
Proceedings of Machine Learning Research vol 288:1–15, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Efficient Processing of Neuro-Symbolic AI: A Tutorial and
Cross-Layer Co-Design Case Study

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Arijit Raychowdhury, Tushar Krishna
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
While neural-based models have driven recent breakthroughs in artificial intelligence (AI), they
face critical challenges in unsustainable computational demands, limited robustness, and lack of
interpretability. Neuro-symbolic (NeSy) AI has emerged as a promising paradigm that integrates
neural learning and symbolic reasoning to enhance explainability, robustness, and data efficiency.
Recent NeSy systems demonstrated strong potential in reasoning and trustworthy decision-making
tasks, making them particularly suitable for cognitive human-AI applications.

This tutorial presents a vertically integrated approach on the efficient processing of NeSy AI,
bridging workload characteristics with system and hardware co-design. We begin by systematically
categorizing NeSy workloads and analyzing their computational and memory demands to expose
performance bottlenecks and optimization opportunities. Building on these insights, we focus on
a class of vector-symbolic architecture-based NeSy systems and present a series of hardware case
studies, including processing element microarchitecture, dataflow, FPGA design, and system-on-
chip prototype. Our results highlight the efficiency and scalability improvements of NeSy systems,
with the integration of application discovery, systems thinking, and co-design intelligence. Project
Website: https://effi-nesy.github.io.
Keywords: Neuro-Symbolic AI, Workload Characterization, Hardware Acceleration, Domain-
Specific Architecture, FPGA, System-on-Chip

1. Introduction

The remarkable success of LLMs, coupled with concerns regarding interpretability and safety, has
given rise to the emerging paradigm of compositional AI, particularly in safety-critical domains
such as robotics and healthcare. These systems aim to integrate black-box neural networks with
reasoning-based AI methods (Wan et al., 2024a,b; Mu et al., 2024; Zhao et al., 2024; Kang and
Li, 2024; Kwon et al., 2024; Kalyanpur et al., 2024; Xiong et al., 2024; Ibrahim et al., 2024),
closely resembling human cognitive processes. Human cognition typically comprises lower-level
sensory perception (System 1) and higher-level logical reasoning and deduction (System 2) (Daniel,
2017; Booch et al., 2021). Compositional AI follows this dual-system principle, leveraging neural
networks for perception tasks and symbolic frameworks for logical reasoning (Wan et al., 2025b).

A particularly promising form of compositional intelligence is neuro-symbolic (NeSy) AI that
synergistically integrates neural network-based learning with symbolic reasoning. Neural networks
excel at recognizing patterns and managing perceptual tasks but generally lack transparency and
structured reasoning capabilities. Conversely, symbolic systems, characterized by explicit rules
and structured knowledge, offer strong interpretability and logical inference but struggle to adapt
from raw data. NeSy AI effectively bridges these complementary strengths, enabling enhanced
explainability, robustness, and data efficiency of AI systems (Garcez and Lamb, 2023).

NeSy AI has demonstrated impressive capabilities in human-like reasoning and logical inference
across diverse domains, including natural language processing, robotics, and healthcare (Garcez and

© 2025 Z. Wan, C.-K. Liu, H. Yang, R. Raj, A. Raychowdhury & T. Krishna.

https://effi-nesy.github.io

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

Symbolic [Neuro] Neuro | Symbolic Neuro:Symbolic->Neuro NeuroSymbolic

Symbolic

Neuro

Sy
m

bo
lic

N
eu

ro

Neuro

Symbolic

Sy
m

bo
lic

N
eu

ro

Sy
m

bo
lic

Em
be
dd
in
g

Em
be
dd
in
g

Neuro [Symbolic]

Neuro

Symbolic

Figure 1: Neuro-symbolic paradigms. Categorization of NeSy AI paradigms based on interactions between
neural and symbolic components (Wan et al., 2024c).

Lamb, 2023; Mao et al., 2019; Han et al., 2019; Mei et al., 2022; Yi et al., 2020; Zhang et al., 2021;
Shah et al., 2022; Hsu et al., 2023; Wan et al., 2025a; Nayan et al., 2025). For instance, IBM’s
NVSA (Hersche et al., 2023) achieves 98.8% accuracy on spatial-temporal reasoning tasks (Zhang
et al., 2019), significantly outperforming human-level performance, ResNet, and GPT-4. Similarly,
Google DeepMind’s AlphaGeometry (Trinh et al., 2024; Chervonyi et al., 2025) solves complex
geometry problems at the level of Olympiad gold medalists, whereas GPT-4 fails entirely.

Despite these promising algorithmic advancements, NeSy AI faces significant computational
challenges. Compared to traditional deep learning workloads, neuro-symbolic computing exhibits
increased kernel heterogeneity, greater memory intensity, and irregular data access patterns. These
characteristics create a growing mismatch with modern hardware architectures, which are predomi-
nantly optimized for matrix operations and convolutions (Samajdar et al., 2020; Kwon et al., 2021;
Wu et al., 2023; Ramachandran et al., 2024; Xie et al., 2025; Raj et al., 2025). Such inefficiencies
pose a barrier to the scalability and real-world deployment of NeSy systems in the long run.

This tutorial article aim to address these computational challenges and explore efficient hard-
ware architectures tailored for NeSy AI workloads. First, we categorize representative NeSy work-
loads (Sec. 2) and analyze their computational and memory demands to identify key system bottle-
necks and optimization opportunities (Sec. 3). Leveraging these insights, we pick a class of NeSy
systems and present several case studies on hardware design, covering processing element microar-
chitecture, dataflow, FPGA, and system-on-chip (SoC) prototypes (Sec. 4). Additionally, we outline
evaluation metrics for assessing NeSy hardware performance (Sec. 5). Collectively, this tutorial
highlights how application discovery, systems thinking, and cross-layer co-design can advance the
efficiency and scalability of neuro-symbolic computing.

2. Neuro-Symbolic Workload Categorization

2.1. Neuro-Symbolic Paradigms

NeSy AI combines neural learning with symbolic reasoning, effectively leveraging their comple-
mentary strengths to enhance accuracy, interpretability, and robustness. Inspired by Henry Kautz’s
taxonomy and based on how neural and symbolic components interact, we categorize NeSy algo-
rithms into five paradigms (Wan et al., 2024c), as illustrated in Fig. 1.

Symbolic[Neuro]. This paradigm augments symbolic reasoning processes with neural-based
statistical learning, primarily using a symbolic problem-solving framework enriched with neural
subroutines. Examples include AlphaGo and AlphaZero (Silver et al., 2017; Zhang and Yu, 2020),
which employ Monte Carlo Tree Search with neural network-driven state evaluation.

Neuro|Symbolic. This hybrid pipeline delegates distinct and complementary tasks to neural and
symbolic components. For instance, neuro-vector-symbolic architecture (NVSA) (Hersche et al.,
2023) integrates neural networks for semantic parsing and symbolic reasoning modules for prob-
abilistic abductive reasoning. Similarly, PrAE (Zhang et al., 2021) processes input features using

2

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

neural networks and transforms them into hypervectors for symbolic reasoning. Other examples
include VSAIT (Theiss et al., 2022), NeuPSL (Pryor et al., 2022), DeepProbLog (Manhaeve et al.,
2021), NeurASP (Yang et al., 2020), NSCL (Mao et al., 2019), and NSVQA (Yi et al., 2018).

Neuro:Symbolic→Neuro. This approach incorporates symbolic logic rules directly into neu-
ral network structures to guide learning and enhance interpretability. Logical neural networks
(LNNs) (Riegel et al., 2020), for instance, enforce symbolic constraints on NN outputs. Other
examples include deep learning for symbolic mathematics (Lample and Charton, 2019) and differ-
entiable inductive logic programming (Evans and Grefenstette, 2018).

NeuroSymbolic. This hybrid method maps symbolic rules onto neural network embeddings
as soft constraints or regularizers. Logical tensor networks (LTNs) (Badreddine et al., 2022) use
logical formulas to define constraints on tensor representations, enhancing knowledge graph com-
pletion. Deep ontology networks (DONs) (Hohenecker and Lukas, 2020) follow a similar principle.
However, whether this approach compromises interpretability remains an open question.

Neuro[Symbolic]. This category integrates symbolic reasoning into NN processing, enhanc-
ing explainability and robustness. Unlike Symbolic[Neuro], where symbolic reasoning guides NN
learning, Neuro[Symbolic] embeds symbolic reasoning within the neural model itself. For example,
graph neural networks (GNNs) employ attention mechanisms to incorporate symbolic rules (Lamb
et al., 2020). Other examples include Neural Logic Machines (NLM) (Dong et al., 2019) and Ze-
roC (Wu et al., 2022), where symbolic knowledge is represented in graph structures.

2.2. Neuro-Symbolic Kernels

Neural
Flexible, Scalable,

Handle inconsistency

Symbolic
Interpretable, Explai-
nable, Data-efficient

Encoder

Perceiver

Vision Model

Language Model

CNN | Transformer | RNN | GNN | Autoencoder

Multimodal | Sensor Fusion

Scene graph | Object detector | Semantic segmenter

LLM | Seq2Seq | BERT

Logical Reasoning

Symbolic Search

Knowledge Rep.

Algebraic Methods

Symbolic Physics

FOL | Deductive database | SAT solver | VSA

Graph search | PDDL planning | A-Star

Concept graphs | Knowledge graph reasoning

Automata theory | Graph algebra | Symbolic algebra

Neural differential equ. | PINNs | Diff. physics engines

Probabilistic circuit | MCMC sampler | HMM | PGM

… …

… …
Probabilistic Reasoning

Figure 2: Neuro-symbolic kernel examples. Categorization of NeSy
AI kernel examples, highlighting the complementary roles of neural
models for perception and symbolic methods for structured reasoning.

Fig. 2 lists representative com-
putational kernels in NeSy AI,
emphasizing the complementary
roles of neural and symbolic
paradigms. Neural modules pro-
vide scalability and robustness,
including encoders, vision and
language models. Symbolic
components offer interpretabil-
ity and logical consistency, cov-
ering methods such as first-order
logic, symbolic search, knowl-
edge graphs, algebraic reason-
ing, and probabilistic models
(e.g., HMMs, probabilistic circuits). This classification highlights the diversity and heterogeneity
of NeSy kernels, underscoring the importance of understanding their system-level characteristics.

3. Neuro-Symbolic Workload Characterization

This section examines the characteristics of NeSy AI workloads, studying their runtime, scalability,
compute operators, memory usage, operation graphs, and hardware utilization (Wan et al., 2024c).

3.1. Workload Characterization Methodology

We profile seven NeSy AI workloads spanning different paradigms: LNN(Riegel et al., 2020),
LTN (Badreddine et al., 2022), NVSA (Hersche et al., 2023), NLM (Dong et al., 2019), VSAIT (Theiss

3

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

3 32 21 1
0

40%

60%

80%

20%R
un

tim
e

Pe
rc

en
ta

ge

100%

(c) RAVEN Task Sizes
2080TiNXTX2

0

102

103

104

101

R
un

tim
e

La
te

nc
y

(s
)

(b) Hardware Devices
PrAEZeroCVSAIT

(a) Neuro-Symbolic AI Workloads
LNN LTN NVSA NLM

0

40%

60%

80%

20%R
un

tim
e

Pe
rc

en
ta

ge

100%

54
.6

%
45

.4
%

48
.0

%
52

.0
%

7.
9%

92
.1

%

39
.4

%
60

.6
%

16
.3

%
83

.7
%

73
.2

%
26

.8
%

19
.5

%
80

.5
%

NVSA WorkloadNLM Workload

2080TiNXTX2

Sy
m

bo
lic

N
eu

ro

Figure 3: Neural and symbolic latency characterization. (a) Runtime breakdown of seven NeSy work-
loads on CPU+GPU, showing symbolic components as potential bottlenecks. (b) NVSA and NLM bench-
marks on Jetson TX2, Xavier NX, and RTX GPU, highlighting unmet real-time performance. (c) NVSA on
varying RPM task sizes, indicating scalability limits and persistent symbolic bottlenecks (Wan et al., 2024c).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1

2
3

4
5

0

15

30

45

60

0 1 2 3 4 5

0
1

2
3

4
5

0

15

30

45

60

0%

15%

30%

45%

>60%

LNN
(Neuro)

LNN
(Symb)

LTN
(Neuro)

LTN
(Symb)

NVSA
(Neuro)

NVSA
(Symb)

NLM
(Neuro)

NLM
(Symb)

VSAIT
(Neuro)

VSAIT
(Symb)

ZeroC
(Neuro)

ZeroC
(Symb)

PrAE
(Neuro)

PrAE
(Symb)

Conv

MatMul

Data

Other

Movement

Data
Transform

Vector/Ele-
ment wise

0.00% 0.00% 0.00% 0.00% 30.7% 35.7%

0.51% 0.00% 62.5%

0.00% 0.00% 59.5% 0.00% 31.6% 0.00% 28.6% 28.0%

0.00% 34.8% 0.52% 24.5% 0.00% 30.0% 0.00% 28.2% 0.00% 36.0% 0.91%

43.6% 19.3% 26.8% 73.1% 22.0% 49.9%

16.4% 17.3% 7.20%

34.6% 22.9% 6.75% 65.3% 33.7% 74.9% 20.1% 56.3%

2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

39.5% 39.4% 3.48% 6.36% 9.40% 7.12%

0.00% 24.0% 0.00%

24.9% 14.36% 0.84% 13.87% 2.52% 22.9% 10.6% 6.69%

18.1% 0.00% 0.00% 0.00% 58.9% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(a) (b) Operation Intensity (FLOPS/Byte)

A
tta

in
ab

le
 P

er
fo

rm
an

ce
 (T

FL
O

PS
/s

)

10-2 10-1 100 101 102 103

10-2

10-1

100

101

102

NVSA
(Neuro)

PrAE
(Neuro)

VSAIT
(Neuro)

PrAE
(Symb) NVSA

(Symb)
VSAIT
(Symb)

ZeroC
(Neuro)

ZeroC
(Symb)

Figure 4: Compute operators and roofline characterization. (a) Runtime breakdown showing neural
dominated by MatMul and Conv, while symbolic relies on vector/tensor ops. (b) Roofline analysis on RTX
2080Ti shows neural ops are compute-bound, while symbolic ops are memory-bound (Wan et al., 2024c).

et al., 2022), ZeroC (Wu et al., 2022), and PrAE (Zhang et al., 2021). Profiling is conducted on Intel
Xeon Silver 4114 CPU, Nvidia RTX 2080 Ti GPU, and edge SoCs (Xavier NX, Jetson TX2).

3.2. Compute Latency Analysis

End-to-end latency breakdown. Fig. 3 shows that symbolic workloads are non-negligible in com-
putation time and can become system bottlenecks. In NVSA, symbolic reasoning accounts for
92.1% of total inference time despite contributing only 19% of FLOPs, highlighting inefficient ex-
ecution on GPUs. Furthermore, real-time constraints remain unmet, with RTX 2080 Ti taking 380s
and Jetson TX2 7507s for the RPM task, suggesting a significant performance gap.
End-to-end latency scalability. As task complexity increases, symbolic workloads consistently
dominate runtime, growing quadratically (Fig. 3c). For example, when task size scales from 2×2 to
3×3, symbolic runtime remains above 87%, reinforcing concerns about scalability.

3.3. Compute Operator Analysis

Fig. 4a partitions the neural and symbolic workloads into six operator categories with runtime la-
tency breakdown. We make the following observations:
Neural operator analysis. Dominated by matrix multiplications (MatMul) and activations. NVSA,
VSAIT, and PrAE rely on convolution-based feature extraction, whereas LNN and NLM emphasize
vector and element-wise tensor operations due to logic-based computations.
Symbolic operator analysis. Dominated by vector and scalar operations with low compute inten-
sity and irregular control flow. LNN and NLM involve frequent logical operations. NVSA relies on
high-dimensional vector-symbolic transformations, which GPUs struggle to execute efficiently.

4

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

Input

Symbolic

Neural Network

Input

SymbolicNeural
Network

Output Output
NVSA, VSAIT, PrAE NLM, ZeroC, LTN LNN

Structure

Input Symbolic

Neural
Network

Output

Knowledge

Figure 5: Operator graph analysis. Symbolic operation depends on neu-
ral results or needs to compile in neural structure as the critical path. Com-
plex control and symbolic-only phase operation result in inefficiency and
low hardware resource utilization (Wan et al., 2024c).

0

40%

60%

80%

20%

100%

Reasoning Task Attibutes
Type Size ColorNumber

Position

R
un

tim
e

Pe
rc

en
ta

ge

Ve
c-

Sy
m

bo
lic

 C
irc

ul
ar

 C
on

v
O

th
er

 O
pe

ra
tio

ns

Figure 6: Symbolic op-
erations are dominated by
vector-symbolic circular con-
volution (Wan et al., 2025b).

3.4. System and Dependency Graph Analysis

Roofline analysis. Fig. 4b reveals that neural computations are compute-bound, while symbolic
operations are memory-bound due to large streaming operations (e.g., NVSA and PrAE). Optimized
dataflow architectures and scalable processing elements are critical to alleviating these bottlenecks.
Dependency graph analysis. Fig. 5 analyzes the operation dependency in selected NeSy work-
loads. We observe that the symbolic computation of NVSA, VSAIT, and PrAE depends on the result
of the frontend neural workload and thus lies on the critical path during inference. LNN, LTN, NLM,
and ZeroC need to compile the symbolic knowledge in neural representation or input embeddings.
The complex control results in inefficiency in CPU and GPU, and the vector-symbolic computation
period results in low hardware utilization. There are opportunities for data pre-processing, parallel
rule query, and heterogeneous and reconfigurable hardware design to reduce this bottleneck.

3.5. Hardware Inefficiency Analysis

Symbolic operation analysis. As shown in Fig. 6, we find that in vector-symbolic-based NeSy
workloads, symbolic workloads are dominated by vector-symbolic circular convolutions and vector-
vector multiplications, accounting for around 80% of runtime. These hypervector operations remain
computationally inefficient on GPUs, requiring dedicated acceleration strategies.
Symbolic hardware inefficiency analysis. NeSy workloads suffer from ALU underutilization, low
cache efficiency, and excessive data transfer. Using Nsight Systems and Compute, we find that in
NVSA, symbolic operations exhibit ALU utilization <10%, L1 and L2 cache hit rates of around
20% and 40%, respectively, and DRAM bandwidth usage near 90%, indicating memory-bounded
execution. Data transfers contribute around 50% of total latency, with >80% occurring between
CPU and GPU. Additionally, synchronization overheads further reduce CPU utilization.

3.6. Uniqueness of Neuro-Symbolic vs. Neural Networks

To summarize, NeSy AI workloads differ from neural networks mainly in the following aspects:
Compute kernels. NeSy workloads consist of heterogeneous neural and symbolic kernels. The
symbolic operators (e.g., vector, graph, logic) are processed inefficiently on off-the-shelf CPUs/G-
PUs with low hardware utilization and cache hit and may result in runtime latency bottleneck.
Memory. NNs exhibit predictable and structured memory access patterns with high data reuse,
enabling effective caching and high memory bandwidth utilization. Symbolic operations tend to be
memory-bounded due to large element streaming with low reuse and irregular access patterns.
Dataflow and scalability. NNs typically follow a layered feedforward dataflow with well-defined
parallelism. In contrast, NeSy workloads involve complex control flow, sequential symbolic phases,
and fine-grained dependencies between neural and symbolic, limiting hardware parallelism.

5

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

A B

PASS

ACC

top_in_A top_in_B

left_in

left_innext+

+

(b) top_in_Anext top_in_Bnext

Load Mode

A B

PASS

ACC

top_in_A top_in_B

left_in

left_innext+

+

Circular Convolution Mode (Symbolic)

(d)

Stationary Register

Passing Register

Streaming Register

Partial Sum Register

A

B

PASS

ACC

top_in_Anext top_in_Bnext

A B

PASS

ACC

top_in_A top_in_B

left_in

left_innext+

+

(c) top_in_Anext top_in_Bnext

GEMM Mode (Neuro, Symbolic)

A B

PASS

ACC

top_in_A top_in_B

left_in

left_innext+

+

top_in_Anext top_in_Bnext

Processing Element Microarchitecture

(a)

Figure 7: Reconfigurable neuro/symbolic PE. Each PE includes four registers and supports three modes
(load, neuro, symbolic) that provide reconfigurable support for neurosymbolic operations (Wan et al., 2025b).

4. Case Study: Domain-Specific Hardware for Neuro-Symbolic AI

4.1. Software-Hardware Co-Design Methodology for Neuro-Symbolic AI

Efficient processing of NeSy AI requires a software-hardware co-design approach to support het-
erogeneous workloads that blend neural learning and symbolic reasoning. Unlike traditional AI
systems optimized for matrix operations, NeSy workloads demand compute and memory primi-
tives capable of handling both neural operations (e.g., GEMM, convolution) and irregular, memory-
bound symbolic operations (e.g., logic, graph traversal, vector-symbolic ops).

Our structured software-hardware co-design method follows four key principles: (1) Algorithm-
aware hardware design: tailor architecture to support the demands of neural and symbolic work-
loads, including reconfigurable primitives and hybrid dataflows. (2) Hardware-aware algorithm
optimization: adapt NeSy models to maximize hardware utilization, improve parallelism, and re-
duce memory bottlenecks. (3) Optimized dataflow and memory management: enhance scheduling,
caching, and data movement strategies to reduce latency and increase throughput. (4) Adaptability:
design architectures that are adaptable across different hardware platforms, from FPGAs to ASICs.

To illustrate these principles, in this tutorial, we pick a class of vector-symbolic architecture-
based NeSy systems and present a series of domain-specific hardware case studies:

Microarchitecture design. CogSys (Wan et al., 2025b), a reconfigurable NeSy processing ele-
ment that supports both GEMM-based neural and circular convolutions-based symbolic operations
via a bubble streaming dataflow. This design enhances parallelism and reduces memory overhead,
achieving 75× speedup on symbolic tasks while minimizing area overhead (Sec. 4.2).

FPGA-based acceleration. NSFlow (Yang et al., 2025), an end-to-end framework that extracts
NeSy workload traces, generates optimized dataflow graphs, and maps them onto FPGA for ac-
celeration. It employs CogSys reconfigurable neuro/symbolic arrays and SIMD units, and exploit
operator- and loop-level parallelism while managing memory footprints effectively (Sec. 4.3).

System-on-chip (SoC) design. We tape out a heterogeneous SoC with co-integrated RRAM
(for neural) and SRAM (for symbolic). A software-defined scheduler dynamically manages power
and compute resources based on workload characteristics, achieving 10.8 TOPS/W peak efficiency.
Fine-grained power gating further saves energy for real-time NeSy AI applications (Sec. 4.4).

4.2. Microarchitecture Design for Neuo-Symbolic AI

Vector-symbolic circular convolution. As shown in Fig. 6, circular convolution is the dominant
symbolic operation. It combines two vectors to encode composite symbols while preserving struc-
ture, making it ideal for hierarchical reasoning. Given vectors A and B of dimension N), the result
vector C is computed as C[n] =

∑N−1
k=0 A[k] ·B[(n− k) mod N]. This operation is repeated for

each element n (0 to N − 1), effectively multiplying A with circularly shifted versions of B. Its
commutative and associative properties enable efficient manipulation of structured information.

6

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

A1 B1

B3

A1B1

N

A2 B3

B2

A3

SRAM

A1 B3

B2

A1B3

N

A2 B2

B1

A1B1+A2B2

A3

B3

SRAM

A1 B2

A1B2

N

A2 B1

B3

A1B3+A2B1

A3 B3

B2

SRAM

A1

N

A2 B3

B2

A1B2+A2B3

A3 B2

B1

SRAM

A1

N

A2 B2

A3 B1

B3

SRAM

Cycle n+1 Cycle n+2 Cycle n+3 Cycle n+4 Cycle n+5

+A3B3
A1B1+A2B2

+A3B2
A1B3+A2B1

+A3B1
A1B2+A2B3

Stationary Reg. Passing Reg. Streaming Reg. Partial Sum Reg. MAC Unit

Vector-Symbolic Circular Convolution Example (CircConv #1):
(A1, A2, A3) (B1, B2, B3) = (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A3B1)

(b)

A3 A2 A1

A2 A1 A3

A1 A3 A2

A3 C3 E3

A2 C2 E2

A1 C1 E1

B3
B2
B1
B3
B2

D3
D2
D1
D3
D2

F3
F2
F1
F3
F2

B1

B2

B3 C3 C2 C1

C2 C1 C3

C1 C3 C2D1

D2

D3 E3 E2 E1

E2 E1 E3

E1 E3 E2F1

F2

F3

CogSys: Bubble Streaming Dataflow

TPU-like Systolic Array: Implement as three GEMV Multiplication

Vector-Symbolic Circular Convolution Example (3 CircConv):
(A1, A2, A3) (B1, B2, B3); (C1, C2, C3) (D1, D2, D3); (E1, E2, E3) (F1, F2, F3)

A3 C3 E3

A2 C2 E2

A1 C1 E1

A3 C3 E3

A2 C2 E2

A1 C1 E1

A3 C3 E3

A2 C2 E2

A1 C1 E1

A3 C3 E3

A2 C2 E2

A1 C1 E1

Cycles:

CircConv #1 CircConv #2 CircConv #3

CogSys: Finish at (n+5) = 8 cycles(a)
Arithmetic Intensity (FLOPS/Byte)

A
tta

in
ab

le
 P

er
fo

rm
an

ce
 (T

FL
O

PS
/s

)

Roofline TPU(214 PEs)/CogSys(214 PEs)
Roofline RTX GPU
 1 CircConv, d=2048 (TPU)
1000 CircConv, d=2048 (TPU)
 1 CircConv, d=2048 (GPU)
1000 CircConv, d=2048 (GPU)
 1 CircConv, d=2048 (CogSys)
1000 CircConv, d=2048 (CogSys)
1000 CircConv, d=20480 (CogSys)

(c)

d: vector dimension

130 TFLOPS

23 TFLOPS

(n=3: array
prefill time)

n+1

n+2

n+3

n+4

n+5

2n+6

2n+7

2n+8

2n+9

2n+10

3n+11

3n+12

3n+13

3n+14

3n+15

CircConv #1 CircConv #2 CircConv #3

C
irc

C
on

v
#1

C
irc

C
on

v
#2

C
irc

C
on

v
#3

C
irc

C
on

v
#1

C
irc

C
on

v
#2

C
irc

C
on

v
#3

C
irc

C
on

v
#1

C
irc

C
on

v
#2

C
irc

C
on

v
#3

C
irc

C
on

v
#1

C
irc

C
on

v
#2

C
irc

C
on

v
#3

TPU: Finish at (3n+15) = 24 cycles

10-1 100 101 102

10-1

100

101

102

On-c
hip

 M
em

ory

BW
 =

15
 TB/s

On-c
hip

Mem
ory

BW = 2
TB/s

Figure 8: Bubble streaming (BS) dataflow and performance comparison. (a) Compute cycle and map-
ping comparison of TPU-like systolic array vs. CogSys BS dataflow for circular convolutions. (b) BS dataflow
example on a 3×1 nsPE array for vectors A, B (d=3). (c) Roofline analysis comparing CogSys BS dataflow
(compute-bound), TPU, and GPU (memory-bound) implementations (Wan et al., 2025b).

Reconfigurable neuro/symbolic PE (nsPE). To efficiently support both GEMM-based neural
and circular convolution-based symbolic operations, we propose nsPE micro-architecture that pro-
vides reconfigurable support to both neuro and symbolic operations (Fig. 7). Each nsPE consists of
four registers (stationary, passing, streaming, and partial sum registers) and supports three operation
modes (load, GEMM, and circular convolution). During load mode, the input vectors A (weights of
GEMM) are passed into the stationary register. Reconfigurability is achieved by selecting input B
either from ‘left in’ link (GEMM mode) or the passing register (circular convolution mode). Dur-
ing GEMM mode, the nsPE operates as TPU-like architecture for efficient GEMM and convolution.
During circular convolution mode, input vector B is streamed from top to bottom using ‘top in B’
links with a bubble via passing register, facilitating the temporal reuse of the streaming input for
efficient vector-symbolic circular convolution operation. The reconfigurable nsPE can also support
efficient circular correlation by reversing stationary vector A. During both GEMM and circular
convolution modes, partial products are reduced from top to bottom with ‘top in A’ links.

Inefficiency of TPU-like systolic array. TPU-like systolic array (SA) exhibits high memory
footprint and low parallelism for symbolic circular convolution operations. Fig. 8a shows a scenario
of three circular convolutions. TPU-like systolic cell implements them as general matrix-vector
(GEMV) multiplication where matrices contain circularly shifted stationary vectors with the matrix
memory footprint of O(d2). Additionally, TPU-like SA is incapable of parallelizing multiple GEMV
on a systolic cell and need to process them sequentially.

Bubble streaming (BS) dataflow. To efficiently support symbolic operations in nsPE array, we
propose BS dataflow for circular convolution and circular correlation (opposite direction circular
shift) which is the vector-symbolic bottleneck. Fig. 8b presents an example of BS dataflow per-
forming circular convolution of two vectors A and B (d=3) on a 3×1 nsPE array. In BS dataflow,
vector B is streamed from one nsPE to another through bubbles while vector A is held in stationary
registers. The BS dataflow enables a passing register to temporarily store the streaming input for a
cycle before it moves to the streaming register. This value is transferred to the passing register of the
next nsPE in the following cycle. The MAC unit processes the data from stationary and streaming
registers, adding it to the partial product. The procedure is repeated until final outputs.

Improved arithmetic intensity of BS dataflow. The BS dataflow achieves higher arithmetic in-
tensity than GEMV in GPU/TPU-like systolic cells, as illustrated in roofline analysis (Fig. 8c). This
efficiency mainly comes from reduced memory footprint and increased parallelism. Additionally,
GPUs require extra computations to handle the index calculations for the circularly shifted vector.

7

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

Time

U
til

iz
at

io
n

Time

U
til

iz
at

io
n

CogSys
(w/o adSCH)

ML Accele-
rators

Neuro and symbolic
operate sequentially
Low throughput and
performance

Neuro engine inefficient for
symbolic kernels
Low utilization and high
latency

Symbolic SymbolicNeural Neural

(a)

Time

U
til

iz
at

io
n

CogSys
(w/ adSCH)

Interleaved neuro/symbolic processing
High parallelism and throughput

Reconfigurable neuro/symbolic engine
Low latency and high efficiency

Partitioned array for neuro/symbolic
High compute & bandwidth utilization

(b)

2
3

4

1

1 2

2

3

4

2

1
Efficient symbolic execution

Low latency for symbolic operations
1

Figure 9: Adaptive workload-aware scheduling (adSCH). (a)
NeSy system-level challenges. (b) adSCH enables interleaved
neural/symbolic processing and cell-wise partition across CogSys
arrays with multi-level parallelism (Wan et al., 2025b).

Adaptive scheduling (adSCH).
NeSy systems face two key chal-
lenges (Fig. 9a): (1) sequential neuro-
symbolic execution leads to high
latency; (2) heterogeneous kernels
cause low utilization. To address this,
CogSys employs adSCH scheme that
greatly improves performance and re-
source efficiency (Fig. 9b). (1) In-
terleaved neuro/symbolic processing.
Symbolic operations of other tasks
are interleaved during neural layer
processing of the current task using
reconfigurable nsPE arrays. (2) Adaptive neuro/symbolic array partition. CogSys dynamically al-
locates processing elements to neural or symbolic kernels (cell-wise) and parallel symbolic tasks
(column-wise), enabling balanced execution across diverse workloads and maximizing parallelism.

4.3. FPGA Design for Neuro-Symbolic AI

Building on CogSys PE and dataflow, we introduce NSFlow, an end-to-end framework for FPGA-
based acceleration of NeSy AI. NSFlow enables automated analysis, design space exploration, and
hardware generation tailored to NeSy workloads. An overview of NSFlow is shown in Fig. 10a.

NSFlow frontend. The frontend identifies NeSy workload data dependencies and determines
the mapping strategy. It begins by extracting an execution trace from NeSy workloads and construct-
ing a dataflow graph that captures operator-level specifications, runtime behaviors, memory access
patterns, and inter-operator dependencies. Design Architecture Generator (DAG) then performs a
two-stage optimization: (1) System configuration search: identify the optimal FPGA system setup
(e.g., on-chip memory allocation, array size). (2) Mapping strategy selection: determine efficient
reconfiguration and task-to-hardware mapping schemes. The resulting configuration is embedded
in host code, which later coordinates FPGA execution via the XRT API.

NSFlow backend. The backend features a predefined accelerator template with: BRAM blocks
for flexible on-chip memory; CogSys reconfigurable and adaptive neuro/symbolic arrays for parallel
NeSy processing; SIMD units for element-wise operations, vector reduction, and scalar computa-
tion; Control logic for efficient task scheduling. These components are parameterized based on

Parameterized Instantiation

Data

NSAI
Workload

(.py)

Bitstream
v++
Compile

Host
Binary Compile

System
Design Config

(.json)

HW-Mapping
Co-explore

Accelerator
Host Code

(.cpp)

Synthesize

Frontend
B

ackend

Accelerator Design

BRAM URAM Systolic
Array SIMD Ctrl

Dataflow Graph

Layer[n]

Vector Conv GEMM

Layer[n-1]

Sec. V. B

...

...

Symb Logic

Program
Trace
(.json)

Sec. V. B

Sec. V. C

Dataflow Architecture GenerationWorkload

Excutables

HW Design

Hardware

Compile
NSFlow-generated
NSFlow-integrated
User-provided files

Data/Control flow

Sec. V

RTL basic
blocks

(.v)

Generated Configs

Sec. IVXRT

10 611 512 41

9

2

8

3

7
ICCPU

10 611 512 41

9

2

8

3

7
ICFPGA

120
219
318
417
516
615
714
813
912
1011

IC

D
R

A
M

AXI

Dataflow Architecture Generation

V1, 2, 3

V4,6

V5

 L1

 L2

 L3

tnn(l1 , H, W, Nl[0])

+
tnn(l2 , H, W, Nl[1])

+
tnn(l3 , H, W, Nl[2])

...
= tnn(H, W, Nl)

Loop 2
V1, 2, 3

V4,6

V5

L1

L2

Ln

V1

L1

L2

Ln

V2 V3

V4

V5

V6

V1, 2, 3

V4,6

V5

L1

L2

Ln

3
Engage Loop 2 and
attach it onto Loop 1 at
the time when its
compute unit is
available.

2
Perform BFS and attach
same-level operations to
operations on the critical
path.

1
Perform DFS in the
execution graph, and
identify critical path for a
single run.

Loop 1

tv(v1,2,3 , H, W, Nv[0])

+
tv(v4,6 , H, W, Nv[1])

+
tv(v5 , H, W, Nv[2])

...
= fvsa(H, W, Nv)

Derive runtime
functions and
calculate memory
footprint for VSA
and NN operations.

4

5

Loop 1 Loop 1

(a) (b)

Figure 10: End-to-end FPGA-based NeSy acceleration. (a) NSFlow framework overview. (b) Dataflow
architecture generation and design space exploration (Yang et al., 2025).

8

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

5.2
5m

m

5.25mm

Sh
ar

ed
 M

em
or

y &

Di
re

ct
Tr

an
sfe

r B
us

Symbolic
tile1

576KB RRAM
Neural tile1

SP
I &

 S
ca

n
Ro

uti
ng Symbolic

tile2

576KB RRAM
Neural tile10

576KB RRAM
Neural tile2

576KB RRAM
Neural tile3

576KB RRAM
Neural tile4

576KB RRAM
Neural tile5

576KB RRAM
Neural tile6

576KB RRAM
Neural tile7

576KB RRAM
Neural tile8

576KB RRAM
Neural tile9

Consideration 1: Memory capacity requirement

Consideration 2: Datapath latency balance requirement
NVSA MIMONet LVRF PrAE

SRAM RRAM

Memory Capacity
Requirement

Neuro
Symbolic

Kernels

High
Low

Number of
Compute Blocks

Moderate
High

System Design
Choice
RRAM
SRAM

Da
ta

pa
th

la
te

nc
y

(a
.u

.) 1

0.5

0 W
or

klo
ad

da
ta

pa
th

la
te

nc
y

(a
.u

.) 1

0.5

0

Balanced

SR
AM

RR
AM RRAM

SRAM

Neuro Symb. Neuro Symb.

St
or

ag
e

ar
ea

(a
.u

.)

SRAM RRAM

1
0.5

0 W
or

klo
ad

st
or

ag
e

ar
ea

(a
.u

.)

1

0.5

0

S
R

S
R

S
R

S
R S

R
S

R
S

R
S

R

RRAM CNM Processor Symbolic Processor

…

…

SPI

Scan IOs

AVDD_WWL

AVDD_WBL

HVDD

VIHBT

VDD_Symbolic
VDD_RRAM
RRAM_REF

Ana_Bias_REF

PD_State_CTRL

12 Direct-Mapped SRAM Banks

Neural tile10
Vec. Logic uC

Neural tile9
Vec. Logic uC

RRAM Macros

Neural tile2
Vec. Logic

Neural tile1

To
p

co
nt

ro
l

Direct-Transfer Bus (DTB)

Symb.
tile1

Six local controllers

Top-level/Bus control

Symbolic
datapath

Symb.
tile2

Six local controllers

Top-level/Bus control

Symbolic
datapath

32KB RRAM
DTB
RF

RRAM RD/WR Ctrl. & Timing Ctrl.

Vec.
Mem.

Vec.
Mem.

VLIW uC

RRAM MacrosRRAM Macros

RRAM Macros

ECC INT8
Comp.

RRAM
Analog

SPI & Scan IOsOff-chip Scheduler

uC

uCVec. Logic

(a) (b) (c)

Figure 11: System-on-chip design for NeSy acceleration. (a) Top-level diagram of the taped-out NeSy
SoC. (b) Balanced RRAM/SRAM system datapath. (c) Chip die shot under TSMC 40nm technology.

workload characterization and the system configuration file from the frontend. NSFlow then syn-
thesizes and compiles RTL into an executable bitstream for FPGA deployment.

Dataflow graph. Fig. 10b illustrates how NSFlow constructs the dataflow graph. (1) Critical
path identification: A depth-first search (DFS) identifies the longest dependency chain within a
single loop. (2) Inner-loop parallelism identification: DAG walks through the graph again with
breadth-first search (BFS), to identify operation nodes at the same depth as the nodes on the critical
path, and attach them to the corresponding critical-path nodes, indicating their earliest execution
and parallelisms. (3) Inter-loop parallelism identification: DAG connects subsequent loops by
scheduling the next loop’s operations as soon as compute units are available. (4) Runtime estima-
tion: For each node, runtime functions are derived based on workload parameters (i.e., vector size
n, dimension d, NN layer dimensions in m,n, k, etc.) and hardware configurations (i.e., sub-array
dimensions, partitioning). (5) Memory analysis: DAG computes the memory footprint of each
node to guide block-level allocation. This process ensures efficient FPGA-based acceleration of
NeSy AI, balancing computational performance, memory efficiency, and parallel execution.

4.4. System-on-Chip Design for Neuro-Symbolic AI

To further advance integration and efficiency, we develop and tape out a fully programmable het-
erogeneous SoC on TSMC 40nm technology, tailored for real-time NeSy AI inference. The SoC
supports diverse neural and symbolic operators through software-hardware co-design featuring: (1)
integrated RRAM and SRAM neural-symbolic data paths, (2) ultra-dense energy-efficient RRAM
macros with edge-triggered and tunable sensing, (3) scheduler-informed power management, and
(4) programming support for variable resolution, vector lengths, and batching.

Chip architecture. As shown in Fig. 11a, 11c, the chip includes ten 576K RRAM-based neural
tiles and two SRAM-based symbolic tiles. Neural tiles consist of local RRAM storage and vector
compute units, managed by a controller handling memory access, I/O, and power gating. Symbolic
tiles incorporate logic and SRAM for bit-wise ops, CA-90 units, distance computation, and multi-
precision MACs. Both tile types support module-level clock gating and core-level power gating.

Hybrid memory rationale. The rationale behind the hybrid RRAM/SRAM design for ac-
celerating NeSy models is memory requirements and balanced data-path latency considerations
(Fig. 11b): neural kernels require large memory capacity, making RRAM ideal due to its density;
symbolic kernels benefit from SRAM’s lower latency for compute-heavy logic. All tiles are in-
tegrated with MAC capability and are allowed to read from a shared memory. To prevent write
conflicts among the tiles, all 12 tiles are only allowed to write to the designated bank in the shared
memory. Neural tile is also integrated with SECDED ECC logic for low bit-error rate memory read-
out (Crafton et al., 2022; Chang et al., 2023). The 128-bit instruction is separated into five address
spaces, in which the control field provides power control or control-related instructions.

9

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

Power efficiency and scheduling. The SoC also features multiple local power switches on
neural tiles. Post-layout/APR analysis reveals that fine-grained power control provides 5× power
reduction owing to the dynamic data flow in NeSy models. A software-defined power management
scheme is designed to schedule NeSy models based on the operators and the ratio of neural and
symbolic components. The former is obtained through off-chip software, and the latter is optimized
based on the compute capacity in neural tiles and symbolic tiles.

4.5. Towards Future-Generation Neuro-Symbolic Processors

By leveraging a co-design methodology that jointly optimizes algorithms, microarchitecture, mem-
ory hierarchy, and on-chip systems, our NeSy hardware achieves significant improvements in per-
formance, energy efficiency, and scalability. Looking forward, future research directions include:
(1) chiplet-based heterogeneous integration for modular neural-symbolic systems, (2) near-memory
computing to reduce data movement in symbolic workloads, (3) hybrid analog-digital processing for
ultra-efficient cognitive AI, and (4) more NeSy operators support. These advances will be critical for
building the next generation of intelligent, efficient, and interpretable neuro-symbolic processors.

5. Benchmarking Metrics for Neuro-Symbolic Hardware

As efforts to optimize NeSy AI processing continue, standardized benchmarking metrics are essen-
tial for comparing different designs and techniques. These metrics should capture key attributes
such as accuracy, robustness, energy efficiency, latency, throughput, and hardware cost.

Energy and power efficiency is especially critical for NeSy AI deployed in power-constrained
environments such as edge devices (e.g., smartphones, sensors, UAVs) and power-limited data cen-
ters. Due to latency, privacy, and bandwidth constraints, edge computing is often favored over
cloud-based solutions. Power evaluations must account for all components, including compute
units and off-chip memory access.

Latency, defined as the time from input to output, is vital for real-time applications like robotics
and autonomous navigation. Such tasks require rapid inference to support timely responses. How-
ever, minimizing latency often conflicts with maximizing throughput, making balanced optimization
essential.

Throughput enables rapid decision-making by allowing more data to be processed per unit
time. This is especially important as workloads become increasingly data-intensive in applications
such as human-AI collaboration, physical agents, and trustworthy medical diagnostics.

Hardware cost is largely determined by on-chip memory and core count. Embedded processors
have limited memory capacity, requiring a balance between internal storage and external bandwidth.
While more cores can boost throughput, utilization often suffers due to inefficiencies in task map-
ping and bandwidth constraints. Therefore, evaluations should reflect performance on real-world
NeSy workloads, not just peak theoretical capabilities

6. Conclusion

NeSy AI is an emerging paradigm for building efficient, robust, explainable, and cognitively ad-
vanced AI systems. This tutorial systematically characterizes NeSy system performance and de-
constructs its key operational components. Using profiling insights, we explore case studies on
NeSy hardware to optimize performance and efficiency. We hope this tutorial sheds light on critical
challenges and uncovers opportunities for advancing next-generation NeSy AI systems.

10

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

Acknowledgments

The authors thank Ananda Samajdar (IBM), Win-San Khwa, Yu-Der Chih, and Meng-Fan Chang
(TSMC) for their technical support. This work was supported in part by CoCoSys, one of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

References

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck, An-
dreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi, et al. Thinking fast and
slow in ai. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 35,
pages 15042–15046, 2021.

Muya Chang, Ashwin Sanjay Lele, Samuel D Spetalnick, Brian Crafton, Shota Konno, Zishen Wan,
Ashwin Bhat, Win-San Khwa, Yu-Der Chih, Meng-Fan Chang, et al. A 73.53 tops/w 14.74 tops
heterogeneous rram in-memory and sram near-memory soc for hybrid frame and event-based
target tracking. In 2023 IEEE International Solid-State Circuits Conference (ISSCC), pages 426–
428. IEEE, 2023.

Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
gali, Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Brian Crafton, Zishen Wan, Samuel Spetalnick, Jong-Hyeok Yoon, Wei Wu, Carlos Tokunaga,
Vivek De, and Arijit Raychowdhury. Improving compute in-memory ecc reliability with succes-
sive correction. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
745–750, 2022.

Kahneman Daniel. Thinking, fast and slow. 2017.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations (ICLR), 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic ai: The 3 rd wave. Artificial Intelligence
Review, pages 1–20, 2023.

Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, and Jiajun Wu. Visual concept-metaconcept
learning. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi. A neuro-vector-
symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence, 5
(4):363–375, 2023.

11

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

Patrick Hohenecker and Thomas Lukas. Ontology reasoning with deep neural networks. Journal of
Artificial Intelligence Research, 68:503–540, 2020.

Joy Hsu, Jiayuan Mao, and Jiajun Wu. Ns3d: Neuro-symbolic grounding of 3d objects and rela-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2614–2623, 2023.

Mohamed Ibrahim, Zishen Wan, Haitong Li, Priyadarshini Panda, Tushar Krishna, Pentti Kanerva,
Yiran Chen, and Arijit Raychowdhury. Special session: Neuro-symbolic architecture meets large
language models: A memory-centric perspective. In 2024 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), pages 11–20. IEEE, 2024.

Aditya Kalyanpur, Kailash Saravanakumar, Victor Barres, Jennifer Chu-Carroll, David Melville,
and David Ferrucci. Llm-arc: Enhancing llms with an automated reasoning critic. arXiv preprint
arXiv:2406.17663, 2024.

Mintong Kang and Bo Li. R2-guard: Robust reasoning enabled llm guardrail via knowledge-
enhanced logical reasoning. arXiv preprint arXiv:2407.05557, 2024.

Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen, and Vikas Chan-
dra. Heterogeneous dataflow accelerators for multi-dnn workloads. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 71–83. IEEE, 2021.

Joseph Kwon, Josh Tenenbaum, and Sydney Levine. Neuro-symbolic models of human moral
judgment. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 46,
2024.

Luis C Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi. Graph
neural networks meet neural-symbolic computing: A survey and perspective. In IJCAI 2020-29th
International Joint Conference on Artificial Intelligence, 2020.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations (ICLR), 2019.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298:103504,
2021.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
International Conference on Learning Representations (ICLR), 2019.

Lingjie Mei, Jiayuan Mao, Ziqi Wang, Chuang Gan, and Joshua B Tenenbaum. Falcon: fast visual
concept learning by integrating images, linguistic descriptions, and conceptual relations. Inter-
national Conference on Learning Representations (ICLR), 2022.

Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model
safety. Open AI, 2024.

12

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

Md Mizanur Rahaman Nayan, Che-Kai Liu, Zishen Wan, Arijit Raychowdhury, and Azad J Naeemi.
Hydra: Sot-cam based vector symbolic macro for hyperdimensional computing. arXiv preprint
arXiv:2504.14020, 2025.

Connor Pryor, Charles Dickens, Eriq Augustine, Alon Albalak, William Wang, and Lise Getoor.
Neupsl: Neural probabilistic soft logic. arXiv preprint arXiv:2205.14268, 2022.

Ritik Raj, Sarbartha Banerjee, Nikhil Chandra, Zishen Wan, Jianming Tong, Ananda Samajdhar,
and Tushar Krishna. Scale-sim v3: A modular cycle-accurate systolic accelerator simulator for
end-to-end system analysis. arXiv preprint arXiv:2504.15377, 2025.

Akshat Ramachandran, Zishen Wan, Geonhwa Jeong, John Gustafson, and Tushar Krishna.
Algorithm-hardware co-design of distribution-aware logarithmic-posit encodings for efficient dnn
inference. In Proceedings of the 61st ACM/IEEE Design Automation Conference (DAC), pages
1–6, 2024.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
networks. arXiv preprint arXiv:2006.13155, 2020.

Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. A systematic methodology for characterizing scalability of dnn accelerators using scale-
sim. In 2020 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 58–68. IEEE, 2020.

Vishwa Shah, Aditya Sharma, Gautam Shroff, Lovekesh Vig, Tirtharaj Dash, and Ashwin Srini-
vasan. Knowledge-based analogical reasoning in neuro-symbolic latent spaces. arXiv preprint
arXiv:2209.08750, 2022.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Justin Theiss, Jay Leverett, Daeil Kim, and Aayush Prakash. Unpaired image translation via vector
symbolic architectures. In European Conference on Computer Vision (ECCV), pages 17–32.
Springer, 2022.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Zishen Wan, Che-Kai Liu, Hanchen Yang, Chaojian Li, Haoran You, Yonggan Fu, Cheng Wan,
Tushar Krishna, Yingyan Lin, and Arijit Raychowdhury. Towards cognitive ai systems: a survey
and prospective on neuro-symbolic ai. arXiv preprint arXiv:2401.01040, 2024a.

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu, Cheng
Wan, Sixu Li, Youbin Kim, et al. Towards efficient neuro-symbolic ai: From workload char-
acterization to hardware architecture. IEEE Transactions on Circuits and Systems for Artificial
Intelligence (TCASAI), 2024b.

13

WAN LIU YANG RAJ RAYCHOWDHURY KRISHNA

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu, Cheng
Wan, Ananda Samajdar, Yingyan Celine Lin, et al. Towards cognitive ai systems: Workload and
characterization of neuro-symbolic ai. In 2024 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 268–279. IEEE, 2024c.

Zishen Wan, Yuhang Du, Mohamed Ibrahim, Jiayi Qian, Jason Jabbour, Yang Zhao, Tushar Kr-
ishna, Arijit Raychowdhury, and Vijay Janapa Reddi. Reca: Integrated acceleration for real-time
and efficient cooperative embodied autonomous agents. In Proceedings of the 30th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2, pages 982–997, 2025a.

Zishen Wan, Hanchen Yang, Ritik Raj, Che-Kai Liu, Ananda Samajdar, Arijit Raychowdhury, and
Tushar Krishna. Cogsys: Efficient and scalable neurosymbolic cognition system via algorithm-
hardware co-design. In 2025 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 775–789. IEEE, 2025b.

Tailin Wu, Megan Tjandrasuwita, Zhengxuan Wu, Xuelin Yang, Kevin Liu, Rok Sosic, and Jure
Leskovec. Zeroc: A neuro-symbolic model for zero-shot concept recognition and acquisition at
inference time. Advances in Neural Information Processing Systems (NeurIPS), 35, 2022.

Yannan Nellie Wu, Po-An Tsai, Saurav Muralidharan, Angshuman Parashar, Vivienne Sze, and Joel
Emer. Highlight: Efficient and flexible dnn acceleration with hierarchical structured sparsity.
In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1106–1120, 2023.

Tong Xie, Jiawang Zhao, Zishen Wan, Zuodong Zhang, Yuan Wang, Runsheng Wang, Ru Huang,
and Meng Li. Realm: Reliable and efficient large language model inference with statistical
algorithm-based fault tolerance. arXiv preprint arXiv:2503.24053, 2025.

Haoyi Xiong, Zhiyuan Wang, Xuhong Li, Jiang Bian, Zeke Xie, Shahid Mumtaz, and Laura E
Barnes. Converging paradigms: The synergy of symbolic and connectionist ai in llm-empowered
autonomous agents. arXiv preprint arXiv:2407.08516, 2024.

Hanchen Yang, Zishen Wan, Ritik Raj, Joongun Park, Ziwei Li, Ananda Samajdar, Arijit Ray-
chowdhury, and Tushar Krishna. Nsflow: An end-to-end fpga framework with scalable dataflow
architecture for neuro-symbolic ai. ACM/IEEE Design Automation Conference (DAC), 2025.

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
programming. In 29th International Joint Conference on Artificial Intelligence (IJCAI), 2020.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. Ad-
vances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. In International
Conference on Learning Representations (ICLR), 2020.

14

EFFICIENT PROCESSING OF NEURO-SYMBOLIC AI: A TUTORIAL AND CO-DESIGN CASE STUDY

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for rela-
tional and analogical visual reasoning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR), pages 5317–5327, 2019.

Chi Zhang, Baoxiong Jia, Song-Chun Zhu, and Yixin Zhu. Abstract spatial-temporal reasoning via
probabilistic abduction and execution. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9736–9746, 2021.

Hongming Zhang and Tianyang Yu. Alphazero. Deep Reinforcement Learning: Fundamentals,
Research and Applications, pages 391–415, 2020.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

15

	Introduction
	Neuro-Symbolic Workload Categorization
	Neuro-Symbolic Paradigms
	Neuro-Symbolic Kernels

	Neuro-Symbolic Workload Characterization
	Workload Characterization Methodology
	Compute Latency Analysis
	Compute Operator Analysis
	System and Dependency Graph Analysis
	Hardware Inefficiency Analysis
	Uniqueness of Neuro-Symbolic vs. Neural Networks

	Case Study: Domain-Specific Hardware for Neuro-Symbolic AI
	Software-Hardware Co-Design Methodology for Neuro-Symbolic AI
	Microarchitecture Design for Neuo-Symbolic AI
	FPGA Design for Neuro-Symbolic AI
	System-on-Chip Design for Neuro-Symbolic AI
	Towards Future-Generation Neuro-Symbolic Processors

	Benchmarking Metrics for Neuro-Symbolic Hardware
	Conclusion

