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Abstract

Reinforcement Learning (RL) has emerged as a powerful paradigm for solving sequential decision-
making problems. However, traditional RL methods often lack an understanding of the causal
mechanisms that govern the dynamics of an environment. This limitation results in inefficien-
cies, challenges in generalization, and reduced interpretability. To address these challenges, we
propose Signal Temporal Logic Causal Inference RL (STL-CIR), a framework that mines inter-
pretable causal specifications through Signal Temporal Logic and reinforcement learning, using
counterexample-guided refinement to jointly optimize policies and causal formulas. We compare
the performance of agents leveraging explicit causal knowledge with those relying solely on tra-
ditional RL approaches. Our results demonstrate the potential of causal reasoning to enhance the
efficiency and robustness of RL for complex tasks. Our results demonstrate the potential of causal
reasoning to enhance the efficiency and robustness of RL for complex tasks.
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1. Introduction

Reinforcement Learning (RL) has become a cornerstone of artificial intelligence, solving problems
from robotic control to healthcare. Despite its achievements, conventional RL techniques typically
function as opaque mechanisms that fail to capture the underlying causal relationships governing
environmental dynamics. This limitation leads to inefficient learning, poor generalization, and re-
duced interpretability. Addressing these challenges requires incorporating causal reasoning into RL.
Causal inference provides a systematic way to understand how variables influence one another, en-
abling agents to predict outcomes and explain decisions. However, existing RL frameworks seldom
integrate causal reasoning, relying instead on exhaustive exploration (Bareinboim (2020)).

Causal Signal Temporal Logic (Causal STL) bridges this gap by providing a formalism for
specifying and analyzing causal relationships within systems. By combining causal inference with
temporal reasoning, Causal STL enables the formalization of cause-effect relationships alongside
their temporal properties. This is particularly valuable for RL, where tasks often involve complex
temporal dependencies (Deng et al. (2023)).

Related Works: In recent years, the integration of causal reasoning and temporal logic into RL
has garnered significant attention, aiming to enhance learning efficiency, generalization, and in-
terpretability. Dasgupta et al. (2019) explored the emergence of causal reasoning through meta-
reinforcement learning, demonstrating that agents trained on tasks with inherent causal structures
can perform interventions and make causal inferences in novel situations. Li et al. (2017) lever-
aged temporal logic to specify complex task requirements, incorporating domain knowledge into
RL for tasks with rich temporal structures. Ding et al. (2023) augmented goal-conditioned RL with
causal graphs, improving generalization through variational likelihood maximization. These studies
highlight the benefits of integrating causal reasoning and temporal logic into RL frameworks. This
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paper proposes integrating Causal STL-derived formulas into RL to evaluate how causal knowledge
affects sample efficiency, generalization, and robustness.

Contributions: This paper makes three primary contributions. First, we propose a framework using
RL to extract causal temporal logic formulas for more efficient exploration of relevant state-action
pairs. Second, we provide theoretical guarantees for convergence to optimal causal formulas and
policies, with established sample complexity bounds. Third, we introduce dynamic counterfactual
traces using Gaussian Process models to simulate alternative scenarios, enabling agents to jointly
discover and exploit causal knowledge for improved learning efficiency.

1.1. Motivation: Gene Modification for Disease Treatment

Gene modification strategies in medical applications rely on regulatory networks where altering
one gene may require or prohibit changing another. For instance, modifying gene A may only be
viable after gene B is activated, while gene C must remain stable to avoid complications. A naive
RL approach might exhaustively attempt all possible sequences, leading to an infeasible strategy
where failed interventions can be costly. By contrast, an RL agent equipped with causal knowledge
can exploit these underlying dependencies, focusing exploration on biologically valid modifications.
This not only mitigates risks but also reduces the search space, enabling faster convergence toward a
safe treatment protocol. By discovering and exploiting causal relationships, agents can learn optimal
policies more efficiently, generalize to novel scenarios, and provide interpretable explanations for
their decisions. The gene-editing example thus demonstrates how causal modeling can substantially
improve learning and decision-making in complex tasks.

2. Preliminaries

2.1. Syntax of Causal STL

The syntax of Causal STL builds upon STL, enabling the formalization of causal relationships. A
typical Causal STL formula is expressed as (Deng et al. (2023)):

O ::=do(pe) ~ Pe, (D

where ¢. represents the cause formula, and ¢, represents the effect formula. These formulas are
defined using STL operators: Q[, ;¢ indicates formula ¢ holds at some point within the interval
[a, b]; Ojq,5)¢ means formula ¢ holds continuously throughout the interval [a, b]; and X (t) ~ d
represents a condition where X (¢), the value of variable X at time ¢, satisfies a relational operator
~€e {<,<,>,>} compared to a threshold d € R. These operators enable the specification of
complex temporal patterns and conditions for both causes and effects.

2.2. Qualitative Semantics of Causal STL

The qualitative semantics of Causal STL define when a formula is satisfied within a given system.
A Causal STL formula ® := do(¢.) ~ ¢, is satisfied if (Deng et al. (2023)): Sufficiency: For all
interventions do(¢.), the effect formula ¢, holds: Vdo(¢.), ¢. holds; Necessity: If the effect ¢,
holds, then the cause ¢. must have been intervened upon: ¢ = do(¢.).

2.3. Quantitative Semantics of Causal STL

To quantify the strength of causal relationships, Causal STL introduces metrics for sufficiency and
necessity based on empirical data:
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* Sufficiency Degree:

S@®D) = —— 3 p(der | do(6e)), @)

where D, is the subset of trajectories in dataset D where p(¢., 7,0) > 0.

* Necessity Degree:

N(®:;D) = —,Dl_| S p(6er | do(e)), 3)

T€ED_
where D_ is the subset of trajectories in dataset D where p(¢., 7,0) < 0.

These metrics provide a data-driven framework for assessing the causal impact of ¢. on ¢, based
on observed trajectories.

2.4. Inference of Causal STL Formulas

The inference of Causal STL formulas involves identifying cause-effect relationships that explain
observed behaviors within a dataset D. Let 6 denote the parameters that define a candidate cause
formula ¢(6). This process is formulated as an optimization problem, where the objective function
maximizes the explanatory power of a Causal STL formula ®;, defined as:

sup J(0;D) = —E(6;D) + A\sS(0; D) + ANN(0; D), @
0eO,

where E(0; D) quantifies the degree of existence in the dataset and is given by:

1 *
E(e’ D) — W Z 6—(p(d>c(9),7',t)—p(¢c(9)ﬂ' ’t))’ (5)
T€D

with p(¢.(0), T) representing the robustness degree of trajectory 7 with respect to the parameterized
cause formula ¢.(6). The terms S(6; D) and N (0; D) represent the empirical degrees of sufficiency
and necessity computed over the dataset D.

3. Q-Learning with Reward Functions for STL Objectives

Q-learning is a model-free reinforcement learning algorithm that learns state-action values in MDPs
(Corazza et al. (2024)). Standard Q-learning must be adapted for Signal Temporal Logic objectives
by incorporating custom reward functions that align with STL satisfaction measures (Aksaray et al.
(2016)). Standard Q-learning optimizes an action-value function (s, a) that evaluates state-action
pairs. The update rule is:

Q(s,a) < Q(s,a) + o |r +ymaxQ(s',a’) — Q(s,a) | , (©)
a/
where r is the immediate reward for taking action a in state s, and s’ is the next state. STL objectives

pose challenges as satisfaction depends on entire trajectories, not individual states, and rewards can
only be computed after observing complete trajectories (Venkataraman et al. (2020)).
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3.1. Reward Function for STL

To address these challenges, a custom reward function based on the robustness degree p(¢, 7,t)
of STL formulas is introduced (Aksaray et al. (2016)). For a trajectory 7 = (so, $1,. .-, S7), for
® = Q0,779 (eventually), the robustness is given by: p(Qo, 719, 7,0) = maxcjo 7] p(¢,7,t). For
® = Ojo,7)¢ (always), the robustness is: p(Uj 719, 7,0) = minge(o 1) p(¢, 7, 1), where p(¢, 7,t)
represents the robustness of trajectory 7 for satisfying formula ¢ at time ¢. Note that when no time
t is specified, p(¢, ) is assumed to evaluate the robustness at time 0.
The reward function for Q-learning is defined as:
B ePr(mt), if ® = Opo.110
| —e BT i d = O o @
) [0,719s

where 8 > 0 is a scaling parameter and p(¢, 7, t) represents the robustness of trajectory 7 for sat-
isfying formula ¢ at time ¢. The Q-learning algorithm is adapted to optimize STL objectives by
leveraging the 7-MDP framework and robustness-based reward functions. The algorithm is math-
ematically formalized as follows: The Q-learning update rule optimizes the action-value function
Q(s7,a) for action «a in state s” with trajectory 7. The reward R; uses the STL robustness de-
gree p(¢, 7,t) to guide satisfaction of temporal-logical constraints. The policy 7(s”) maximizes
Q(s7,a) using e-greedy exploration (Aksaray et al. (2016)).

4. Coupled RL with Bayesian Optimization for Cause-and-Effect Satisfaction

The proposed approach integrates RL with Bayesian optimization in a closed-loop framework,
where trajectory data informs the refinement of causal formulas. Each trajectory 7 consists of tu-
ples spanning a temporal horizon T: 7 = {(s¢, az,7¢, st+1) }-_o- These trajectories capture both the
sequential nature of the learning process and the temporal evolution of cause-effect relationships.
The learning process begins by initializing the RL environment, Q-values Q(s”, a), policy m(s"),
and a Gaussian Process model for Bayesian optimization (Algorithm 2). A candidate cause formula
#° provides the initial structure for causal reasoning. During each episode, the agent explores the
environment while maintaining a trajectory buffer 7, that tracks state-action sequences.

The system continuously evaluates trajectory robustness p(¢., 7, t) and p(¢e, 7, t) for both cause
and effect formulas. When a trajectory violates the effect formula (p(¢e, 7,t) < 0), it is stored as
a counterexample in buffer CE (Algorithm 2, line 12). These counterexamples are crucial for com-
puting the sufficiency, necessity, and existence measures that guide formula refinement. For each
counterexample, the system generates counterfactual traces 7' by modifying state variables accord-
ing to intervention rules do(7,) (Algorithm 1, lines 3-4). The formula refinement process optimizes
the objective function J(¢.) = —E + AgS + AyN where S, N, and E represent sufficiency,
necessity, and existence measures respectively. These measures are computed by analyzing the ro-
bustness values of both original and counterfactual trajectories across different thresholds €4, and
€4, (Algorithm 1, lines 5-12). Bayesian optimization guides the search for improved cause formulas
by maintaining a probabilistic model of the objective function J(¢.). The GP model uses a radial
basis function kernel, defined as (Seeger (2004)):

k(z,2) = exp <—H:U — x'|]2> )

4
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Algorithm 1 Evaluate Sufficiency, Necessity, and Existence
1: Initialize empty lists sufficiency._scores, necessity_scores, existence_scores
2: fori=1to I do
3 GetTeC€&

4:  Generate counterfactual 7’ under do(7’.)

5:  Compute p(¢c, 7', t) and p(¢e, 7', t)

6:  if p(de, ') > €4, then

7: Append p(¢e,7') to sufficiency_scores
8:  endif

9:  if p(¢pe, 7') < —€4, then

10: Append p(¢e,7') to necessity_scores
11:  endif

12:  Append p(¢.,7') to existence_scores

13: end for

14: S < Mean(sufficiency.scores)
15: N «— e—(Mean(necessity,scores))
160 E «— e—(Mean(existence,scores))

17: return (S, N, E)

where [ > 0 is the length scale parameter that determines the smoothness of the function and
how quickly the correlation between points decays with distance. This kernel enables the model
to interpolate between observed formula performances and suggest promising candidates through
Upper Confidence Bound (UCB) acquisition.

Algorithm 2 STL-CIRL
1: Initialize Q(s™,a) <+ 0, policy 7, GP model, C <+ ()
2: Set ¢, <+ @°
3: fork =1to K do
4 Reset £, get s, initialize 7oy, < ()
5 fort =0toT — 1do
6: Select a; ~ 7(s]) (e-greedy)
7
8

Execute a;, observe s;1, update 7ey,
ComPUte p(¢07 Tcur» 0)9 p(¢€7 Toura 0)

9: Compute reward
10 Update Q(s7, at) and w(s])
11: if p(¢pe, 7) < 0 then
12: Add 7oy to CE
13: end if
14:  end for

15:  Compute S, N, E using Algorithm 1

16:  ¢rt « argmaxy (—F + AsS + Ay N)
17:  Update GP model with S, N, E

18: end for

19: return (¢.,7*)
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5. Counterexample Generation Method

Our framework employs a systematic method for generating and analyzing counterexamples to
learn causal relationships effectively. We implement an iterative refinement process that combines
state perturbation analysis with counterexample-guided synthesis. First, it explores the state space
through targeted perturbations of state variables, scaled appropriately to maintain physical feasibil-
ity. The process begins by initializing an empty set of counterexamples (line 1) and obtaining the
current trajectory (line 2). When a violation of the effect formula is detected (line 3), the algorithm
systematically explores perturbations of each state variable (line 4). For each variable, both posi-
tive and negative perturbations are tested within a specified range € (line 5). Second, it leverages
discovered counterexamples to simultaneously improve both the system specification and the con-
trol policy. Each perturbed state is generated using the PerturbState function (line 6), followed by
trajectory simulation from this new state (line 7). Valid counterexamples that reveal meaningful
violations of the specifications are identified (line 8) and added to the collection (line 9). Finally,
the complete set of discovered counterexamples is returned (line 14) for use in policy refinement
and specification learning.

Algorithm 3 Counterexample Generation
Require: Current state sy, action ay, formulas ¢, ¢., perturbation range e
Ensure: Set of counterexamples CE

1: Initialize C€ + 0

2: Thase <— GetCurrentTrajectory()

3: if p(Pe, Thase, t) < 0 then

4:  for all state variable v; in s; do

5: forall 6 € {—¢,¢e} do

6: s} < PerturbState(s;, v;, 0)

7: 7/ < SimulateTrajectory (s}, as)

8: if IsValidCounterexample(7’, ¢., ¢.) then
9: CE+ CEU{r'}

10: end if

11: end for

12:  end for

13: end if

14: return CE

6. Theoretical Results

Theorem 1 (Finite-Sample Guarantees for STL-CIRL) (Joint convergence of causal formula
refinement and policy learning)

Let M = (S, A, P, R,~) be an MDP, where S is the state space with cardinality |S|, A is the
action space with cardinality |A|, P is the transition kernel, R is the reward function bounded by
Tmax = max{efPma —e=Prmin} and ~ € [0,1) is the discount factor. Then, for any § € (0,1) and
number of episodes K, with probability at least 1 — 6, the following guarantees hold simultaneously
(The term 1 — ¢ represents the confidence level of the probabilistic guarantee. In probabilistic
analysis, § is a small positive number that indicates the probability of failure or the event not
occurring. Therefore, 1 — § is the probability that the event will occur, which is the confidence
level.): 1. Q-Learning Convergence: The learned Q-function converges to the optimal Q-function

for the current cause formula with error bounded by |Qx — Q" (¢X)||o0 < (172’“7‘)2 2log]((2/ J)




MINING CAUSAL STL FORMULAS FOR EFFICIENT RL IN TEMPORALLY EXTENDED TASKS

This bound quantifies how quickly the agent learns the optimal policy given the current causal
understanding.
2. Formula Optimization: The objective function value of the learned cause formula approaches

that of the optimal formula: J(¢p%) > J(¢%) — O % . This guarantee ensures that our

causal formula refinement process converges to an optimal explanation of the environment’s dynam-
ics.

3. Policy Performance: The probability of satisfying the effect formula increases with training:
P(p(¢e, Tc) > 0) > p* — O(1/V'K), where p* is the maximum achievable satisfaction probability

. ; ; . Lo . log(3/8
under any policy. This bound is derived from the concentration inequality |pr — p*| < %,

which holds with probability 1 — §/3. Here, pr represents the empirical satisfaction probability,
and the concentration around p* ensures that our learned policy approaches optimal performance
as K increases. The rate of convergence is governed by both the number of episodes K and our
confidence parameter 8, while being supported by our bounded robustness assumption (A4) and
sufficient exploration guarantee (Al).

Assumptions: The theorem assumes (Al) Sufficient Exploration: Each state-action pair is vis-
ited Q(log(K)/e?) times during training; (A2) Bounded Rewards: All rewards are bounded by
[—Tmax, Tmax); (A3) Kernel Regularity: The GP kernel is Lipschitz continuous with constant L; (A4)
Bounded Robustness: The robustness values p(¢, T, t) are bounded for all formulas ¢ and trajecto-
ries T (see Appendix 9.2).

Proof We prove each claim through careful analysis of the learning dynamics:

1. Q-learning Convergence: For finite episodes K and bounded rewards |r;| < 7max, We
apply the standard Q-learning analysis with bounded rewards. The key insight is that our exponen-
tial reward transformation maintains boundedness while emphasizing the importance of satisfying
temporal logic constraints. The error bound:

10k — Q*(# oo < Tmx_, 2108(2/0)

i-2V K ®

follows from the Hoeffding inequality applied to the Q-learning updates, where the (1 —+)? term ac-
counts for reward propagation through time and 7.« captures the scale of our transformed rewards
(see Appendix 9.4).

2. Formula Optimization: The Gaussian Process optimization of causal formulas achieves the

following regret bound:
J(@E) = J(97) = O (\/ﬁngK> (10)

with probability 1 — §/3. Here, Bx = O(log K) is the exploration bonus and 7k is the maximum
information gain of the GP model. This bound leverages the smoothness of our objective function
induced by the Lipschitz kernel (A3). The probability term arises from applying the union bound
across the three events (Q-learning convergence, formula optimization, and effect satisfaction), en-
suring all bounds hold simultaneously with probability at least 1 — § (See Appendix 9.4).

3. Policy Performance Bound: The probability bound for policy performance concentrates
around its true value according to Hoeffding’s inequality:

log(3/9)

hre — pf| < ) ==l 11
lpr —p*| < Ve (11)
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with probability 1 — 6/3. This bound quantifies how quickly the learned policy approaches optimal
performance in terms of satisfying the effect formula, supported by our bounded robustness assump-
tion (A4) and sufficient exploration guarantee (Al) (See Appendix 9.4). The proof demonstrates
joint convergence of Q-learning and causal discovery through GP optimization, while maintaining
probabilistic guarantees on task completion. |

6.1. Existence Robustness as a Lower Bound for Formula Refinement

Theorem 2 (Existence Robustness Bound) Let ¢. be a candidate cause formula, E be the exis-
tence measure, and p(¢p¢, T,t) denote the robustness of ¢. on a trajectory T at time t. For a set of
counterexamples CE, the existence measure E satisfies:

E < ¢~ minrece plde,mt) (12)
where CE is the set of counterexamples identified during reinforcement learning exploration.

Proof The existence measure E is defined as:
E = e Meanlp(bet)) - yr € CE, (13)

where Mean(p(¢., T,t)) denotes the average robustness of ¢, over all counterexamples 7 € CE.
By definition of the mean, it holds that:

Mean(p(¢e, 7,t)) > min p(¢e, T, ). (14)

Since the exponential function e™* is monotonically decreasing with respect to =, we have:

e —Mean(p(de,7,t)) <e minrece p(Pe,Tit) 15)

Substituting the definition of E into this inequality, it follows that:
E<e minrcce p(¢e,T:t) (16)

This completes the proof of the bound. |

7. Implementation and Experiments
7.1. Case Study: Gene Regulation Environment

To evaluate our approach, we implemented a gene regulation environment where a reinforcement
learning agent must discover and exploit causal relationships between gene mutations and disease
progression. We compare our approach against a counterfactual-based RL agent (see Appendix 9.1).
The environment consists of a 5x5 grid where the agent can navigate and interact with four genes:
G1, G2, G3, and G4. The state space is defined as S = {(z,v), G1, G2, G3, G4, D}, where (z,y)
represents the agent’s position, G; € {0, 1} represents the mutation status of gene i (0 = normal, 1
= mutated), and D € [0, 100] represents the disease progression level. The action space .A consists
of movement actions A,,, = {UP, DOWN, LEFT,RIGHT} and gene modification actions A, =
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{MODIFY G; | i € {1,2,3,4}}. The environment’s underlying causal structure is represented by
the following Causal STL formula:

q):D[O,T]((Gl :1/\G2:1/\G4: 1/\G3:0) N
O[o,tl](MOdifyGl = 0) VAN O[tth](MOdifyG2 = 0) A Q[t27t3](ModifyG4 — 0) (17)

~~ Q,145] (DiseaseProgression = 0))

nal-ba
300 s STL-CIRL

200

P

0 2300 5000 7300 10000 12500 15000 17500
Episode Number

Figure 1: Performance comparison between Standard RL, Counterfactual-based RL, and STL-
CIRL approaches in the gene regulation environment.

where 1, t2, and t3 represent temporal bounds for modification steps, and J represents the time
window for disease progression to reach zero. Experimental results demonstrated that incorporating
Causal STL enabled faster learning of gene modification sequences, consistent disease reduction,
and better rewards compared to baseline RL and Counterfactual-based RL agents.

7.2. Case Study 2: Traffic Signal Control

To demonstrate our approach’s versatility, we evaluated it in a traffic control environment where
an agent must optimize traffic flow across multiple intersections. The environment consists of a
3x3 grid of intersections controlled by traffic signals. The agent must coordinate these signals to
minimize vehicle wait times while maintaining safety constraints. The state space .S is defined as
S = {(Qij,Vij, T3, Fij) | i,5 € {1,2,3}} where @;; represents the queue length at intersection
(4,7), Vij is the average vehicle velocity, Tj is the signal phase timing, and F;; represents the traffic
flow rate between adjacent intersections. The environment’s causal structure is formalized through
the following Causal STL formula:

® = Uo7 ((Qij > Qthresh A Vij < Viwesh A Fij > Finresh) ~ Qjo,¢,](GreenPhase;; = 1)) (18)

This formula expresses a clear causal relationship: whenever the queue length at any inter-
section (4, 7) exceeds a threshold Quresh (indicating congestion), vehicle speed drops below Vipresh
(indicating slow traffic flow), and incoming traffic flow rate F;; exceeds threshold Fipesn (indicat-
ing sustained high demand), the traffic signal at that intersection should eventually (within time ¢;)
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Figure 2: Traffic control environment: A 3x3 grid of intersections with traffic signals. The system
must coordinate signals while considering traffic flows, queue lengths, and safety con-
straints.

turn green. This captures the core cause-effect relationship in our traffic control system while being
more tractable for learning and analysis.

Cumulative Rewards per Episode

= Standard RL
Counterfactual-based RL
= STL-CIRL

Average Reward

" M

0 500 1000 1500 2000 2500 3000

Episode Number

Figure 3: Performance comparison between Standard RL, Counterfactual-based RL, and STL-
CIRL approaches in the traffic control environment.

8. Conclusion

We introduced STL-CIRL, a framework synthesizing Causal Signal Temporal Logic and reinforce-
ment learning. Our key contributions include a method for extracting causal temporal logic formu-
las from RL data, theoretical convergence analysis with sample complexity bounds, and dynamic
counterfactual traces for evaluating alternative outcomes. Experiments in gene regulation and traf-
fic control demonstrate that our CausalAgent consistently outperforms conventional RL methods.
These findings highlight the benefits of combining causal reasoning with temporal logic in RL,
suggesting promising directions for future work in stochastic and multi-agent settings.
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9. Appendix

9.1. Counterfactual-based Reinforcement Learning

For comparison purposes, we implement a Counterfactual Reinforcement Learning (CF-RL) agent
that utilizes counterfactual reasoning without structured causal knowledge, building on work by
(Zhang et al. (2015)). This approach creates counterfactual states through a parametric transforma-
tion s; = f(s¢, at, #), where 6 denotes environmental parameters. The agent optimizes a composite
reward function that combines observed and counterfactual outcomes:

Rtotal == (1 - )\)Ractual + )\Rcf (19)
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MINING CAUSAL STL FORMULAS FOR EFFICIENT RL IN TEMPORALLY EXTENDED TASKS

where A € [0, 1] weights the counterfactual influence. Counterfactual rewards incorporate a similarity-
weighted function:

S — S/ 2
Rcf(Sf:, at) = Ractual(sgy at) - eXp <_”t202t‘> (20)

where o controls the influence radius of counterfactual states. The Q-values update incorporates
both actual and counterfactual experiences:

Qlst,ar) « (1 — )Q(st, ar) + o [Tt +ymax Q(st+1,d") + 5Rcf] 21
with learning rate «, discount factor -, and counterfactual weight 3.

9.2. Robustness Calculation and Bounds

The robustness degree for STL formulas is calculated recursively according to the following rules
(Aksaray et al. (2016)):

p(sv_'(f() )7 ): ( ( ()<d)7t)
p(s, (f(s) <d),t) =d— f(st)
P(87¢>1/\¢2a ):mln( ( , P15 )7 (S7¢27t))
p(s, @1V ¢2,t) = max(p(s, ¢1,1), p(s, d2,1)) 22)
Pl Doy ):t'e[t+}znt+b] pls &,t)
(s, Opapd:t) = peinax p(s, ¢,t")

From these calculations, we can derive the following bounds:

Theorem 3 (Robustness Bounds) For an STL formula ¢ and signal s, the robustness degree is
bounded as follows:
1. For atomic predicates:

—M < p(s, (f(s) < d),t) < d (23)

where M = sup, | f(s¢)| is the supremum of the signal values.
2. For Boolean combinations:

min(pmin(¢l)7 pmin(¢2)) < P(S, @bl A ¢27 t)

. (24)
< mln(Pmax(¢1)7 pmax(¢2))
max(pmin(¢1)7 pmin((bZ)) < /)(37 ¢1 \% ¢27 t) (25)
< max(pmax(d)l); pmax<¢2))
3. For temporal operators:
pmm(¢) < p(Sv D[a,b]¢7t) < pmm(¢) (26)
pmin((b) S 0(87 Q[a,b]d% t) S prnax(ﬁ@ (27)
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9.3. Foundation Theorems

The bounds in our main theorem build upon several fundamental results from reinforcement learning
and optimization theory:

Theorem 4 (STL Robustness Properties) For an STL formula ¢ and trajectories 11, To, the ro-
bustness degree p(p, T,t) satisfies (Jha et al. (2019); Aksaray et al. (2016)):

1. Soundness: p(¢,7,t) >0 = 7 |= ¢ attimet
2. Completeness: T = ¢ at timet — p(¢,7,t) >0

3. Lipschitz Continuity: For any two trajectories Ty, To:

‘p((bv’rht) _p((b:TQ’t)‘ SL(f)”TI_TQHOO (28)
where Ly is the Lipschitz constant of ¢.

4. Compositional Bounds: For temporal operators:
p(<>[a,b]¢7 T, t) < max p(Qb, T, t/)
t'e[t+a,t+b]

p(‘:‘[a,b] ¢, 7, t) > min p(¢a T, t,)
t'€[t+a,t+b]

(29)

These properties ensure that robustness degrees provide meaningful quantitative measures of satis-
faction and enable stable learning dynamics.

Proof 1. Soundness: By construction of the robustness degree, p(¢,7,t) > 0 implies that 7
satisfies ¢ with a positive margin, ensuring satisfaction.

2. Completeness: If 7 |= ¢, the satisfaction must occur with some non-negative margin, thus
p(¢,7,t) > 0.

3. Lipschitz Continuity: For atomic predicates u, the result follows from the Lipschitz conti-
nuity of the predicates themselves. For temporal operators, we apply the triangle inequality and use
induction on the formula structure.

4. Compositional Bounds: These follow directly from the semantics of eventually ({) and
always ([J) operators. Eventually takes the maximum robustness over the interval, while always
takes the minimum robustness over the interval. The result follows from the definition of temporal
operators and the monotonicity of min/max operations.

|

Theorem 5 (Hoeffding’§ Inequality) Ler X, ..., X, be independent random variables with a; <
X; < b; foreachi. Let X = %Z?:l X;. Then for anyt > 0:

3 3 2 242
P(|X —E[X]| > ¢) < 2exp <—2:n_1(7;t_a1)2) (30)

This inequality is crucial for establishing our Q-learning convergence bounds (Fan et al. (2021)).
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Theorem 6 (GP-UCB Regret Bound) For a GP-UCB algorithm with kernel k and noise variance
o2, after T rounds, with probability at least 1 — 6, the cumulative regret Ry is bounded by (Srinivas

etal (2012)):
Rr </ CiTBryr (31

where By = 2log(|A|T?*72/(66)), yr is the maximum information gain, and C1 is a constant
depending on the kernel.

Theorem 7 (Bellman Contraction) For any two Q-functions (Q1 and QQ2, the Bellman operator T
is a contraction in the sup-norm (Bertsekas and Tsitsiklis (1996)):

1TQ1 — T Q2o <7[|Q1 — Q2|0 (32)

where y € [0, 1) is the discount factor. This guarantees the convergence of Q-learning.

9.4. Mathematical Foundations and Derivations

The mathematical equations and inequalities in our theoretical results arise from several key princi-
ples:

1. Q-Learning Error Bound: The Q-learning error bound

Tmax 2log(2/96)
(1—7)? K

1QK — Q* (650 < (33)

emerges from a rigorous analysis of the learning dynamics. The derivation proceeds as follows:

a) Value Propagation Analysis: The geometric series of discounted rewards yields:

o0

r
Z 'Ytrmax = 1 s (34)
t=0 -7

This sum represents the maximum possible cumulative reward, where 7, bounds individual re-
wards. The factor ﬁ accounts for infinite-horizon discounting.

b) Concentration Inequality: By Hoeffding’s inequality, for any € > 0:

A N 2K €?
P (51 - @ (s.0)| 2 ) < 2exp (255 G5)
max
where Q K 1s the empirical Q-function after K episodes.
¢) Error Propagation: The combined error analysis yields:
T 2log(2/d
@it = @l £ 7101 — Qo+ 1222 (36)

Through telescoping and taking the limit as k£ — K, we obtain our final bound. The result cap-
tures the effect of finite sampling through O(1/ VK ) convergence, accounts for reward propagation
via the (1 — 7)? term, provides high-probability guarantees through log(2/4), and maintains tight
dependence on the reward scale rpax.
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2. Formula Optimization Bound: The bound J(¢X) > J(¢¥) — O < BK&”‘) provides a

performance guarantee for the optimization process, showing how close the algorithm gets to the
optimal objective value J(¢}) after K iterations. This bound arises from the interaction of several
foundational principles in Gaussian Process (GP) optimization, detailed as follows:

a) GP-UCB Regret Analysis: The cumulative regret R captures the total performance gap be-
tween the optimal choice and the selected points over 7 iterations (Whitehouse et al. (2023)):

T
Rr =Y (f(z") = f(w)), (37)
t=1

where f(z*) is the value at the optimal point, and f(x) is the value at the selected point at time ¢.
This represents the “cost of learning” due to exploration. The regret accumulates as the algorithm
balances exploration (gathering information about f) and exploitation (selecting high-performing
points).

b) Information Gain Analysis: The maximum information gain 7 quantifies the reduction in
uncertainty about the function f over time (Vakili et al. (2021)):

1 -
r =5 log |+ 0" Krl, (38)

where [ is the identity matrix, o2 is the noise variance, K7 is the kernel matrix of the GP model at
time 7', and | - | denotes the determinant. This term measures how much knowledge the algorithm
has gained about the objective function through the collected observations. The kernel matrix en-
codes the correlations between points in the input space, allowing the GP to interpolate and reduce
uncertainty.

¢) Kernel Regularity Property: The Lipschitz continuity of the kernel function guarantees smooth
interpolation of the GP model (Fiedler (2023)):

|k(z,2") = k(y,9)] < LIz — yll + 112" = '), (39)

where L is the Lipschitz constant. This property ensures that similar inputs produce similar outputs,
that the objective function f does not change abruptly in small neighborhoods, and that predictions
of the GP model are reliable around observed data points. Smoothness is critical for ensuring stable
convergence and accurate predictions during optimization.

d) RBF Kernel Information Gain: For the commonly used Radial Basis Function (RBF) kernel,
the maximum information gain is bounded as (Srinivas et al. (2012)):

vr = O((log T)%*1), (40)

where d is the input dimension. This bound implies that information gain grows logarithmically
with iterations 7, ensuring efficient exploration. It scales polynomially with input dimension, mak-
ing it suitable for moderately high-dimensional problems, while limiting the computational cost of
updating the GP model.
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Integration of Bounds for Formula Optimization: The bound combines key insights to guaran-
tee predictable convergence to the optimal formula:

1. Bounded Robustness Contribution: For two parameterized STL formulas ¢; = ¢(61) and
¢2 = ¢(f2), the change in robustness for a trajectory 7 at time ¢ is bounded by:

[p(D(01),7,1) = p(d(02), 7, 8) < Ly|[0h — 2], (41)

where || — 63| is the distance between parameter vectors, and L, is the Lipschitz constant
for robustness with respect to the parameters. This property ensures that small changes in
parameters lead to predictable changes in robustness, stabilizing the optimization process.

2. Information Gain Accumulation: The accumulated information gain reduces uncertainty
over time, contributing to faster convergence (Contal et al. (2014)):

K
VK = Zf(yt; fi|Di—1) = O((log K4, (42)
t=1

where I(y;; ft|D¢—1) is the mutual information between observations y; and the function f;
given the past data.

3. Posterior Variance Reduction: The GP posterior variance decreases as more observations
are made (Contal et al. (2014)):

() < PRTE, 3)

where S = O(log K) is the exploration parameter. This reduction reflects increased confi-
dence in the GP model’s predictions as K grows.

4. Combined Optimization Bound: Together, these components yield the final bound:

T > Jg) | P, (44)

This final bound emerges from the following reasoning: The cumulative regret analysis pro-
vides the basic O(1/ VK ) convergence rate. The information gain 5 moderates exploration
efficiency through uncertainty reduction. The exploration parameter Sx ensures sufficient
exploration while maintaining exploitation. The Lipschitz continuity of the kernel guarantees
smooth interpolation between observations. The square root form arises because the poste-
rior variance af( (x) contributes quadratically to the uncertainty. The exploration-exploitation
tradeoff requires balancing immediate rewards with information gain. The cumulative regret
accumulates as v/ K due to the martingale property of the GP model.

3. Policy Performance Bound: The probability bound
P(p(¢e, i, t) > 0) > p* — O(1/VK) (45)

follows from several key theoretical components that together establish the convergence rate of
policy performance:

17



ARIA XU

1. Empirical Bernoulli Estimation: The empirical success probability pg is estimated as (Ca-
bilio (1977)):

K
1
K= ;%[p(ebe,fi,t) > 0) (46)

where JF[] is the indicator function that equals 1 if the condition is true and 0 otherwise. This
estimates the fraction of trajectories that satisfy the effect formula by evaluating the ratio of
successful trajectories (those with positive robustness) to the total number of trajectories K,
effectively converting continuous robustness values into binary satisfaction outcomes.

2. Concentration Analysis: By Hoeffding’s inequality for bounded random variables:
P(lprc — 1’| 2 €) < 2exp(—2K¢%) @7
This inequality bounds the probability that our empirical estimate px deviates from the true
probability p* by more than e. Setting € = % yields our desired confidence level.
3. Bounded Robustness: By assumption (A4), robustness values are bounded:

|p(¢e, T, t)| < M for some M > 0 (48)

This boundedness is crucial as it ensures the validity of concentration inequalities, stabilizes
learning dynamics, and enables meaningful probability estimates.

Integration of Components: These elements combine to establish the policy performance
bound through the following logic:

1. The empirical estimation provides a consistent estimator of satisfaction probability. 2. Ho-
effding’s inequality quantifies the estimation error rate as O(1/+/K). 3. Bounded robustness fun-
damentally guarantees stable learning dynamics through several mechanisms:

a) Gradient Stability: Bounded robustness implies that the robustness measure p(¢e, 7, t) is both:

1. Lipschitz in the parameters : There exists L, such that

(6 + A9) — p(8)] < L, || 26]. (49)

2. Bounded by M: The function p(¢., 7,t) (or its range) does not exceed M in absolute value.
From these two assumptions, it follows that the gradient of p w.r.t. 6 is also bounded:
IVop(de, T, t)|| < Ly M. (50)

This result prevents exploding gradients during learning by ensuring gradient updates remain within
controlled limits (Jin and Lavaei (2018)).

b) Value Function Convergence: Since p(¢.,T,1) is bounded by M, any Q-function update tied
to p changes by at most yM at each iteration, where -y is the discount factor:

|Qi41(s,a) — Qu(s,a)| < M. 51D

This cap on the change in Q;(s,a) values enforces stable value iteration, preventing excessive
swings from one iteration to the next.
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¢) Policy Update Stability: Since the robustness p(¢, 7, t) is bounded by M, this translates into
a limit on how much the associated Q-values (or value function) can change. Consequently, the
induced policy changes are also constrained. A key observation is that a policy 7 is a probability
distribution over actions, and when one distribution 71 shifts probability mass from an action a
to another action b, the £, difference ||m;41(-) — m¢(+)||co can, in the worst case, incur a factor of 2
(moving probability mass from 0 to 1 for one action and from 1 to 0 for another). Combining this
with the bounded change in Q-values from iteration to iteration yields:

2M

- (52)

|41 — Ttl|oo <

which ensures that the policy does not shift too abruptly. This factor of 2 accounts for the possibility

of moving all probability mass from one action to another, and the term (1 — ) in the denominator

reflects the discounting in reinforcement learning, leading to stable and gradual learning progress.
The final bound emerges from:

P(p(de, 7i,t) > 0) = p* + (bx — p")
>p" = [px — P (53)
>p* - O(1/VK)
This shows that the probability of satisfying the effect formula approaches the optimal probabil-

ity p* at a rate of O(1/+/ K), which is optimal for statistical estimation without additional smooth-
ness assumptions.

19



	Introduction
	Motivation: Gene Modification for Disease Treatment

	Preliminaries
	Syntax of Causal STL
	Qualitative Semantics of Causal STL
	Quantitative Semantics of Causal STL
	Inference of Causal STL Formulas

	Q-Learning with Reward Functions for STL Objectives
	Reward Function for STL

	Coupled RL with Bayesian Optimization for Cause-and-Effect Satisfaction
	Counterexample Generation Method
	Theoretical Results
	Existence Robustness as a Lower Bound for Formula Refinement

	Implementation and Experiments
	Case Study: Gene Regulation Environment
	Case Study 2: Traffic Signal Control

	Conclusion
	Appendix
	Counterfactual-based Reinforcement Learning
	Robustness Calculation and Bounds
	Foundation Theorems
	Mathematical Foundations and Derivations


