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Abstract
Automaton-based representations play an important role in control and planning for sequential
decision-making problems. However, obtaining the high-level task knowledge required to build
such automata is often difficult. Meanwhile, generated language models (GLMs) can automati-
cally generate relevant text-based task knowledge. However, such text-based knowledge cannot be
formally verified or used for sequential decision-making. We propose a novel algorithm named
GLM2FSA that constructs a finite state automaton (FSA) encoding high-level task knowledge from
a brief natural-language description of the task goal. GLM2FSA first sends queries to a GLM to ex-
tract task knowledge in textual form, and then it builds an FSA to represent this text-based knowl-
edge. The proposed algorithm thus fills the gap between natural-language task descriptions and
automaton-based representations, and the constructed FSAs can be formally verified against user-
defined specifications. We accordingly propose a procedure to iteratively refine the input queries to
the GLM based on the outcomes, e.g., counter-examples, from verification. We apply the proposed
algorithm to an autonomous driving system to demonstrate its capability for sequential decision-
making and formal verification. Furthermore, quantitative results indicate the refinement method
improves the probability of generated knowledge satisfying the specifications by 40 percent.
Keywords: Large Language Model, Automaton, Knowledge Representation, Formal Methods,
Formal Verification

1. Introduction

Automaton-based representations of high-level task knowledge play a key role in planning and
learning in sequential decision-making. Such knowledge may include the requirements a designer
wants to enforce on an agent, or a priori task information about the agent and the environment in
which it operates. Automaton-based representations of task knowledge enable users to formally
verify the knowledge against externally provided specifications (Baier and Katoen, 2008). Hence,
such representations are useful in many applications, such as lexical analysis of compilers (Brouwer
et al., 1998; Arnaiz-González et al., 2018), reinforcement learning (Zhang et al., 2021; Valkanis
et al., 2020; Xu et al., 2020), and program verification (Vardi and Wolper, 1986).

Despite their utility in a range of applications, capturing high-level task knowledge in automata
is not straightforward. Automaton learning algorithms infer such knowledge through queries to a
human expert or an automated oracle (Narendra and Thathachar, 1974). In general, these algorithms
may require an excessive number of human queries, and it is often unclear how an automated oracle
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can be constructed in the first place. Even in cases in which an oracle exists, either the learning
algorithm or the oracle requires prior information, such as the set of possible actions available to the
agent and the set of environmental responses, i.e., symbols relevant for the automaton construction,
which could be costly to obtain.

[1] <look way> <before> <cross road>
[2] <if> <no car come> <proceed cross road>
[3] <if> <car come> <wait> <pass> <before> <cross road>
[1.1] <face direction want cross road>
[1.2] <look left>
[1.3] <look right>
[1.4] <if> <no car come> <proceed> <if> <car come> <proceed>
...

GLM

Parse sentences, extract keywords

Input : “Cross the road”

Query GLM for steps and substeps

Q = {q
11

, q
12

, q
13

, q
14

, ...}
P = {car come, pass, ...}
A = {face direction, look left, look right, ...}

Build finite state automata from substeps

Visualize

query

response

Figure 1: An illustration of the major steps in the GLM2FSA
algorithm. A more detailed view of the output FSA for this
example is presented in Figure 4.

Although generative language mod-
els can help automatically distill
high-level task knowledge, their tex-
tual outputs are not formally veri-
fiable against external requirements.
Existing GLMs are capable of gener-
ating realistic, human-like text in re-
sponse to queries. Such text often en-
codes rich world knowledge. How-
ever, the textual outputs are not for-
mally verifiable against user require-
ments, so they cannot be used directly
in safety-critical applications.

We develop an algorithm named
GLM2FSA to fill the gap between the
outputs from GLMs and automaton-
based representations of high-level
task knowledge. In particular,
GLM2FSA produces controllers rep-
resented as finite state automata
(FSAs) from a brief natural-language sentence describing the task (e.g., “cross the road”). It does
so by first sending queries containing the task description to a GLM to obtain a list of text instruc-
tions organized in steps (and substeps). Then, it parses these textual instructions to define the input
and output symbols (i.e., environment propositions and actions) of the FSA. Finally, it interprets
each step to construct a corresponding automaton state and its outgoing transitions. GLM2FSA thus
constructs FSAs representing controllers for sequential decision-making. Figure 1 illustrates the
proposed GLM2FSA algorithm.

We accordingly propose a procedure to verify the controllers and to use the results of verifica-
tion, e.g., counterexamples, as feedback to iteratively refine them through additional queries to the
GLM. Such systematic verification-refinement procedure identifies and guards against potentially
undesirable or nonsensical outputs from the language model, making it a necessary step towards the
safe integration of GLMs into automated decision-making systems.

To the best of our knowledge, GLM2FSA is the first algorithm to construct automaton-based rep-
resentations from textual knowledge extracted from GLMs. It is also the first algorithm to provide an
approach to formally verify the knowledge from GLMs in the context of sequential decision-making
and to use the results of the verification procedure to refine the extracted FSAs.

We demonstrate GLM2FSA’s capabilities by applying the algorithm in an autonomous driving
system. We show its ability to automatically distill task knowledge into control-oriented automaton-
based representations and verify the automaton against system specifications. In doing so, we
demonstrate that the algorithm yields controllers that have verifiable properties even though their
task descriptions are provided in the form of natural-language sentences. Finally, in quantitative
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experiments, we observe that the proposed refinement procedure improves the probability that gen-
erated controllers satisfy user requirements by 40 percent.

2. Related Work

Symbolic Knowledge Representations Many works focus on constructing symbolic representa-
tions of task knowledge or plans from natural language descriptions generated from GLMs (Vem-
prala et al., 2023; Ichter et al., 2022; Shah et al., 2022; Huang et al., 2022a,b). Several works extract
information from text descriptions of given tasks and use that information to construct task-relevant
knowledge graphs (West et al., 2022; Rezaei and Reformat, 2022; He et al., 2022; Lu et al., 2022;
Thomason et al., 2020). Additionally, Vasileiou et al. (Vasileiou et al., 2022) and Wu et al. (Wu
et al., 2022) both build logic-based or mathematical representations of the GLM’s outputs, e.g., solu-
tions to planning tasks. In contrast with the existing works, the automaton-based representations we
produce are formally verifiable against user specifications and directly applicable in algorithms for
sequential decision-making and reinforcement learning (Icarte et al., 2018; Xu et al., 2020; Neider
et al., 2021; Neary et al., 2021; Fang et al., 2020).

Natural Language to Formal Language Existing works introduce approaches to transform nat-
ural language to formal language specifications (Vadera and Meziane, 1994; Baral et al., 2011;
Sadoun et al., 2013; Ghosh et al., 2016; Fuggitti and Chakraborti, 2023). (Kate et al., 2005; Mora
et al., 2024) induce transformation rules that map natural-language sentences into a formal query or
command language. (Huang et al., 2022a,a) construct a form of actionable knowledge that machines
can recognize and operate on. Existing works either cannot operate sequentially or cannot handle
conditional transitions, e.g., multiple transitions from one state, which our work is capable of.

3. Preliminaries

Controller and Finite State Automaton A controller is a system component responsible for mak-
ing decisions and taking actions based on the system’s state. It can be mathematically represented
as a mapping from the system’s current state to an action that is executable in the task environment.
In this work, a controller is a finite-state automaton.

A finite state automaton (FSA) is a tuple A = ⟨Σ, A,Q, q0, δ⟩ where Σ is the input alphabet
(the set of input symbols), A is the output alphabet (the set of output symbols), q0 ∈ Q is the initial
state, and δ : Q× Σ× A×Q → {0, 1} is the transition function, which indicates that a transition
exists when it evaluates to 1. Figure 4 depicts an example FSA.

We introduce a set P of atomic propositions such that Σ := 2P , i.e., an input symbol σ ∈ Σ
is the set of atomic propositions in P that evaluate to True. We introduce another set PA of atomic
propositions for the output alphabets A := 2PA . We allow a “no operation” symbol ϵ ∈ A. We refer
to the input and output alphabets as the condition set and action set.

Semantic Parsing Semantic parsing is a task in natural language processing (NLP) that converts
a natural language utterance to a logical form: A machine-understandable representation.

We follow the approach that predicts part-of-speech (POS) tags (Kucera et al., 1967) for each
token and builds phrase structure depending on a grammar. POS tags include noun (N), verb (V),
adjective (AJD), adverb (ADV), etc. Phrase structures are a tree-structured logical form whose
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leaves are the POS tags of the given natural language utterance (i.e., sentence). Phrase structure
rules organize the POS tags into verb phrases (VP).

Definition 1 A Verb Phrase (VP) is a tree-structured logical form headed by a verb.

To standardize the words under the phrase structure, the parsing approach converts all the words
to their original form, e.g., it removes singular or plural, past tense, etc. This operation eliminates
cases where phrases with the same words in different tenses are categorized as distinct.

4. Methodology
Algorithm 1: Query the GLM for Task Instructions

1: procedure GLM2STEP(String TASK DESC, integer
DEPTH, List[String] keywords) ω Obtain
the instructions for a given task; depth is the number of
layers of substeps.

2: GLM.bias = keywords
3: PROMPT = “Steps for: ” + TASK DESC + “\n [1]”
4: ANSWER = GLM(PROMPT)
5: STEP NUMBERS = [“[1]”, “[2]”,...]
6: for i in range(1, DEPTH) do
7: SUB NUMBERS = []
8: ANSWER = []
9: for number in STEP NUMBERS do

10: SUB PROMPT = “Substeps for ”+number
11: ANSWER.append(GLM(SUB PROMPT))
12: SUB NUMBERS.append(“[1.1]”,...)
13: end for
14: STEP NUMBERS = SUB NUMBERS
15: end for
16: return STEPS = (STEP NUMBERS, ANSWER)
17: end procedure

the first query as first-layer step descriptions. The substeps
of the first-layer step are second-layer step descriptions.
Similarly, the substeps of nth-layer steps are n + 1th-layer
step descriptions. We denote the number of layers as depth.

Algorithm 1 depicts an iterative process that first queries
the GLM for steps to accomplish the task description, and
subsequently for substeps to accomplish these individual
steps. This iterative process allows for the automated decom-
position of the task description into a structured hierarchy of
steps and substeps, up to a pre-specified depth.

Meanwhile, we define a set of keywords and set the GLM’s
bias to the keywords. Therefore, the GLM is intended to
produce outputs containing the keywords. Then, we can use
these keywords to define rules for building automata, as
described in the following section.

b) Building Automata from Textual Knowledge: Algo-
rithm 2 transforms step descriptions obtained from Algorithm
1 to finite state automata. The algorithm first applies semantic
parsing to classify the part-of-speech tags [31] of each word
in a sentence and builds word dependencies based on natural
language grammar. Next, it extracts verb phrases and pre-
defined keywords from the sentence. These keywords belong
to a pre-defined set of words we use to define our grammar
for automaton construction, such as if and wait. Examples
of these keywords are highlighted as bold text in Table I.

In Algorithm 2, parse(·) denotes the function that we im-
plement to execute this keyword and verb phrase extraction
process. In the implementation, we use the spaCy library
for semantic parsing [32]. The parse function takes a textual
sentence and outputs a set of keywords KEYS and a set of
verb phrases VPs. If a verb phrase VP includes one or more
of the words and, or, no, or not, then the algorithm parses
the VP as follows:

Category Grammar Transition Rule Example

Default
Transition VP qi qi+1(True ,

VP)

[turn right]

Direct
Transition VP [j] qi qj

(True, ω)
[proceed] [1]

Conditional
Transition

if VP1, VP2

VP2 if VP1 qi qj
(VP1,
VP2)

(¬VP1, ω)

[if] [no car],
[cross]

Conditional
Transition
(if else)

if VP1, VP2.
if not VP1, VP3.

if VP1, VP2,
else VP3. qi qj

qk

(VP1,
VP2)

(¬
V

P
1

,
V

P 3
) [if] [no car],

[cross]. [if],
[car] [stay].

Self
Transition

wait VP1 VP2

VP2 after VP1

VP1 until VP2
qi qi+1(VP1,

VP2)

(¬VP1, ω) [wait] [car
pass] [cross
road]

TABLE I: Example transition rules defined for keywords
under a specific natural language grammar. qi is the state
corresponding to the current step. In Conditional Transition
and Self Transition, VP1 is added to the condition set !, VP2

and VP3 are added to the action set A. In Default Transition,
VP is added to the action set. In Direct Transition, we do
not add VP to any set.

no/not VP1 = ¬ VP1,
VP1 and VP2 = VP1→ VP2,
VP1 or VP2 = VP1↑ VP2.
Then, the algorithm constructs an FSA from the steps and

the verb phrases within these steps. Recall that each step
consists of a step number and a natural-language sentence.
It transforms the verb phrases from each step into the
components of an FSA, including a finite set of states Q,
a finite set of atomic propositions P , a finite action set A, a
transition function ε, and an initial state q0.

For each step, the algorithm adds a state qi representing the
current step i to Q. The algorithm uses keyword handler(·)
from Algorithm 2 to add transitions between states based on
which grammar and keywords the step descriptions comply
with. We provide examples in Table I. In particular, the
keyword handler(·) takes the set of states, extracted verb
phrases and keywords as inputs. It builds transitions and
adds verb phrases to either the action set or the condition
set, depending on the grammar. We present more details in
the caption of Table I.

Last, the algorithm defines the state corresponding to the
first step as the initial state. It also adds a self-transition
with input True and output “no operation” to the state
corresponding to the final step.

V. VERIFICATION AND REFINEMENT

Given an automaton-based controller C output by
GLM2FSA, we operate the controller in a system. We use
a model M—an abstract representation of the system—to
verify the behavior of C against some task specifications of
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Algorithm 2: Natural Language to FSA

1: procedure STEP2FSA(keyword handler, STEPS, key-
words) ω keyword handler is a function, STEPS and
keywords are lists of texts

2: Q = [a state for each step]
3: q0 = Q[0], P, A, ε = {}, {ϑ}, {}
4: for state number in [0 : |Q| → 1] do
5: i = step number of the current state
6: VPs, Keys = parse(STEPS[I])
7: if any(keywords) in Keys then
8: keyword handler(Q, VPs, Keys) ω it add

VPs to either ! or A based on Table I.
9: else

10: ε(qi,True, VPs, qi+1) = 1, A := A↑VPs
11: end if
12: end for
13: return P, A, Q, q0, ε
14: end procedure

interest. If it fails to satisfy the task specification, we propose
a procedure to refine the input prompt to the GLM and to
update C accordingly.

a) Models of External Knowledge: Mathematically,
we define the model as a transition system M :=
↓”M, QM, εM, ϖM ↔. ”M := 2P , where P is the set
propositions from C. QM is a finite set of states, εM : QM↗
QM ↘ {0, 1} is a non-deterministic transition function,
p0 ≃ QM is an initial state, and ϖM : QM ↘ ”M is a
labeling function.

We automatically check whether the controller, when im-
plemented in the model, satisfies desired task specifications.
Such systematic verification is necessary to identify and
guard against undesirable or nonsensical outputs.

b) Task Specification: We use linear temporal logic
(LTL) [33] to define task specifications # that the controller C
should satisfy, given the model M. LTL is a formal language
that expresses controller properties that evolve over time. It
extends propositional logic by including temporal operators,
such as ↭ (“eventually”) and ↫ (“always”), which allow
for reasoning about the controller’s temporal behaviors. We
define specifications # over atomic propositions in P ↑ PA.

Note: We do not expect the specification to contain full
task knowledge, e.g., constraining all the behaviors in the
task environment. Instead, the specification may only capture
critical safety requirements. Therefore, we cannot directly
synthesize a controller from the model.

c) Formal Verification: To verify that the controller C
satisfies the specification # given the model M, we solve
the following automated verification problem,

M ⇐ C |= #, (1)

where M ⇐ C denotes the so-called product automaton
describing the interactions of the controller C with the model
M. The formal definition of a product automaton is in Baier
and Katoen [1].

We leave the details of the automated verification problem
to Baier and Katoen [1]. In this work, we use the NuSMV
model checker [34] for this purpose. We provide the con-
troller C and the model M to the model checker.

The outcome of the automated verification problem is
binary: C either satisfies the specification # given the model,
or it does not. However, if the controller fails to satisfy the
specification, a counterexample is returned as a byproduct of
the verification procedure. A counterexample is a sequence
of states from the product automaton describing how the
controller in the system fails #.

d) Vocabulary Alignment: Due to the stochastic nature
of generative models, the GLM may often output different
phrases to represent the same concept. Furthermore, the
verb phrases used to define the symbols of the externally
provided model may use a different vocabulary than the one
generated by the GLM. This mismatch in verb phrases could
lead to multiple distinct verb phrases being used to describe
conditions and actions that we intuitively understand as being
the same. As a result, the automated verification procedure
may yield unexpected failures because of its inability to
recognize synonyms.

To remove these ambiguities, we automatically query the
GLM to align the task knowledge to the model’s symbols:

1 Rephrase the following steps with propositions
{phrase 1, phrase 2,...}:

2 1. <step description>
3 2. <step description>
4 ......
5 1. <aligned step description>
6 2. <aligned step description>
7 ......

We build the controller C from the aligned step descriptions.
e) Refining the Automaton-Based Controllers: If the

controller C fails to satisfy the provided task specification #,
we propose a counterexample-guided refinement procedure
to iteratively refine C until it satisfies #.

The procedure asks the user to manually modify the input
prompt to the GLM and to use the resulting outputs to update
the controller. In detail, if the verification steps fail, the
model checker generates a counterexample. The counterex-
ample is a sequence of states (p1, q1), (p2, q2), ... from the
product automaton, where pi is a state from C and qi is a state
from the model M. The counterexample can automatically
be converted into a sequence of the product automaton’s
output labels, as we call a trajectory, ϱ0ϱ1, . . . ≃ (2P→PA)↑

where ϱi ≃ ϖP((pi, qi), (pi+1, qi+1)).
The user can then interpret this counterexample informa-

tion and use it to modify the GLM’s input prompt in a way
that addresses the cause of the failure. After creating this
modified input prompt, the user can use GLM2FSA to con-
struct the updated controller. We provide detailed examples
of this process, including illustrative counterexamples and
the resulting user-specified refinements, in Section VI.

VI. EXPERIMENTAL RESULTS

We demonstrate the proposed algorithms through an au-
tonomous driving system. We show that the algorithms can
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Figure 2: Algorithm 1 queries the GLM for task
instructions. Algorithm 2 converts natural lan-
guage to FSAs.

We propose an algorithm named GLM2FSA,
which consists of two parts: GLM2Step and
Step2FSA. GLM2Step uses a natural-language
description of the task of interest to query the
GLM and to obtain step-by-step task instruc-
tions in textual form. Step2FSA automatically
constructs a controller from these text-based in-
structions.

Extracting Textual Knowledge First, we
develop Algorithm 1 (Fig. 2) to distill
task-relevant textual knowledge by iteratively
prompting the GLM with structured natural-
language queries. Given a task description of
interest TASK DESC, the algorithm returns a
step-by-step textual description. We denote the
step descriptions returned by the GLM after the
first query as first-layer step descriptions. The
substeps of the first-layer step are second-layer
step descriptions. Similarly, the substeps of
nth-layer steps are n + 1th-layer step descrip-
tions. We denote the number of layers as depth.

Algorithm 1 depicts an iterative process that
first queries the GLM for steps to accomplish
the task description, and subsequently for sub-
steps to accomplish these individual steps. This
iterative process allows for the automated de-
composition of the task description into a struc-
tured hierarchy of steps and substeps, up to a
pre-specified depth.

Meanwhile, we define a set of keywords and
set the GLM’s bias to the keywords. Therefore,
the GLM is intended to produce outputs con-
taining the keywords. Then, we can use these
keywords to define rules for building automata, as described in the following section.
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Category Grammar Transition Rule Example

Default
Transition VP qi qi+1

(True , VP)
[turn right]

Direct
Transition VP [j] qi qj

(True, ϵ)
[proceed] [1]

Conditional
Transition

if VP1, VP2

VP2 if VP1 qi qj
(VP1, VP2)

(¬VP1, ϵ)

[if] [no car], [cross]

Conditional
Transition
(if else)

if VP1, VP2.
if not VP1, VP3.

if VP1, VP2,
else VP3. qi qj

qk

(VP1, VP2)

(¬
V

P
1
,

V
P 3

)

[if] [no car],
[cross]. [if], [car]
[stay].

Self
Transition

wait VP1 VP2

VP2 after VP1

VP1 until VP2
qi qi+1

(VP1, VP2)

(¬VP1, ϵ)
[wait] [car pass]
[cross road]

Table 1: Example transition rules defined for keywords under a specific natural language grammar.
qi is the state corresponding to the current step. In Conditional Transition and Self Transition, VP1

is added to the condition set Σ, VP2 and VP3 are added to the action set A. In Default Transition,
VP is added to the action set. In Direct Transition, we do not add VP to any set.

Building Automata from Textual Knowledge Algorithm 2 (Fig. 2) transforms step descriptions
obtained from Algorithm 1 to FSAs. The algorithm first applies semantic parsing to classify the
part-of-speech tags (Kucera et al., 1967) of each word in a sentence and builds word dependencies
based on natural language grammar. Next, it extracts verb phrases and pre-defined keywords from
the sentence. These keywords belong to a pre-defined set of words we use to define our grammar
for automaton construction, such as if and wait. Sample keywords are highlighted as bold text in
Table 1.

In Algorithm 2, parse(·) denotes the function that we implement to execute this keyword and
verb phrase extraction process. In the implementation, we use the spaCy library for semantic parsing
(Honnibal et al., 2020). The parse function takes a textual sentence and outputs a set of keywords
KEYS and a set of verb phrases VPs. If a verb phrase VP includes one or more of the words and,
or, no, or not, then the algorithm parses the VP as follows:

no/not VP1 = ¬ VP1,
VP1 and VP2 = VP1∧ VP2,
VP1 or VP2 = VP1∨ VP2.
The algorithm constructs an FSA from the steps and the verb phrases within these steps. Recall

that each step consists of a step number and a natural-language sentence. It transforms the verb
phrases from each step into the components of an FSA: A finite set of states Q, a finite set of atomic
propositions P , a finite action set A, a transition function δ, and an initial state q0.

For each step, the algorithm adds a state qi representing the current step i to Q. The algorithm
uses keyword handler(·) from Algorithm 2 (Fig. 2) to add transitions between states based on
which grammar and keywords the step descriptions comply with. We provide examples in Table 1.

5
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In particular, the keyword handler(·) takes the set of states, extracted verb phrases, and keywords
as inputs. It builds transitions and adds verb phrases to the action or condition sets, depending on
the grammar. The keyword handler is the key component that defines how we can translate texts
into automata. We present more details in the caption of Table 1. Last, the algorithm defines the
state corresponding to the first step as the initial state. It also adds a self-transition with input True
and output “no operation” to the state corresponding to the final step.

Computation Complexity The algorithm processes each step at a time and builds a fixed set of
states per step according to the keyword handler (Table 1). Hence, the algorithm’s complexity is
O(N), where N is the total number of steps and substeps. Empirically, the algorithm’s runtime is
negligible compared to the GLM’s latency.

5. Verification and Refinement

Given an automaton-based controller C output by GLM2FSA, we operate the controller in a system.
We use a model M—an abstract representation of the system—to verify the behavior of C against
some task specifications of interest. If it fails to satisfy the task specification, we propose a procedure
to refine the input prompt to the GLM and to update C accordingly.

Models of External Knowledge Mathematically, we define the model as a transition system
M := ⟨ΓM, QM, δM, λM ⟩. ΓM := 2P , where P is the set propositions from C. QM is a fi-
nite set of states, δM : QM ×QM → {0, 1} is a non-deterministic transition function, p0 ∈ QM is
an initial state, and λM : QM → ΓM is a labeling function.

We automatically check whether the controller, when implemented in the model, satisfies de-
sired task specifications. Such systematic verification is necessary to identify and guard against
undesirable or nonsensical outputs.

Task Specification We use linear temporal logic (LTL) (Pnueli, 1977) to define task specifications
Φ that the controller C should satisfy, given the model M. LTL is a formal language that expresses
controller properties that evolve over time. It extends propositional logic by including temporal op-
erators, such as ♢ (“eventually”) and □ (“always”), which allow for reasoning about the controller’s
temporal behaviors. We define specifications Φ over atomic propositions in P ∪ PA.

Note: We do not expect the specification to contain full task knowledge, e.g., constraining all
the behaviors in the task environment. Instead, the specification may only capture critical safety
requirements. Therefore, we cannot directly synthesize a controller from the model.

Formal Verification To verify that the controller C satisfies the specification Φ given the model
M, we solve the following automated verification problem, M ⊗ C |= Φ, where M ⊗ C denotes
the so-called product automaton describing the interactions of the controller C with the model M.
The formal definition of a product automaton is in Baier and Katoen (Baier and Katoen, 2008).

We leave the details of the automated verification problem to Baier and Katoen (Baier and
Katoen, 2008). In this work, we use the NuSMV model checker (Cimatti et al., 2002) for this
purpose. We provide the controller C and the model M to the model checker.

The outcome of the automated verification problem is binary: C either satisfies the specification
Φ given the model, or it does not. However, if the controller fails to satisfy the specification, a
counterexample is returned as a byproduct of the verification procedure. A counterexample is a
sequence of states from the product automaton describing how the controller in the system fails Φ.
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Vocabulary Alignment Due to the stochastic nature of generative models, the GLM may often
output different phrases to represent the same concept. Furthermore, the verb phrases used to define
the symbols of the externally provided model may use a different vocabulary than the one generated
by the GLM. This mismatch in verb phrases could lead to multiple distinct verb phrases being used
to describe conditions and actions that we intuitively understand as being the same. As a result, the
automated verification procedure may yield unexpected failures because of its inability to recognize
synonyms.

To remove these ambiguities, we automatically query the GLM to align the task knowledge to
the model’s symbols:

1 Rephrase the following steps with propositions {phrase 1, phrase 2,...}:
2 1. <step description>
3 2. <step description>
4 ......
5 1. <aligned step description>
6 2. <aligned step description>
7 ......

We build the controller C from the aligned step descriptions.

Refining the Automaton-Based Controllers If the controller C fails to satisfy the provided task
specification Φ, we propose a counterexample-guided refinement procedure to iteratively refine C
until it satisfies Φ.

The procedure asks the user to manually modify the input prompt to the GLM and to use the
resulting outputs to update the controller. In detail, if the verification steps fail, the model checker
generates a counterexample. The counterexample is a sequence of states (p1, q1), (p2, q2), ... from
the product automaton, where pi is a state from C and qi is a state from the model M. The coun-
terexample can automatically be converted into a sequence of the product automaton’s output labels,
as we call a trajectory, ψ0ψ1, . . . ∈ (2P∪PA)∗ where ψi ∈ λP((pi, qi), (pi+1, qi+1)).

The user can then interpret this counterexample information and use it to modify the GLM’s
input prompt in a way that addresses the cause of the failure. After creating this modified in-
put prompt, the user can use GLM2FSA to construct the updated controller. We provide detailed
examples of this process, including illustrative counterexamples and the resulting user-specified
refinements, in Section 6.

6. Experimental Results

p0 : C0∧
(C3 ∨ C4)

p1 :
C2 ∨ C3

p2 : C0∧
¬(C3 ∨ C4)

p3 :
C1 ∧ ¬C3

p4 :
C0 ∧ ¬C4

p5 :
C1 ∧ C4

Figure 3: A model Mc for a driving system. For brevity, we
present a sub-model for intersections with stop signs or traffic
lights. In the figure, C0 = stop sign observed, C1 = green light
observed, C2 = red light observed, C3 = pedestrian observed,
C4 = car observed. We annotate each node as “state: label.”

We deploy the proposed algo-
rithms through an autonomous
driving system. We show the
algorithms’ capability to con-
struct controllers operated in au-
tonomous driving systems, ver-
ify the controllers against safety-
critical specifications, and re-
fine the controllers to meet those
specifications.

Modeling the Autonomous Driving System Suppose the designer of the autonomous driving
system provides an automaton-based model that captures all the possible behaviors of the system.

7
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The model is over a set of atomic propositions P = {stop sign observed, green light observed, red
light observed, pedestrian observed, car observed }. The autonomous driving system allows a set of
actions PA = { observe traffic, approach intersection, go straight, turn left, turn right, stop }. The
system designer also gives the two sets of propositions.

Driving Safety Specifications The system designer provides a set of system specifications to
constrain the potential behaviors of any controllers operating in this system. These specifications
are over the same propositions P and PA. We include five sample specifications for our experiments:

Φ1 = □(¬( turn left ∨ turn right ∨ go straight ) ∧ pedestrian observed),
Φ2 = □( stop sign observed → ♢ stop ),
Φ3 = □( red light observed → ( stop ∨ turn right )),
Φ4 = □(♢¬( pedestrian observed ∨ car observed) → ♢¬ stop ),
Φ5 = □( green light observed → ♢¬ stop ).

Demonstrations of Hierarchical Controller Construction We construct several automaton-based
controllers to demonstrate the capabilities of GLM2FSA. In particular, we provide examples to show
that GLM2FSA can create FSAs that encode all of the knowledge required to describe the steps to
complete a given task. In the following experimental case studies, we use the GPT-4 as the GLM.

First, we apply the algorithm to construct an FSA for first-layer step descriptions. The queries
and the responses from the GLM are as follows:

1 Steps for: Turn right at the stop sign
2 [1] Reach the stop sign intersection.
3 [2] Look for a safe gap to turn right.
4 [3] Turn right.

Next, we ask the algorithm to continue querying for the substeps of each step. We call these
substep descriptions second-layer step descriptions.

1 ...
2 Substeps for: [1] Reach the stop sign intersection.
3 [1.1] Approach the stop sign intersection.
4 [1.2] Stop at the intersection.
5
6 Substeps for: [2] Look for a safe gap to turn right.
7 [2.1] Look for oncoming traffic.
8 [2.2] If there are pedestrians, wait for the pedestrians.
9 [2.3] If there are coming vehicles, wait for the vechicles, else, proceed to [3].

10
11 Substeps for: [3] Turn right.
12 [3.1] Start turning right.
13 [3.2] Straighten the steering wheel as completing the turn.

Note that the number of layers is a design choice based on how detail the user expect the controller
encodes.

Then, we query the GLM to align the vocabularies to the atomic propositions P and actions PA

provided from the autonomous system.
1 Rephrase the following steps with propositions {stop sign observed, car observed,

......}:
2 [1.1] Approach the stop sign intersection.
3 [1.2] ......
4
5 [1.1] Approach intersection. [1.2] Stop.
6 [2.1] Observe traffic. [2.2] If pedestrian observed, wait for pedestrian. [2.3] If

car observed, wait for car, else, proceed to [3.1].
7 [3.1] Turn right. [3.2] Go straight.

We present the constructed FSA for the second-layer descriptions in Figure 4 (black and purple).
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q11start q12 q21

q22

q22

q23q31q32

q4

(True,
“approach intersection”) (True, “stop”)

(True,
“observe traffic”)(True,

“observe traffic”)

( ¬ pedestrian
observed, ϵ)

(pedestrian observed, ϵ)(car observed, ϵ)

( ¬ car observed,
ϵ)

(car ∨ pedestria
n, ϵ)

(¬(
car ∨

pedest
ria

n),

ϵ)

(True,
turn right)

(True,
go straight)(True, ϵ)

Figure 4: An FSA that represents all the substeps for turning left at the stop sign. States and
transitions in purple and blue are before and after refinement, respectively.

q11→ q12: approach intersection q11→ q21→ q22: stop & observe traffic q22→ q21: wait

q21→ q22→ q31: observe traffic q31→ q32: turn right q32→ q4: go straight

q1→ q2→ q2: observe traffic & Wait

Task: Turn left safely.

q2→ q3: turn left

q1→ q2→ q2: observe traffic & Wait q2→ q3: turn left

Figure 5: The left figures show a demonstration of grounding the constructed controller in Figure 4
on a real robot. The right figures present an example of a controller for “turn left safely.”

Verification and Refinement We now consider verifying the controller in Figure 4, when imple-
mented in the model in Figure 3, against the specification Φ1. Φ1 means “never turn left, right, or
go straight if pedestrians are observed.”

The verification step fails with a counterexample (p0, q11), ..., (p0, q31), (p0, q32). The coun-
terexample indicates a scenario where the agent turns right when a pedestrian exists. This mistake
could happen because the controller checks pedestrians and cars separately. When the controller
ensures the nonexistence of cars, it directly turns right without checking for pedestrians again.

This is a potentially dangerous edge case that the GLM fails to consider. We emphasize that this
edge case could easily be missed by a human as well. It is only by formally verifying the possible
behaviors of the system against the model that the potential problem becomes apparent. To address
the issue, the user modifies the input prompt:

1 Refine the steps to ensure the action "turn right" is performed when both pedestrian
and car are clear.

2 ......
3 [2.2] If pedestrian observed or car observed, proceed to [2.1], else, proceed to [3.1].

For brevity, we only show the modified steps. Then, we construct a new controller following the
modified steps and present it in Figure 4 (black and blue). The refined controller passes all the
verification steps, and hence it is finalized. Then, we ground this controller on real robots, where
each proposition from the system model corresponds to an API in the robot’s system. We present
an example of successfully executing the controller in Figure 5.

We claim that if a controller satisfies all the specifications, the ground robot operating the con-
troller also satisfies the specifications (with accurate perceptions).
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Quantitative Evaluation We select autonomous driving as the application domain of our algo-
rithm. Particularly, we query the GLM and construct controllers for eight tasks: {turn left, turn
right, go straight, make a U-turn} at the {traffic light, stop sign}. We verify the controllers against
the following specifications Φ1,...,Φ5 at the beginning of this section.

For each task, we query the GLM with different random seeds to construct 25 different con-
trollers. We verify the total 200 controllers and get the probability of the generated controllers sat-
isfying each specification. We additionally refine the controller through the counterexample-guided
refinement procedure. Figure 6 presents the probabilities of the GLM-generated steps satisfying
each specification after each refinement iteration.
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Figure 6: The left figure shows the probability of the GLM’s
generated task knowledge satisfying each specification be-
fore and after refinement. The right figure shows the proba-
bility of the generated task knowledge from different GLMs
satisfying each specification.

Additionally, we compare the
current state-of-the-art GLMs— GPT-
4 (OpenAI, 2023), Llama 3 (Tou-
vron et al., 2023), Qwen (Bai et al.,
2023), and Claude 3.7 Sonnet (An-
thropic, 2025) on their probabilities
of generating specification-satisfied
task knowledge, see Figure 6.

The results have shown the gener-
alizability and real-world applicabil-
ity of the GLM2FSA through various
autonomous driving tasks. Overall,
the constructed controllers for driving
tasks achieve over 90 percent proba-
bility of satisfying the specifications
within two refinement iterations.

7. Conclusions

Summary We provide a proof-of-concept for the automatic construction of automaton-based rep-
resentations of abstract task knowledge from GLMs. We propose an algorithm, GLM2FSA, that
accepts brief natural-language descriptions of tasks as input, queries a GLM, and then constructs
an automaton from the language model’s responses. The algorithm is highly automated, requiring
only a short task description to build machine-understandable knowledge representations. We addi-
tionally propose a procedure to formally verify the constructed automata and to use the verification
results to iteratively refine the inputs to the GLM.

Limitation and Future Direction We have focused on constructing controllers for high-level
decision-making and verifying against high-level specifications. As a future direction, we can in-
tegrate perception models to collect more detailed information from the environment and use the
information for low-level planning, e.g., trajectory planning in autonomous driving. Furthermore,
we can explore the low-level planning problem under uncertainty raised by the perception models.
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Appendix A. Additional Background and Definitions

Generative language model. A generative language model (GLM) produces human-like text
completion from a given initial text (prompt). The produced texts continue filling the content from
that prompt. Recent GLMs are deep-learning models with millions or billions of parameters; hence,
they are called large-scale GLMs.

GPT-4 allows users to customize settings by setting the hyper-parameters. For instance, max tokens
restricts the maximum number of tokens (words and punctuation) of the generated text, and tem-
perature defines the randomness of the outputs. We propose an algorithm that specifies grammar
rules for certain keywords. Hence we set bias on the keywords to ensure the model outputs them
instead of their alternations. Setting bias to keywords eliminates the need to transform synonyms to
the corresponding keywords or define new rules for those synonyms.

Linear temporal logic. Formally, LTL formulas are defined inductively as: φ := p ∈ PM | ¬φ |
φ ∨ φ | ◦φ | φUφ Intuitively, an LTL formula consists of

• A set of atomic propositions, denoted by lowercase letters (e.g., car come), represent the
system’s state.

• A set of temporal operators describes the system’s temporal behavior.

• A set of logical connectives, such as negation (¬), conjunction (∧), and disjunction (∨), that
can be used to combine atomic propositions and temporal operators.

As syntax sugar, along with additional constants and operators used in propositional logic, we
allow the standard temporal operators ♢ (“eventually”) and □ (“always”).

Product Automaton. Recall that the controllers C output by GLM2FSA are defined as C :=
⟨Σ, A,Q, q0, δ⟩ with input alphabet Σ := 2P , output alphabet A := 2PA , and non-deterministic
transition function δ : Q× Σ×A×Q→ {0, 1}.

We accordingly define the product automaton to be a transition system P = M⊗ C := ⟨QP,

δP, q
P
init, λP⟩ with the following components:

QP := QM ×Q

qPinit := (p0, q0)

δP((p, q)) :=
{
(p′, q′) ∈ QP

∣∣δ(q, λM(p) ∩ Σ, a, q′) = 1 and δM(p, a, p′) = 1, for a ∈ A
}

λP((p, q), (p
′, q′)) :=

{
λM(p) ∪ a

∣∣a ∈ A and δ(q, λM(p) ∩ P, a, q′) = 1 and δM(p, a, p′) = 1
}
.

Here, δP : QP → 2QP is a non-deterministic transition function, and λP : QP ×QP → 2P∪PA

is a labeling function on the transitions of the product automaton. The product automaton gen-
erates infinite trajectories (p0, q0), (p1, q1), . . . by beginning in an initial state qPinit and follow-
ing the nondeterministic transition function δP thereafter. Labeled trajectories are then gener-
ated by applying the labeling function λP to these trajectories within the product automaton, i.e.
ψ0ψ1, . . . ∈ (2P∪PA)∗ where ψi ∈ λP((pi, qi), (pi+1, qi+1)). When using the product automaton to
solve the model-checking problem, we check that all possible labeled trajectories generated by the
product automaton belong to the language defined by the LTL specification.
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Appendix B. Additional Explanation to Table 1

Default Transitions. We define default transitions as transitions from the current state to the next
state with a condition True . Each state qi only has one outgoing transition to its next state qi+1, with
the verb phrases from the ith step as the output symbols. A default transition δ(qi,True,VPi, qi+1)
exists, unconditionally of the valuation of the atomic propositions in P (hence the corresponding
transition’s condition is True). A demonstration of the default transition is presented in the first row
of Table 1.

Direct State Transitions. Next, we define a direct state transition, which is a transition from the
current state qi to a state other than the next state qi+1. The direct state transition happens when
there is a verb phrase in the step description that contains the number corresponding to another step.
The algorithm builds a direct state transition from the current state to the state representing step j
with output symbol ϵ (no operation).

Conditional Transitions. We also define a conditional transition, which is a transition that only
happens when certain conditions are satisfied. During automaton construction, the algorithm will
build a conditional transition when a step description contains the keyword if. The conditions them-
selves are defined as one or more atomic propositions in P .

The algorithm builds two transitions from each sentence according to the patterns illustrated in
Table 1. The first transition consists of a starting state qi, a conjunction of atomic propositions VP1,
a target state qj , and a set of outputs VP2. If the VP2 does not lead to a direct state transition, then
the transition will end at qi+1. The second transition is a self-transition at qi with a condition ¬VP1

and with an output symbol ϵ (no action).

Self-Transitions. Finally, we define a self-transition, whose starting and target states are identical.
The algorithm will construct self-transitions whenever a step description contains any of the key-
words wait, after, or until. The self-transition will cause the automaton to stay in the current state
until some logical condition is met, as specified by the keywords. We accordingly use the keywords
and surrounding verb phrases to define a conditional transition that breaks the self-transition loop
and proceeds to the next state.

Appendix C. Verification using NuSMV

Here we provide the NuSMV implementation used to verify the controllers from 4 under a model
from 3.

C.1. Controller

1
2 MODULE environment -------------------------------------------------------------
3
4 VAR
5 car_come: boolean; -- cars are coming
6 car_pass: boolean; -- all cars passed
7 turn_green: boolean; -- the pedestrian traffic light turned green
8
9 FROZENVAR

10 traffic_light: boolean; -- there is a pedestrian traffic light
11
12 MODULE actions -----------------------------------------------------------------
13
14 VAR
15 face_direction: boolean; -- face direction of crossing

16
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16 look_left: boolean; -- look left for cars
17 look_right: boolean; -- look right for cars
18 look_way: boolean; -- look both ways for cars
19 cross: boolean; -- cross the road
20
21 DEFINE COUNT_ACTIONS := count(
22 face_direction,
23 look_left,
24 look_right,
25 cross,
26 look_way
27 );
28 DEFINE none := COUNT_ACTIONS = 0; -- true iff no action is taken
29
30 INVAR COUNT_ACTIONS <= 1; -- cannot take two actions at once
31 INIT none;
32
33
34 MODULE controller_fig4(env,act) ------------------------------------------------
35
36 VAR state: {
37 0,
38 11,12,
39 21,22,
40 3
41 };
42 INIT -- the initial state
43 state=0;
44 DEFINE goal := -- the desired state
45 state=3;
46
47 TRANS
48 case
49 state=0 & next(!env.traffic_light)
50 : next(act.none & state=11);
51 state=0 & next(env.traffic_light)
52 : next(act.none & state=21);
53
54 (state=11)
55 : next(act.look_way & state=12);
56
57 state=12 & next(env.car_come & !env.car_pass)
58 : next(act.none & state=12);
59 state=12 & next(!env.car_come | env.car_pass)
60 : next(act.cross & state=3);
61
62 (state=21)
63 : next(act.look_way & state=22);
64
65 state=22 & next(!env.turn_green)
66 : next(act.none & state=12);
67 state=22 & next(env.turn_green)
68 : next(act.cross & state=3);
69
70 goal
71 : next(act.none & goal);
72 esac;
73
74 MODULE controller_fig5(env,act) ------------------------------------------------
75
76 VAR state: {
77 11,12,13,14,
78 21,22,23,
79 31,32,
80 4
81 };
82 INIT -- the initial state
83 state=11;
84 DEFINE goal := -- the desired state
85 state=4;
86
87 TRANS
88 case
89 state=11
90 : next(act.face_direction & state=12);
91
92 state=12
93 : next(act.look_left & state=13);
94
95 state=13
96 : next(act.look_right & state=14);
97
98 state=14 & next(!env.car_come)
99 : next(act.none & state=21);
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100 state=14 & next(env.car_come)
101 : next(act.none & state=31);
102
103 state=21
104 : next(act.cross & state=22);
105
106 state=22
107 : next(act.look_way & state=23);
108
109 state=23 & next(!env.car_come)
110 : next(act.none & state=4);
111 state=23 & next(env.car_come)
112 : next(act.none & state=11);
113
114 state=31 & next(!env.car_pass)
115 : next(act.none & state=31);
116 state=31 & next(env.car_pass)
117 : next(act.none & state=32);
118
119 state=32
120 : next(act.none & state=21);
121
122 state=4
123 : next(act.none & state=4);
124 esac;
125
126
127 MODULE model(env,act) ----------------------------------------------------------
128
129 VAR state: {
130 q_init,q_sink,q_goal
131 };
132 INIT -- the initial state
133 state=q_init;
134 DEFINE goal := -- the desired state
135 state=q_goal;
136
137 TRANS
138 case
139 state=q_init & next(!act.cross)
140 : next(state=q_init);
141 state=q_init & next(act.cross & env.car_come)
142 : next(state=q_sink);
143 state=q_init & next(act.cross & !env.car_come)
144 : next(state=q_goal);
145
146 state=q_sink
147 : next(state=q_sink);
148
149 state=q_goal
150 : next(state=q_goal);
151 esac;
152
153 MODULE main --------------------------------------------------------------------
154
155 VAR env: environment;
156 VAR act: actions;
157
158 VAR controller: controller_fig4(env,act);
159 -- VAR controller: controller_fig5(env,act);
160 VAR model: model(env,act);
161
162 LTLSPEC NAME assume_guarantee :=
163 ( TRUE -- ASSUMPTIONS
164
165 -- the flow of cars is not continuous
166 & (G F !env.car_come)
167
168 -- cars coming eventually passes
169 & (G (env.car_come -> F env.car_pass))
170
171 -- if all cars passed,
172 -- then none are coming towards the crossing
173 & (G (env.car_pass -> !env.car_come))
174
175 -- when pedestrian light is green, no car can come on the crossing
176 & (G ((env.traffic_light & env.turn_green) -> (!env.car_come)))
177
178 ) -> ( TRUE -- GUARANTEES
179
180 -- the model terminal state is eventually reached
181 & (F model.goal)
182

18
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183 -- eventually, the controller rightfully thinks it achieved its goal
184 & (F (model.goal & controller.goal))
185
186 );

C.2. Model for Driving Tasks

1 MODULE traffic_model
2 VAR
3 Pedestrian_Observed : boolean;
4 Car_Observed : boolean;
5 Stop_Sign_Observed: boolean;
6 Green_Light_Observed: boolean;
7 Red_Light_Observed: boolean;
8 Action : {Stop, Move_forward, Turn_left, Turn_right};
9

10 ASSIGN
11 init(Car_Observed) := FALSE;
12 next(Car_Observed) :=
13 case
14 TRUE: {TRUE, FALSE};
15 esac;
16
17 init(Pedestrian_Observed) := FALSE;
18 next(Pedestrian_Observed) :=
19 case
20 TRUE : {TRUE, FALSE};
21 esac;
22
23 init(Stop_Sign_Observed) := FALSE;
24 next(Stop_Sign_Observed) :=
25 case
26 TRUE: {TRUE, FALSE};
27 esac;
28
29 init(Green_Light_Observed) := FALSE;
30 next(Green_Light_Observed) :=
31 case
32 TRUE: {TRUE, FALSE};
33 esac;
34
35 init(Green_Light_Observed) := FALSE;
36 next(Green_Light_Observed) :=
37 case
38 TRUE: {TRUE, FALSE};
39 esac;
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