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Abstract
We propose a bidirectional end-to-end reinforcement learning (RL) framework for solving complex
non-Markovian tasks in discrete and continuous environments. Instead of directly learning policies
in high-dimensional spaces, we first construct a simplified teacher model as a surrogate environment
from offline trajectories. Simultaneously, we infer a Deterministic Finite Automaton (DFA) using
the RPNI algorithm to capture task dependencies. A policy is learned in the surrogate environment
and transferred to the original domain via automaton distillation, which guides policy learning more
effectively than direct RL in the original environment. Our framework integrates DQN for discrete
tasks and DDPG/TD3 for continuous settings. Empirical results demonstrate that this structured
transfer significantly improves learning efficiency, and convergence speed, outperforming standard
RL baselines.
Keywords: Reinforcement Learning, Non-Markovian Decision Processes, Automaton Learning,
Surrogate Environment Learning, Bidirectional Knowledge Transfer, Automaton Distillation.

1. Introduction

Reinforcement learning (RL) has demonstrated significant success in solving complex decision-
making problems across diverse domains, including robotics Jens Kober and Peters (2013), au-
tonomous systems Sutton and Barto (1998), and game-playing Mnih and et al. (2015); Silver and
et al. (2016). Standard RL algorithms, such as Q-learning Watkins and Dayan (1992) and policy
gradient methods et al. (2017), typically operate under the Markov assumption, where rewards and
transition probabilities depend solely on the current state and action. However, many real-world
environments exhibit non-Markovian properties, where rewards depend on historical sequences of
states and actions rather than the current observation alone Bacchus and Renold (1996); Littman
and et al. (2017). Such dependencies introduce challenges for conventional RL approaches, as they
require an agent to model and reason over temporal structures instead of relying on memory-less
state representations Icarte and et al. (2018); Camacho and et al. (2019).

The problem becomes even more challenging in environments with continuous state and ac-
tion spaces, where learning optimal policies requires function approximation, efficient exploration
strategies, and generalization over high-dimensional inputs Lillicrap and et al. (2016); et al. (2018c).
Handling non-Markovian rewards in such settings requires additional abstraction mechanisms, as
agents must capture and incorporate historical dependencies over continuous representations Doya
(2000); Barreto and et al. (2017).
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1.1. Contributions

In this work, we propose a bidirectional end-to-end RL framework designed for efficient policy
learning in complex non-Markovian environments with both discrete and continuous dynamics.
Unlike conventional RL approaches that directly optimize policies in complex environments, our
framework introduces a structured, two-way information flow between an abstract teacher environ-
ment and the real-world target environment. Our approach consists of three key components:
1. Learning an abstract teacher environment: Instead of directly training in a complex envi-
ronment with unknown reward dynamics, we first construct a simplified teacher environment as
a surrogate simulator from an offline dataset of positive and negative trajectories. In continuous
settings, we use discretization to transform the environment into a structured, lower-dimensional
space, which facilitates learning. Other forms of abstraction will be explored in future work.
2. Passive automaton learning via RPNI: To address non-Markovianity, we employ the Regular
Positive and Negative Inference (RPNI) algorithm Oncina and Garcı́a (1992) to passively infer a
Deterministic Finite Automaton (DFA) from observed agent trajectories. The learned DFA serves a
threefold purpose: (i) encoding the temporal dependencies of the non-Markovian reward function,
enabling structured reasoning over task progression without requiring interactive queries or prede-
fined task specifications Camacho and et al. (2019); Icarte and et al. (2018), (ii) evaluating poli-
cies within the teacher environment, as both student and teacher share the same automaton-defined
objective, and (iii) providing a compact, low-dimensional representation based on state labels (fea-
tures) to facilitate policy transfer through distillation from teacher to automaton to student.
3. Knowledge transfer via automaton distillation: Once a policy is learned in the teacher environ-
ment, task knowledge is transferred back to the real target environment through automaton-guided
distillation. The learned DFA and value function guide the student agent in policy optimization
within the original, more complex environment. This knowledge transfer is seamlessly integrated
into discrete RL settings via Q-learning and Deep Q-Networks (DQN) Mnih and et al. (2015) and
extended to continuous control via Deep Deterministic Policy Gradient (DDPG) Lillicrap and et al.
(2016) and Twin Delayed DDPG (TD3) et al. (2018b).

To the best of our knowledge, this is the first end-to-end framework that establishes a bidirec-
tional information flow, integrating the learning of a simulator with a logical task representation in
the form of a DFA, and bootstrapping knowledge back through automaton distillation. The DFA not
only encodes task structure but also serves as a trajectory evaluator within the simulator, ensuring
policies are assessed based on task progression.

1.2. Related Work

Non-Markovian Reinforcement Learning. Handling non-Markovian rewards has been widely
studied, with various strategies such as augmenting state representations with memory Lin (1993),
using recurrent neural networks for history encoding Bakker (2002), or leveraging temporal logic
representations Bacchus and Renold (1996); Camacho and et al. (2019). Automata-based meth-
ods provide a structured means to model long-term dependencies in RL, facilitating learning by
introducing task structure and guiding exploration Icarte and et al. (2018); et al. (2019).

Automaton Learning. Automaton learning techniques have been extensively explored in the con-
text of formal verification and RL. Angluin’s L∗ algorithm Angluin (1987) provides a well-known
active learning approach but requires interactive queries, making it unsuitable for passive data-
driven learning. Instead, passive algorithms like RPNI Oncina and Garcı́a (1992) infer DFA struc-
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tures from observed sequences without explicit interactions. These methods have been used to
extract task structures from RL trajectories Camacho and et al. (2019); Icarte and et al. (2018).

Automaton-Guided RL. Several approaches integrate automata into RL to enforce task con-
straints and improve exploration efficiency Hahn and et al. (2019); Hasanbeig and et al. (2020).
While most methods assume a predefined automaton representation, we extend this paradigm by
learning the automaton passively from data and using it as an integral component of bidirectional
knowledge transfer. Our approach also differs from previous automaton-based RL methods in that
we do not assume prior knowledge of teacher-student mappings or handcrafted reward shaping.

Transfer Learning and Automaton Distillation in RL. Transfer learning in RL enables agents
to leverage prior knowledge from a source domain to improve learning in a target domain Taylor
and Stone (2009). Existing approaches include policy distillation Rusu and et al. (2015), successor
feature transfer Barreto and et al. (2017), and hierarchical skill transfer et al. (2018a). Automaton
distillation Singireddy et al. (2023), a neuro-symbolic transfer learning approach, has also been
explored for structured knowledge transfer in deep RL. However, prior methods assume predefined
task structures, requiring an explicit automaton and a known mapping between teacher and student
environments. Additionally, they typically rely on a manually specified reward function in the
teacher environment, limiting their applicability in scenarios where rewards are unknown or sparse.

In contrast, our bidirectional framework removes these assumptions by jointly learning both
the automaton and the teacher environment from offline positive and negative trajectories. This
allows for structured transfer without predefined task representations or explicit reward engineering,
making our approach more broadly applicable to real-world RL problems.

This paper is organized as follows. Section 2 provides necessary background and preliminaries.
The problem formulation is presented in Section 3 along with an overview of our framework. Sec-
tion 4 details our methodology. Section 5 presents experimental results and analysis. Finally, we
conclude in Section 6. Additional experimental results and details are deferred to the appendix.

2. Background and Preliminaries

In this section, we provide the necessary background and formal definitions underlying our proposed
framework. Our method addresses the challenges of learning in non-Markovian environments with
unknown rewards and complex dynamics by constructing an intermediate teacher environment and
learning structured representations.

Definition 1 (NMRDP) A Non-Markovian Reward Decision Process (NMRDP) is defined by the
tuple M = (S,A, T, r, γ), where S is a finite set of states, A is a finite set of actions, and T :
S × A × S → [0, 1] specifies the probability T (s, a, s′) = Pr(s′ | s, a) of transitioning to state
s′ ∈ S from s ∈ S under action a ∈ A. Unlike standard MDPs, the reward function r in an NMRDP
depends on the history of states and actions rather than only the current state-action pair. Formally,
r : (S×A)∗ → R assigns rewards based on full trajectories, allowing for richer task specifications
that capture long-term dependencies. The parameter γ is a discount factor.

The challenge in solving NMRDPs lies in the need for historical reasoning, which significantly
complicates policy learning. This is mitigated in our approach through automaton learning, which
extracts temporal dependencies and encodes them into structured representations, allowing agents
to operate in an augmented Markovian state space (S × Ω), where Ω represents automaton states.
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Definition 2 (DFA) A Deterministic Finite Automaton (DFA) is defined as a tuple A =
(Ω,Σ, δ, ω0, F ), where Ω represents a finite set of automaton states, Σ is a finite input alphabet,
δ : Ω × Σ → Ω defines the transition function, ω0 ∈ Ω is the initial state, and F ⊆ Ω is the set of
accepting (final) states. The automaton processes a sequence of symbols w = σ1σ2 . . . σn ∈ Σ∗ by
beginning in the initial state ω0 and applying the transition function recursively as ωi = δ(ωi−1, σi)
for i = 1, . . . , n. A sequence w is accepted if and only if the final state ωn ∈ F .

DFAs provide a compact representation of regular languages and are particularly useful for
encoding task-specific sequences of events or subgoals in RL tasks. In our framework, DFAs are
not assumed to be given but are inferred from positive and negative trajectories collected from an
offline dataset. This bidirectional approach allows us to both extract structured knowledge from
data, and use this knowledge to enhance policy learning.

Definition 3 (Product MDP) Given an environment NMRDP M = (S,A, T,R, γ) and a DFA
A = (Ω,Σ, δ, ω0, F ), we construct the product MDPM⊗A Baier and Katoen (2008), denoted
asM′ = (S′, A, T ′, R′, γ). The state space of the product MDP is S′ = S × Ω, augmenting the
environment states with the automaton states. The transition function T ′ : S′ × A × S′ → [0, 1]
follows T ′((s, ω), a, (s′, ω′)) = T (s, a, s′) if ω′ = δ(ω,L(s′)), and 0 otherwise, where L : S → Σ
is a labeling function mapping states to automaton symbols. The reward function R′ : S′ ×A→ R
may incorporate automaton state information, and the discount factor γ remains unchanged.

Solving the product MDPM′ enables learning policies that account for both the environment dy-
namics and automaton-based task progression, effectively handling non-Markovian rewards.

3. Problem Formulation and Framework

3.1. Problem Formulation

We consider an RL problem where an agent interacts with a complex environment modeled as an
NMRDPM = (S,A, T,R, γ), recalling that R : (S × A)∗ → R is the unknown non-Markovian
reward function. We are given an offline dataset D = {(τi, yi)}Ni=1, where each trajectory τi =
(si0, a

i
0, s

i
1, . . . , s

i
ni
) consists of a sequence of states and actions, and yi ∈ {+1,−1} indicates

whether the trajectory successfully achieved the task.
To capture the underlying task structure, in our framework we learn a DFAA = (Ω,Σ, δ, ω0, F )

in which each state s ∈ S in the environment is mapped to an automaton label via L : S → Σ.
A trajectory τi is successful if it induces an automaton state sequence (ω0, ω1, . . . , ωT ) such that
ωT ∈ F . However, learning a policy directly in M is challenging, due to the complexity of the
environment, the unknown transition dynamics and the absence of a Markovian reward.

3.2. Bidirectional Learning Framework

To address these challenges, we propose a bidirectional learning framework that enables structured
knowledge transfer between a teacher environment and the original complex environment as illus-
trated in Fig.1. This framework consists of two complementary information flows:
Student-to-Teacher Flow: We extract information from the student environmentM by learning a
surrogate teacher model M̂ = (Ŝ, Â, T̂ , R̂, γ), where Ŝ and Â represent an abstracted state-action
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space, and T̂ is a learned approximation of the transition function, constructed from the dataset D.
This model provides a structured environment where policies can be learned efficiently.
Learning in the Teacher Environment: To incorporate task structure, we construct a product
MDP M̂′ = (Ŝ′, Â, T̂ ′, R̂, γ), where Ŝ′ = Ŝ × Ω. The transition function T̂ ′ jointly updates the
environment and automaton state, T̂ ′((s, ω), a, (s′, ω′)) = T̂ (s, a, s′) · 1{ω′ = δ(ω,L(s′))}. The
automaton serves as an evaluator in this environment, enabling a policy πteacher to be learned via

πteacher = argmax
π

E

[ ∞∑
t=0

γtR̂(st, ωt, at)

]
. (1)

Teacher-to-Student Flow: Once a policy is learned in the teacher environment, knowledge is trans-
ferred back to the student environment via automaton distillation. This ensures that the student agent
leverages structured knowledge from the teacher model while adapting to the complexities of the
original environment. The final goal is to learn an optimal policy π∗ that maximizes task success in
the original environment:

π∗ = argmax
π

E

[ ∞∑
t=0

γtR(τ)

]
, (2)

where R(τ) is implicitly learned through DFA-based evaluation.

Figure 1: Overview of the Bidirectional Learning Framework. It enables structured knowledge transfer
between a teacher and student environment, using automaton distillation for improved policy learning.

Next, we describe how our framework infers the automaton, constructs the teacher model, learns
a policy in the teacher environment, and transfers knowledge back through automaton distillation.

4. Methodology

4.1. Passive DFA Learning with RPNI

To handle non-Markovian rewards, we capture temporal dependencies through a DFA. We employ
the RPNI algorithm Oncina and Garcı́a (1992) to infer a minimal DFA from positive and negative
sequences extracted from the offline dataset.

Originally, RPNI was developed for grammar induction and formal language learning, where it
passively infers a DFA that generalizes from labeled sequences of symbols. Unlike active learning
approaches such as Angluin’s L∗ algorithm Angluin (1987), which require explicit queries, RPNI
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operates passively, making it particularly suitable for offline RL settings, where only trajectory data
is available. Our framework extends RPNI beyond its traditional setting by integrating it into an
RL framework. Our insight is to leverage RPNI to capture temporal dependencies in tasks with
non-Markovian reward structures, allowing us to infer structured representations that guide policy
learning in environments with implicit task constraints.
Trajectory Labeling and Symbol Extraction. Each trajectory from the offline dataset D is
mapped to a symbolic sequence using the labeling function L : S → Σ. Given a trajectory
τ = (s0, a0, s1, a1, . . . , sn) from the original environment, we extract the corresponding symbolic
sequence w = L(s0) . . . L(sn). Positive sequences (P ) correspond to successful trajectories (end-
ing in an accepting state), while negative sequences (N ) correspond to failures.
Building and Merging. RPNI constructs a Prefix Tree Acceptor from P , then merges states so
as not to accept any sequence in N . The final DFA A = (Ω,Σ, δ, ω0, F ) encodes the essential
subgoal or event ordering required for success. This automaton transforms a non-Markovian reward
structure into a Markovian product MDP when combined with the NMRDP.

4.2. Surrogate Simulator Construction

We construct a simplified (surrogate) simulator from offline data, considering two cases: (i)
Discrete-to-Discrete, when the original environment is discrete but large or partially unknown; and
(ii) Continuous-to-Discrete, when the original environment has continuous state (and possibly ac-
tion) spaces that must be discretized.
Discrete-to-Discrete: In this case, the original environmentM = (S,A, T,R, γ) is discrete, but
the exact transitions T or reward function R are not fully specified. Given the offline dataset D of
trajectories, we extract a reduced state set Ŝ ⊆ S and action set Â ⊆ A. The transition function is
estimated using frequency counts with optional Laplace smoothing:

T̂ (s, a, s′) =
|{(s, a, s′) ∈ D}|+ α∑
x(|{(s, a, x) ∈ D}|+ α)

. (3)

Since the environment is non-Markovian, the reward function is not directly defined in M̂. Instead,
we incorporate task progression information by augmenting the state space with an automaton state
from the inferred DFA A. This leads to the construction of a product MDP M̂′ = M̂ ⊗ A =
(Ŝ × Ω, Â, T̂ ′, R̂′, γ), where Ω is the set of automaton states, and the state representation is now
(s, ω), with ω tracking task progression. The reward function R̂′ is then given by

R̂′(s, ω, a) =

{
+1, if ω ∈ F,

r(ω, ω′), otherwise,
(4)

where r(ω, ω′) is structured to encourage progress along paths observed in successful trajectories
(P ) while avoiding transitions commonly associated with failure (N ).
Continuous-to-Discrete: When the original environment is continuous, i.e., states sc ∈ Rn and
actions ac ∈ Rm, we construct a discretized surrogate simulator M̂. We define discretization
mappings ϕs : S → Ŝ, ϕa : A → Â, which map continuous states and actions onto finite grids
or prototype actions. Applying (ϕs, ϕa) to each transition (sc, ac) → (s′c) in D yields discrete
trajectories (sd, ad)→ (s′d). The transition function is estimated as:

T̂d(sd, ad, s
′
d) =

|{(sd, ad, s′d) ∈ D}|+ α∑
x(|{(sd, ad, x) ∈ D}|+ α)

. (5)
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As in the discrete case, the reward function is not directly defined in M̂. Instead, the product MDP
M̂′ = M̂ ⊗A introduces the automaton state ω, ensuring task dependencies.

4.3. Automaton Distillation for Knowledge Transfer

We train the policy in the simplified teacher agent and use the automaton to distill knowledge from
the teacher agent operating in the discretized environment M̂ to the student agent in the target envi-
ronmentM. In discrete environments, the teacher agent employs either tabular Q-learning Watkins
and Dayan (1992) or Deep Q-Network (DQN) Mnih and et al. (2015) to learn an optimal policy in
the product MDP M̂ ⊗A, where the state space is augmented with automaton states.

For Q-learning, the teacher maintains a Q-table Qteacher(sd, ω, ad), which is updated using the
standard Q-learning rule:

Qteacher(sd, ω, ad)← Qteacher(sd, ω, ad) + α
[
r + γmax

a′d

Qteacher(s
′
d, ω

′, a′d)−Qteacher(sd, ω, ad)
]
,

where α is the learning rate, γ is the discount factor, r is the defined intermediate reward, and
(s′d, ω

′) is the next state. In the case of DQN, the agent leverages an experience replay buffer ERT

to store tuples ((sd, ω), ad, r, (s′d, ω
′)) and performs batch updates using a neural network.

To distill knowledge into the automaton, we extract Q-values corresponding to automaton tran-
sitions. For each transition (ω, σ)→ ω′, the average Q-value is computed as:

Q
avg
teacher(ω, σ) =

1

Nω,σ

Nω,σ∑
i=1

Qteacher(s
i
d, a

i
d),

where Nω,σ is the count of occurrences of the transition (ω, σ), (sid, a
i
d) are the corresponding state-

action pairs, and Qteacher(s
i
d, a

i
d) is the estimated Q-value.

The student agent operates in the target environmentM and augments its state with the automa-
ton state ω. The student updates its Q-values by incorporating the distilled knowledge:

Qstudent(s, ω, a)← Qstudent(s, ω, a) + α
[
β(ω, σ)Q

avg
teacher(ω, σ)+

(1− β(ω, σ))(r + γmax
a′

Qstudent(s
′, ω′, a′))−Qstudent(s, ω, a)

]
.

β(ω, σ) = ρηstudent(ω,σ) controls the influence of the teacher’s knowledge, where ρ ∈ (0, 1) is a decay
parameter and ηstudent(ω, σ) tracks the frequency of the transition (ω, σ) in student training.

For DQN, the student agent employs a neural network to approximate Q-values and optimizes
the loss function:

L(θ) = E((s,ω),a,r,(s′,ω′))

[(
Q′

student((s, ω), a)−Qstudent((s, ω), a; θ)
)2]

,

where Q′
student((s, ω), a) is the adjusted target Q-value incorporating the distilled automaton knowl-

edge. The student’s Q-table or network is initialized with prior knowledge and continuously up-
dated. This automaton-guided knowledge transfer accelerates policy learning and ensures efficient
exploration in complex environments. We use a similar approach for transfer from discrete to con-
tinuous environments, using Deep Deterministic Policy Gradient (DDPG) Lillicrap and et al. (2016)
or Twin Delayed DDPG (TD3) et al. (2018b). The details are deferred to an extended version of
this work.
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5. Experiments

We evaluate the effectiveness of our proposed end-to-end framework on several complex environ-
ments with varying levels of task dependencies and complexities. We compare our approach against
baseline methods to demonstrate its advantages in handling non-Markovian tasks and facilitating ef-
ficient learning through automaton distillation.
Environments. We selected four benchmark environments that embody different challenges related
to non-Markovian rewards, sequential dependencies, and continuous dynamics. Given the complex-
ity of the original environments (student), we construct simplified (teacher) simulators to facilitate
structured policy learning before transferring to the original domain. Here, we present one primary
environment (Dungeon Quest), with additional environments detailed in the Appendix.

The student environment consists of either a 10× 10 discrete grid (See Fig. 1) or a continuous
10.0 × 10.0 coordinate space, where the agent must collect a Key to unlock the Chest, retrieve the
Sword, and obtain a Shield before confronting the Dragon. In the continuous case, items are placed
in small circular regions, and the agent moves by applying continuous actions. Task dependencies
enforce a strict sequence of subgoals regardless of discretization. Additional benchmark environ-
ments (Blind Craftsman, OfficeWorld, and Minecraft Building Bridge), follow a similar setup and
are detailed in Appendix A.

Surrogate Construction, DFA Learning and Teacher Agent (Teacher Side). In the Dungeon
Quest domain, we constructed a teacher model M̂ as a reduced 5 × 5 version of the environment
while also inferring a DFA from offline trajectories to capture the task structure. To assess gener-
alization, we considered two student settings: a discrete student environment, where the original
Dungeon Quest remains a 10× 10 discrete grid, and a continuous student environment, where state
and action spaces are continuous and require discretization before training.

For both settings, we trained a teacher policy using Q-learning or DQN in the product MDP
M̂ ⊗ A, where the DFA augments the state space. The teacher policy learned key subtasks, such
as item collection and defeating the dragon, while leveraging structured task information from the
automaton. Figure 1 illustrates this process, showing the original discrete 10× 10 environment, the
inferred DFA, and the learned surrogate model.

We evaluated the agent’s performance in the surrogate teacher environment across discrete-to-
discrete and continuous-to-discrete settings. The teacher policy was trained in the product MDP
M̂ ⊗ A, where the DFA captures task dependencies. Performance was measured using reward per
episode, steps per episode, and reward per step. The results in Fig. 2 show that the surrogate simu-
lators effectively model the non-Markovian structure, enabling the teacher agent to learn structured
policies for item collection and dragon defeat while achieving stable convergence.

Transfer to the Original Environment (Student Side). After training in the surrogate environ-
ment, we transfer the teacher’s automaton-aware Q-values to a student agent operating in the orig-
inal environment. This process enables structured learning by annealing the teacher’s estimates
with the student’s on-policy updates (see Section 4.3). We evaluate this transfer in the Dungeon
Quest domain for both discrete and continuous student environments. In the discrete setting, the
student agent operates in the full 10 × 10 Dungeon Quest environment, which includes additional
obstacles and unobserved states. It initializes with the distilled Q-values from the teacher’s policy,
accelerating convergence compared to learning from scratch. The agent then updates its policy us-
ing Q-learning or DQN, leveraging the transferred structured knowledge to efficiently complete the
task. For the continuous student environment, the agent receives automaton-guided Q-values and
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Figure 2: Teacher performance in the surrogate simulators for Dungeon Quest. (Left): Discrete-to-discrete.
(Right): Continuous-to-discrete. Rows show (top) reward per episode, (middle) steps per episode, and
(bottom) reward per step. In both modes, the teacher converges to a stable policy capturing key subgoals.

applies DDPG or TD3 to learn an effective control policy. The structured guidance from the teacher
model enables the agent to efficiently collect items and defeat the dragon despite the complexity of
continuous state and action spaces.

The results in Fig. 3 demonstrate that automaton distillation (AD) effectively enhances learning
speed and policy quality in both modes. The structured knowledge transfer from the teacher en-
ables the student agent to efficiently recover subgoal dependencies and optimize decision-making.
This bidirectional learning approach ensures that complex non-Markovian dependencies, originally
difficult to learn, are successfully incorporated into the final policy. We also compare against Q-
learning and DQN in an augmented state space (QAS), where an additional binary vector encodes
task-relevant information, increasing state space complexity.

6. Conclusion

We proposed a bidirectional RL framework that integrates surrogate environment construction, pas-
sive DFA inference via RPNI, and automaton distillation to handle non-Markovian tasks. By dis-
cretizing complex environments into simpler surrogates, we preserved essential task structure while
enabling efficient automaton learning without interactive queries. The learned automaton captures

9



ALINEJAD NWAORGU ENYIOHA WANG VELASQUEZ ATIA

Figure 3: Student performance in the original Dungeon Quest environment after knowledge transfer. (Left
column): Discrete-to-discrete mode; (Right column): Continuous-to-discrete mode. Rows show (top) re-
ward per episode, (middle) steps per episode, and (bottom) reward per step.

sequential dependencies, which we leveraged to distill automaton-guided Q-values back into the
original environment, allowing the student agent to refine its policy through a structured blend of
teacher estimates and self-learning.

Our approach leverages neurosymbolic methods for transfer, serving multiple purposes: (i)
addressing the non-Markovian nature of the reward structure, (ii) utilizing the emerging lower-
dimensional automaton representation to assess policy quality within the learned surrogate, and
(iii) enabling efficient transfer through distillation techniques by providing a compact, structured
representation for knowledge transfer between teacher and student environments.

Empirical results demonstrated that this two-way information flow significantly accelerates con-
vergence while maintaining interpretability. Our framework supports both discrete and continuous
state-action spaces, providing a scalable alternative to methods requiring full knowledge of envi-
ronment dynamics. Future extensions include hierarchical RL, deeper function approximation, and
real-time adaptation in partially observable tasks.
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Appendix A. Additional Benchmark Environments

A.1. Blind Craftsman

The student environment consists of a 12 × 12 grid where the agent must collect resources and
craft tools before returning home. The environment features Wood Sources, where up to two pieces
of wood can be collected at a time, a Factory where tools are crafted, and Home, the final goal.
The agent must alternate between gathering wood and crafting tools until three tools are made. Task
dependencies enforce that tools cannot be crafted without wood, and the agent cannot proceed home
without completing the crafting process.

The teacher environment is a simplified 6 × 6 version with fewer obstacles, maintaining the
essential task dependencies while reducing complexity for faster learning.

Figure 4: Blind Craftsman Environments: (Left) Teacher Environment (6× 6 grid with 4 obstacles); (Right)
Student Environment (12× 12 grid with 15 obstacles).

Figure 5: DFA representing the sequential dependencies in the Blind Craftsman environment. This automaton
encodes the required subgoal progression, ensuring the agent follows the correct order of tasks in both the
Teacher and Student Environments.
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A.2. OfficeWorld

The student environment consists of a 9×12 grid representing an office environment with intercon-
nected rooms. The agent must first collect Coffee to gain energy, then retrieve the Mail, and finally
deliver it to the Office. Task dependencies enforce that mail cannot be delivered unless both coffee
and mail have been collected in the correct order.

The teacher environment is a smaller 6×9 version with fewer rooms and obstacles, maintaining
the sequential task structure while simplifying the navigation challenge.

Figure 6: Office Environments: (Left) Teacher Environment (6 × 9 grid with 6 obstacles); (Right) Student
Environment (9× 12 grid with 12 obstacles).

Figure 7: DFA representing the sequential dependencies in the Office environment. This automaton encodes
the required subgoal progression, ensuring the agent follows the correct order of tasks in both the Teacher
and Student Environments.

A.3. Minecraft Building Bridge

The student environment consists of a 20 × 20 grid where the agent must gather Wood and Iron
and transport them to a Factory for bridge construction. The task requires sequential planning, as
construction cannot begin until both materials have been collected.

The teacher environment is a simplified 8× 8 grid with fewer obstacles, maintaining the multi-
stage structure while reducing complexity for efficient learning.

Appendix B. Performance in Additional Student Environments

After training in the surrogate environment, the learned automaton-aware Q-values are transferred to
a student agent operating in the original environment. This structured transfer accelerates learning
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Figure 8: Bridge Environments: (Left) Teacher Environment (8 × 8 grid with 8 obstacles); (Right) Student
Environment (20× 20 grid with 20 obstacles).

Figure 9: DFA representing the sequential dependencies in the Bridge environment. This automaton encodes
the required subgoal progression, ensuring the agent follows the correct order of tasks in both the Teacher
and Student Environments.
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by leveraging task dependencies, significantly improving reward acquisition and efficiency. We
evaluate this transfer in the Blind Craftsman, OfficeWorld, and Building Bridge environments.

B.1. Blind Craftsman

The student agent operates in the full 12 × 12 Blind Craftsman environment, which introduces
additional obstacles and a larger action space. The goal remains to collect wood, craft tools at the
factory, and return home. The automaton-guided Q-values allow the student to learn a structured
crafting strategy, significantly improving efficiency over direct learning.

Figure 10: Reward per Episode in Blind Craftsman. Figure 11: Steps per Episode in Blind Craftsman.

Figure 12: Reward per Step in Blind Craftsman.

B.2. OfficeWorld

In the full 9× 12 OfficeWorld environment, the student must collect and deliver items in the correct
order. The teacher’s automaton-aware Q-values accelerate policy learning, allowing the agent to
optimize item collection and delivery efficiently.

B.3. Minecraft Building Bridge

The 20 × 20 Building Bridge environment requires resource collection and sequential bridge con-
struction. The student agent receives structured Q-values from the teacher, reducing unnecessary
exploration and improving task completion efficiency.
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Figure 13: Reward per Episode in OfficeWorld. Figure 14: Steps per Episode in OfficeWorld.

Figure 15: Reward per Step in OfficeWorld.

Figure 16: Reward per Episode in Building Bridge. Figure 17: Steps per Episode in Building Bridge.

Figure 18: Reward per Step in Building Bridge.
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