κ, t1, t2) (κ, t1, t2)

(κ,w)

Predicate

Boolean

Temporal

Temporal

Boolean

y

r̃

(a) Initialize TLINet structure.

(1.0, 0.9) (−1.0, 0.7)

(1, [1, 1]) (0, [1, 1])

(0, 0, 15) (1, 3, 7)

(1, 5, 10) (0, 0, 10)

(1, [0, 1])

y

r̃

(b) Learned TLINet parame-
ters.

x > 0.9 x < −0.7

(x > 0.9) ∨
(x < −0.7)

(x > 0.9) ∧
(x < −0.7)

ϕ11 = □[0,15] ϕ12 = ♢[3,7]

ϕ21 = ♢[5,10] ϕ22 = □[0,10]

ψ = ϕ22ϕ12

y

r̃

(c) TLINet modules to STL
subformulas.

Figure 6: An example of a 5-layer TLINet and how it can be transferred to an STL formula from
learning parameters.

Appendix B. Experiments Setup and Detailed Results

The inference network used in the Sec. 6.1 and Sec. 6.2 consists of three layers: a predicate layer
with 2nf modules, a temporal layer with 2nf modules, and a Boolean layer with 1 modules, where
nf is the dimension of the features. In the self-driving case in Sec. 6.3, we observe improved
performance with the addition of a second Boolean layer, so we use a similar structure with an extra
Boolean layer. The policy network uses an LSTM Hochreiter (1997) with 3 hidden layers, each
containing 64 nodes.

The STL formulas learned from different initializations are slightly different. In the following,
we show one of them for each scenario. We also demonstrate some negative trajectories generated
by the policies during the training to visualize the training processes.
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B.1. Random Navigation

In Sec. 6.1, the features on which the STL formula is defined are the position of the robot and the
distances from the robot to the centers of the regions, i.e., y = h(x) = [px, py, dg1 , dg2 , do]. The
ground-truth STL formula that the expert policy is trained on is:

□[0,24](py < 4) ∧□[0,24](py > 0)

∧♢[0,8](dg1 < 0.5) ∧ ♢[8,24](dg2 < 0.5) ∧□[0,24](do > 0.5)
(7)

A learned STL formula from one of the random initializations is given as below:

□[0,24](py < 3.7) ∧□[1,17](py > 0.41) ∧ ♢[4,9](dg1 < 0.41)

∧♢[0,10](dg1 < 2.71) ∧ ♢[8,24](dg2 < 0.48) ∧□[8,20](do > 0.78),
(8)

which closely reproduces the specification the expert aims to satisfy.
Some negative trajectories generated by the policy during training under same initial and en-

vironment states are shown in Fig. 7. At iteration 0, random trajectories are sampled and labeled
as negative examples. These samples are insufficient to push the decision boundary near the ex-
pert demonstrations, resulting in a control policy that fails to replicate expert behavior. As training
progresses and more informative negative examples are added, the policy-generated trajectories
gradually converge toward the expert’s behavior.

B.2. MuJoCo Tasks

For the Inverted Pendulum in Sec. 6.2, the features y and system state x are identical, both of them
are same as the observation provided in OpenAI Gym Brockman (2016), i.e., y = x = h(x) =
[p, θ, v, ω], where p and v are the position and velocity of the cart along the linear surface, θ and ω
are the angle and angular velocity of the pendulum. One of the learned STL formula is given as:

□[21,45](θ < 0.07) ∧□[23,32](v > −0.17)

∧□[14,50](ω > −0.79) ∧ ♢[19,37](ω > −0.16)
(9)

The first subformula □[21,45](θ < 0.07) requires that the pendulum must not tilt in the positive
direction, while the rest of the formula specifies additional constraints for the system.

For the Reacher, the system state, including agent state and environment state, is same as the
observation given by Gym:

x = [cos θ1, cos θ2, sin θ1, sin θ2, px, py, ω1, ω2, dx, dy, dz] ∈ R11,

where θ1 and θ2 are the angles of the first and second arms, ω1 and ω2 are their angular ve-
locities, px and py are the coordinates of the target, dx, dy and dz are the differences between
the target and the fingertip in the x, y, z directions. The features we selected are y = h(x) =
[cos θ1, cos θ2, sin θ1, sin θ2, ω1, ω2, dx, dy]. One of the learned STL formula is:

□[22,50](dx < 0.04) ∧□[10,50](dx > −0.04)

∧♢[16,23](dy < 0.04) ∧□[15,28](dy > −0.03)

∧♢[23,50](sin θ2 > 0.38) ∧ ♢[19,37](ω2 < 0.4),

(10)

The first 4 subformulas in (10) require the fingertip to reach the target, while the last 2 subformulas
describe how the expert accomplishes this as the inverse kinematics does not have a unique solution.
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(a) Iteration 0 (random) (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 7 (f ) Expert policy

Figure 7: Trajectories generated by the policy during the training process.

B.3. A Self-Driving Scenario

In Sec. 6.3, the features are identical with the system state, i.e., y = h(x) = x. The learned STL
formula ϕθI is:(

□[45,47](vot > 2.35) ∧□[20,57](veg > 1.31) ∧□[24,46](veg < 5.55)
)
∨(

♢[42,55](vot < 2.94) ∧ ♢[20,57](veg < 0.01) ∧□[24,46](veg < 5.55)
)
.

(11)

Formula (11) can be translated as “if vot is always greater than 2.35 over the time window [45, 47]
(the other vehicle does not stop), ego’s velocity should always be greater than 1.31. If vot eventually
becomes less than 2.94 in the time interval [42, 55] (the other vehicle decelerates), ego’s velocity
should also be eventually less than 0.01 between [20, 57], which means a full stop”. In both cases,
veg should be always less than 5.55 in the time window [24, 46]. This formula explicitly reflects the
rules that the ego should obey.

Some sampled trajectories of ego and other vehicles’ positions generated by the learned policy
during the training process are shown in Fig. 8. Again, the trajectories increasingly align with the
expert demonstrations, indicating progressive improvement in policy performance.
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Figure 8: (a)-(c): Sampled trajectories of ego and other vehicles’ positions generated by the policy
network after each iteration. y-axes are the positions of the ego and other vehicles. Blue curves
stand for ego and orange curves stand for the other vehicle. Green curves are expert demonstrations
of the ego. The top figures show the situations when there are pedestrians, while the bottom figures
show the situations when there is no pedestrian.
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