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Abstract
Automata-conditioned reinforcement learning (RL) has given promising results for learning multi-
task policies capable of performing temporally extended objectives given at runtime, done by
pretraining and freezing automata embeddings prior to training the downstream policy. However, no
theoretical guarantees were given. This work provides a theoretical framework for the automata-
conditioned RL problem and shows that it is probably approximately correct learnable. We then
present a technique for learning provably correct automata embeddings, guaranteeing optimal
multi-task policy learning. Our experimental evaluation confirms these theoretical results.1
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1. Introduction

Goal-Conditioned Reinforcement Learning (GCRL) is a framework for learning policies capable of
performing multiple tasks given at runtime. The recent success of foundation models has popularized
both natural language (Rocamonde et al. (2023); Brohan et al. (2022); Black et al. (2024)) and demon-
strations (Ren et al. (2025); Sontakke et al. (2023)) as ergonomic means of task specification. Yet,
the inherent ambiguity of these instruction modalities remains a challenge for correctness guarantees.

Formal specifications have been proposed for specifying tasks to goal-conditioned policies. While
their well-defined semantics make them appealing, approaches that rely on hierarchical planning, i.e.,
planning over the induced automaton of a formal specification and instructing a goal-conditioned
policy to execute the plan (Jothimurugan et al. (2021); Qiu et al. (2023)), are inherently suboptimal
due to the myopia of their goal-conditioned policies. Conditioning Reinforcement Learning (RL)
policies on Linear Temporal Logic (LTL) specifications was proposed by Vaezipoor et al. (2021),
using a Graph Neural Network (GNN) to encode abstract syntax trees of LTL formulas. However,
generalization is an inherent limitation due to their use of LTL (Yalcinkaya et al. (2024)).

In our previous work (Yalcinkaya et al. (2023, 2024)), we proposed using Deterministic Finite
Automaton (DFA) as a means of task specification and conditioning the policy on pretrained DFA
embeddings. To do so, we first identified a large class of DFAs that capture most of the finite temporal
tasks studied in the literature. We then pretrained a Graph Attention Network (GATv2) (Brody et al.
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(2021)) to map these DFAs to latent vector representations. Our empirical evaluation demonstrated
that conditioning on DFA embeddings enables optimal multi-task policy learning for a large class of
DFAs. However, no theoretical analysis or guarantees were given for this technique.

In this work, we present a theoretical framework for the DFA-conditioned RL problem and
show that it is Probably Approximately Correct (PAC)-learnable. As we showed in Yalcinkaya et al.
(2024), learning to encode the DFAs while simultaneously learning a policy is challenging due to
the sparse reward specified by DFA acceptance. To this end, in the same work, we demonstrated
that pretraining and freezing DFA embeddings and then passing these embeddings to a downstream
policy greatly improve learning efficiency. Therefore, in order for our PAC learnability guarantee
to be useful in practice, one must show that such guarantees hold w.r.t. such pretrained and frozen
DFA embeddings. To address this, we present a novel method for learning provably correct DFA
embeddings, guaranteeing optimal DFA-conditioned RL. We first observe that bisimilar DFAs
represent the same task and then use bisimulation metrics, a relaxation of the notion of a bisimulation
relation, to embed unique tasks to unique latent representations. Our experimental evaluation shows
that the correctness of the learned DFA embeddings improves downstream policy learning.

Contributions. We provide a theoretical framework for DFA-conditioned RL in Section 3 and
prove that it is PAC-learnable in Theorem 1. We present a technique for learning provably correct
DFA embeddings in Section 4. Lastly, an empirical evaluation of this approach is given in Section 5.

Related Work. PAC-learnability of RL objectives given by formal specifications has been studied
before. Yang et al. (2021) proved that the optimal policy for any LTL formula is PAC-learnable if and
only if the formula can be checked within a finite horizon. A similar result by Alur et al. (2022) shows
that without additional information on the transition probabilities, such as the minimum nonzero
transition probability, LTL is not PAC-learnable. Later, a positive result for discounted LTL was
given by Alur et al. (2023). Our PAC-learnability result can be considered a multi-task generalization
of these previous results, where the policy must satisfy a class of specifications, not a single objective.
See Yalcinkaya et al. (2024) for a more detailed literature review on using formal specification in RL.

Ferns et al. (2004) showed that bisimulation metrics can be computed as unique fixed points of
a contraction map. A special case of this result for deterministic dynamics and on-policy samples
was proved by Castro (2020). Later, Zhang et al. (2020) used bisimulation metrics to learn invariant
observation embeddings for RL, where they proved these metrics can be computed while learning
a policy. We will use these results in Section 4 to learn provably correct DFA embeddings. To our
knowledge, no prior work considered using bisimulation metrics for learning task representations.

2. Background

Notation. Given a set X , we write X to denote a distribution over it, i.e., X ∈ ∆(X), where
∆(X) ⊂ X → [0, 1] represents the set of all distributions over X . We use I{} for the event indicator
function, where I{p} = 1 if and only if p is true, and I{p} = 0 otherwise.

2.1. Markov Decision Processes

We model the environment with a Markov Decision Process (MDP), formally defined as follows.

Definition 1 (Markov Decision Process) A Markov Decision Process (MDP) is defined as the tuple
M = ⟨S,A, P,R, ι, γ⟩, where S is the state space, A is the action space, P : S × A → ∆(S) is
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the transition probability function, R : S × A→ R is the reward function, ι ∈ ∆(S) is the initial
state distribution, and γ ∈ [0, 1) is the discount factor. An MDPM is called deterministic if it has a
deterministic transition function T : S ×A→ S instead of a probabilistic transition function P .

2.2. Deterministic Finite Automata

We use Deterministic Finite Automata (DFAs) with three-valued semantics to represent tasks.

Definition 2 (Deterministic Finite Automaton) A Deterministic Finite Automaton (DFA) is defined
as the tuple A = ⟨Q,Σ, δ, q0, F ⟩, where Q is the finite set of states, Σ is the finite alphabet,
δ : Q× Σ→ Q is the transition function, where δ(q, a) = q′ denotes a transition to a state q′ ∈ Q
from a state q ∈ Q by observing a symbol a ∈ Σ, q0 ∈ Q is the initial state, and F ⊆ Q is the
set of final states. The three-valued semantics of a DFA is defined by a partition of its final states
F = F⊤ ∪ F⊥ and its extended (lifted) transition function δ∗ : Q× Σ∗ → Q, where

δ∗(q, ε) ≜ q,

δ∗(q, aw) ≜ δ∗(δ(q, a), w).

If δ∗(q0, w) ∈ F⊤, then we say that A accepts w. Similarly, δ∗(q0, w) ∈ F⊥, then we say that A
rejects w. A is called a plan DFA if its final states are sink states, i.e., ∀q ∈ F,∀a ∈ Σ, δ(q, a) = q.

DFAs can be minimized to a canonical form (up to a state isomorphism) using the algorithm of
Hopcroft (1971), denoted by minimize(A). All minimized plan DFAs with nonempty accepted or
rejected languages have single accepting or rejecting states, denoted by ⊤ or ⊥, respectively, as their
final states are all sink states. We denote the single-state accepting DFA by A⊤ and the rejecting one
by A⊥. Note that the approach presented in this paper is agnostic to the syntax of DFAs and can be
trivially extended to other syntactic forms, e.g., compositional DFAs from Yalcinkaya et al. (2024).

Assumption 1 In what follows, unless stated otherwise, all DFAs are plan DFAs.

We use DFAs to represent temporal tasks, which can be understood as plans. However, one
can define multiple DFAs for the same task, i.e., DFAs without any additional assumptions are not
canonical task representations. Therefore, we will need a notion of similarity between DFAs so that
we can compare the tasks represented by them–we define bisimulation relation over DFAs next.

Definition 3 (Bisimulation Relation over DFAs) Given two DFAsA = ⟨Q,Σ, δ, q0, F ⟩ andA′ =
⟨Q′,Σ, δ′, q′0, F

′⟩ over the same alphabet Σ. A relation B ⊆ Q×Q′ is called a bisimulation relation
between A and A′ if the following conditions hold:

1. (q0, q
′
0) ∈ B.

2. For all (q, q′) ∈ B, q ∈ F⊤ ⇐⇒ q′ ∈ F ′⊤ and q ∈ F⊥ ⇐⇒ q′ ∈ F ′⊥.

3. For all (q, q′) ∈ B and a ∈ Σ, (δ(q, a), δ′(q′, a)) ∈ B.

We say that A and A′ are bisimilar, denoted by A ∼ A′, if there exists such a bisimulation relation.

A bisimulation relation over DFAs is an equivalence relation on the DFA states preserving both
the transition structure and the acceptance condition–meaning if two states are related under this
relation, then for every input symbol, their successor states are also related, and they either both
accept or both reject. Bisimilar DFAs are behaviorally indistinguishable–they represent the same task.
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3. DFA-Conditioned Reinforcement Learning

We will define the DFA-conditioned RL problem over a distribution of DFAs, similar to the GCRL
problem given in Appendix A. However, we need some extra structure over these DFAs since, in our
case, goals are not simply sets of states but are DFAs encoding temporal tasks given to the policy.

Definition 4 (DFA Space) A set of DFAs DΣ,n over some shared alphabet Σ and with at most
n states is called a DFA space if A⊤,A⊥ ∈ DΣ,n and taking any path in a DFA from DΣ,n and
minimizing the resulting DFA gives a DFA in DΣ,n, i.e.,

∀A = ⟨Q,Σ, δ, q0, F ⟩ ∈ DΣ,n, ∀w ∈ Σ∗, minimize(A′ = ⟨Q,Σ, δ, δ∗(q0, w), F ⟩) ∈ DΣ,n.

A DFA space DΣ,n induces an MDP defined by the tupleMDΣ,n
= ⟨DΣ,n,Σ, TDΣ,n

, RDΣ,n
⟩, where

• DΣ,n, the set of DFAs, is the set of states,

• Σ, the shared alphabet, is the set of actions,

• TDΣ,n
: DΣ,n × Σ→ DΣ,n is the transition function defined by

TDΣ,n
(A = ⟨Q,Σ, δ, q0, F ⟩, a) = minimize(A′ = ⟨Q,Σ, δ, δ(q0, a), F ⟩), and

• RDΣ,n
: DΣ,n × Σ→ {−1, 0, 1} is the reward function defined by

RDΣ,n
(At, a) =


1 if TDΣ,n

(At, a) = A⊤

−1 if TDΣ,n
(At, a) = A⊥

0 otherwise.

A DFA space is a set of DFAs closed under random walks, i.e., taking any random path in a
DFA from this set and pruning the unreachable states results in a DFA in the set. In other words, one
cannot get a DFA outside this set by taking a random walk with minimization, hence the name space.

Assumption 2 DΣ,n denotes a DFA space, and DΣ,n ∈ ∆(DΣ,n) is a distribution over it.

We now have all the theoretical machinery needed to formally state the DFA-conditioned RL
problem. We first define the environment model and then continue with the statement of the problem.

Definition 5 (DFA-Conditioned MDP) LetM = ⟨S,A, P,R, ι, γ⟩ be an MDP, DΣ,n be a DFA
space, and L : S → Σ be a labeling function. A DFA-conditioned MDP is the cascade composition
ofM andMDΣ,n

, using L to map states to alphabet symbols, defined by

M |LMDΣ,n
= ⟨S ×DΣ,n, A, PM|LMDΣ,n

, RM|LMDΣ,n
, ιM|LMDΣ,n

, γ⟩

where:

• S ×DΣ,n is the (product) state space,

• A is the action space (ofM),
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• PM|LMDΣ,n
: S×DΣ,n×A→ ∆(S×DΣ,n) is the transition probability function defined by

PM|LMDΣ,n
(s,A, a, s′,A′) = P (s, a, s′)I

{
A′ = TDΣ,n

(
A, L(s′)

)}
,

• RM|LMDΣ,n
: S ×DΣ,n ×A→ {−1, 0, 1} is the reward function defined by

RM|LMDΣ,n
(s,A, a) =


1 if TDΣ,n

(A, L(s′)) = A⊤

−1 if TDΣ,n
(A, L(s′)) = A⊥

0 otherwise,

where s′ ∼ P (s, a) is the next MDP state.

• ιM|LMDΣ,n
∈ ∆(S ×DΣ,n) is the initial state distribution defined by

ιM|LMDΣ,n
(s,A) = ι(s)DΣ,n(A),

and

• γ ∈ [0, 1) is the discount factor (ofM).

A DFA-conditioned MDP essentially couples an MDP with a DFA space, where the policy
interacts with the MDP while simultaneously navigating the DFA space to reach the accepting DFA.
Next, we formalize this notion and finally state the DFA-conditioned RL problem.

Definition 6 (DFA-Conditioned Reinforcement Learning Problem) Given an DFA-conditioned
MDPM |LMDΣ,n

as defined in Definition 5, a DFA-conditioned policy is a mapping

π : S ×DΣ,n → ∆(A),

that assigns to each pair (s,A) a probability distribution over the action space A. The DFA-
conditioned RL problem is to find a policy π maximizing expected cumulative discounted reward:

JM|LMDΣ,n
(π) = E(s0,A0)∼ιM|LMDΣ,n

[At=A⊤∨At=A⊥∑
t=0

γtRM|LMDΣ,n
(st,At, at)

]
,

where trace {(st,At, at)}t≥0 is generated by:

at ∼ π(st,At), st+1 ∼ P (st, at), At+1 = TDΣ,n
(At, L(st+1)) ,

until the accepting or rejecting DFA is reached, i.e., At = A⊤ ∨ At = A⊥. The objective is to solve

π∗ = argmax
π

JM|LMDΣ,n
(π),

i.e., to learn a policy that maximizes the probability of satisfying a given temporal specification from
DΣ,n (by driving its DFA representation to A⊤) while operating in the underlying MDPM.

Notice the difference between the GCRL problem formulation given in Appendix A and the
DFA-conditioned one given above. Specifically, in GCRL, goals are static, i.e., they are given at
the beginning, and the policy conditions on the same goal until it is accomplished. In the DFA-
conditioned RL setting, through the labeling function, a given DFA task also evolves (based on the
transition dynamics of its DFA space) as the policy interacts with the underlying MDP. Therefore,
the policy is essentially learning to navigate two MDPs: the underlying MDP and the DFA space.
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3.1. PAC-Learnability of the DFA-Conditioned Reinforcement Learning Problem

We show that the DFA-conditioned RL problem is Probably Approximately Correct (PAC)-learnable.
To do so, we will use the PAC-MDP framework introduced by Strehl et al. (2006). An RL algorithm
is called PAC-MDP (PAC in MDPs) if it finds a near-optimal policy with high probability in any
MDP after a number of interactions that is polynomial in the problem’s key parameters, stated next.

Definition 7 (Probably Approximately Correct Learnability in MDPs) A learning algorithm A
is said to be Probably Approximately Correct in MDPs (PAC-MDP) if for any MDP M =
(S,A, T,R, ι, γ), ϵ > 0, and p ∈ (0, 1), there exists a polynomial function

N = f

(
|S|, |A|, 1

ϵ
,
1

p
,

1

1− γ

)
s.t., with probability at least 1− p, the total number of time steps during which the policy π (current
policy being trained) executed by A is more than ϵ-suboptimal is at most N , i.e., we have

|{t ≥ 0 : V π(st) < V ∗(st)− ϵ}| ≤ N

with probability at least 1−p, where V π denotes the current value function and V ∗ is the optimal one.

We want to show that if an algorithm is PAC-MDP, then it is also PAC in any DFA-conditioned
MDP. Observe that, in Definition 5, we take the cascade composition of the underlying MDP and the
MDP induced by the DFA space which is finite, giving us the following PAC-learnability result.

Theorem 1 If a learning algorithm A is PAC-MDP as defined in Definition 7, then for any DFA-
conditioned MDPM |LMDΣ,n

, ϵ > 0, and p ∈ (0, 1), there exists a polynomial function

N ′ = f

(
|S| · |DΣ,n|, |A|,

1

ϵ
,
1

p
,

1

1− γ

)
s.t. the total number of ϵ-suboptimal steps taken by A is at most N ′ with probability at least 1− p.

The proof is in the appendix. Theorem 1 proves that the DFA-conditioned RL problem is PAC-
learnable, assuming the underlying MDP is solvable. However, in practice, one cannot input a DFA
to a policy directly. Instead, one uses an encoder (possibly pretrained) mapping DFAs to embeddings.
In such cases, the optimality of the learned DFA-conditioned policy depends on the encoder.

4. Learning Provably Correct Automata Embeddings

In the previous section, we introduced the idealized, theoretical formulation of the DFA-conditioned
RL problem and proved that it is PAC-learnable. However, a policy implemented by a feed-forward
neural network, as is usually the case, cannot condition on a DFA directly, but rather an encoding
of the DFA is required, such as a vector representation. Then, the question is whether the policy
conditioning on DFA encodings is optimal w.r.t. the theoretical formulation of the problem. This is
the problem we tackle in the following, but before doing so, we formally state the problem.
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Problem 1 Given a DFA space DΣ,n, learn an encoder ϕ : DΣ,n → Z s.t. for any MDPM and
labeling function L, solvingM |LMDΣ,n

with a policy πZ : S ×Z → ∆(A) conditioning on DFA
embeddings is equivalent to solving it with a DFA-conditioned policy π : S ×DΣ,n → ∆(A), i.e.,

∀M, ∀L, argmax
π

JM|LMDΣ,n
(π) = argmax

πZ◦ϕ
JM|LMDΣ,n

(πZ ◦ ϕ),

where πZ ◦ ϕ(s,A) = πZ(s, ϕ(A)).

Assumption 3 ϕ : DΣ,n → Z has enough capacity to represent DFAs in its domain. That is, the
learnable encoder ϕ has a parametrization that can map distinct DFAs in DΣ,n to unique embeddings.

Intuitively, we want a policy conditioning on the latent representations of DFAs (rather than
DFAs themselves) to be equivalent to the theoretical formulation given in Definition 6, i.e., one finds
the optimal solution whenever the other does so. Observe that even under Assumption 3, one does not
get such a guarantee directly since the claim is not only an expressivity argument but also involves
proving that the training procedure of the encoder provides such representations. In the following,
we present a training technique for such encoders and prove that it solves Problem 1. Our method
involves learning a bisimulation metric over the induced MDP of a given DFA space. Therefore, we
first define bisimulation metrics and then show how they can be computed in deterministic MDPs.

4.1. Bisimulation Relations and Metrics over MDP states

A bisimulation metric can be viewed as a relaxation of the notion of a bisimulation relation over
MDP states. We start by defining the latter and then continue with the former.

Definition 8 (Bisimulation Relation over MDP states) LetM = ⟨S,A, P,R, ι, γ⟩ be an MDP. A
relation B ⊆ S×S is called a bisimulation relation if for every pair (s, t) ∈ B and for every action
a ∈ A, the following conditions hold:

1. R(s, a) = R(t, a).

2. For all B-closed set X ⊆ S (i.e., if x ∈ X and (x, y) ∈ B then y ∈ X),∑
x∈X

P (s, a, x) =
∑
x∈X

P (t, a, x).

We say s, t ∈ S are bisimilar, denoted by s ∼M t, if there is a bisimulation relation B s.t. (s, t) ∈ B.

Intuitively, two states are bisimilar if they are behaviorally indistinguishable–taking any action
in either state yields the same immediate reward and leads to similar probabilistic outcomes, so an
agent cannot tell them apart when making decisions. Next, we show how this relates to Definition 3.

Lemma 1 Given a DFA space DΣ,n, two DFAs A,A′ ∈ DΣ,n are bisimilar if and only if they are
bisimilar states in the induced deterministic MDPMDΣ,n

, i.e.,

∀A,A′ ∈ DΣ,n, A ∼ A′ ⇐⇒ A ∼MDΣ,n
A′.
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The proof is given in the appendix. Essentially, Lemma 1 shows that Definition 3 and Definition 8
are equivalent for DFAs in a DFA space, which will later help us with Problem 1. We will continue
with the formal definition of a bisimulation metric. But before doing so, informally, a function
d : X ×X → R≥0 is called a pseudometric on a set X if it satisfies non-negativity, symmetry, and
the triangle inequality but may allow d(x, y) = 0 for x ̸= y, see Appendix B for a formal definition.

Definition 9 (Bisimulation Metric) LetM = ⟨S,A, P,R, ι, γ⟩ be an MDP. A pseudometric d is
called a bisimulation metric if the equivalence relation induced by d is a bisimulation relation, i.e.,

∼M= {(s, t) ∈ S × S |L d(s, t) = 0}.

Recall that a given DFA space DΣ,n induces a deterministic MDPMDΣ,n
, where each state of

this MDP is a DFA. We want our learned encoder to uniquely distinguish between different behaviors,
but we do not care whether we can distinguish between different representations of the same task.
Therefore, we can use a bisimulation metric to measure how bisimilar two DFAs are and utilize this
idea to learn a provably correct embedding space by ensuring that if two DFAs are not bisimilar, then
they must have different embeddings. To this end, we first present the following result stating that
bisimulation metrics over deterministic MDPs can be computed as fixed-point solutions.

Theorem 2 LetM = ⟨S,A, T,R, ι, γ⟩ be a deterministic MDP. Define operators:

dk(s, t)←
∣∣∣R(s, πk(s, t))−R(t, πk(s, t))

∣∣∣+ γ dk−1
(
T (s, πk(s, t)), T (t, πk(s, t))

)
,

πk(s, t)← argmax
a∈A

{
|R(s, a)−R(t, a)|+ γ dk−1 (T (s, a), T (t, a))

}
.

Then, there exists unique fixed points d∗ and π∗, and d∗ is a bisimulation metric.

The proof is given in the appendix. Theorem 2 is essentially an adaptation of the results previously
given in this domain to our setting. Specifically, Ferns et al. (2004) first proved that a bisimulation
metric can be computed as a unique fixed point of a contraction map. Castro (2020) later showed
special cases of this result for deterministic MDPs and for on-policy variants where actions are given
by a policy. Zhang et al. (2020) then presented a result showing that one can learn a bisimulation
metric jointly while learning a control policy predicting actions for a downstream task. We combine
these results to show that a bisimulation metric can be computed while simultaneously learning a
policy maximizing it. Given π∗, a bisimulation metric d∗ can be computed up to an α accuracy by
iteratively applying the operator

⌈
lnα
ln γ

⌉
times, with an overall complexity of O

(
|A||S|4 log |S| lnα

ln γ

)
.

4.2. Learning Automata Embeddings by Computing Bisimulation Metrics

Given a DFA space DΣ,n, to learn an encoder ϕ : DΣ,n → Z that solves Problem 1, we train it to
learn latent representations s.t. their normalized ℓ2-norms form a bisimulation metric. To do so, we
use the operators from Theorem 2 and define our pseudometric as follows:

d(A,A′) ≜ ∥ϕ̂(A)− ϕ̂(A′)∥2, (1)

8
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where ϕ̂(A) = ϕ(A)
∥ϕ(A)∥2 denotes vector normalization. Since it is hard to compute the argmax in

Theorem 2, we simultaneously learn a policy π : Z × Z → ∆(Σ) approximating it in the latent
space. We generate episodes starting from A0,A′

0 ∼ DΣ,n and evolving as follows:

at ∼ (π ◦ ϕ)(At,A′
t), At+1 = TDΣ,n

(At, at), A′
t+1 = TDΣ,n

(A′
t, at),

where (π ◦ ϕ)(At,A′
t) = π(ϕ(At), ϕ(A′

t)). We use Proximal Policy Optimization (PPO) by Schul-
man et al. (2017) to jointly learn π and ϕ with the following objective:

JDΣ,n
(π ◦ ϕ) = Jclip(π ◦ ϕ) + Jval(ϕ), (2)

where Jclip(π◦ϕ) is the clipped surrogate objective computed using Equation (1) as its value function,
i.e., Vt = d(At,A′

t). The details of Jclip(π ◦ ϕ) and PPO are not relevant to us; however, note that
while it is not guaranteed, it usually finds the optimal solution, see Schulman et al. (2017) for details.
The second term in the objective given in Equation (2), the value objective, is defined as follows:

Jval(ϕ) = −
(
Vt −

(∣∣RDΣ,n
(At, at)−RDΣ,n

(A′
t, at)

∣∣+ γV̄t+1

))2
= −

(
d(At,A′

t)−
(∣∣RDΣ,n

(At, at)−RDΣ,n
(A′

t, at)
∣∣+ γd̄(At+1,A′

t+1)
))2

,

where V̄t+1 and d̄(At+1,A′
t+1) denotes calls with stop gradients, i.e., no gradient flow to ϕ. Jval(ϕ)

implements the objective for the pseudometric given in Theorem 2, penalizing for diverging from the
one-step lookahead target. The combined objective of ϕ is then to learn latent representations that
form a bisimulation metric under normalized ℓ2-norm while also providing representations for π.
Next, we show that an encoder maximizing Equation (2) maps two DFAs to the same embedding if
and only if they are bisimilar, therefore proving that such encoders can distinguish distinct tasks.

Lemma 2 Let DΣ,n be a DFA space, ϕ∗ be an encoder, and π∗ be a policy s.t.

π∗ ◦ ϕ∗ = argmax
π◦ϕ

JDΣ,n
(π ◦ ϕ),

where JDΣ,n
(π ◦ ϕ) is given by Equation (2). Then, ϕ∗ satisfies:

∀A,A′ ∈ DΣ,n, A ∼ A′ ⇐⇒ ϕ∗(A) = ϕ∗(A′).

The proof is given in the appendix. Observe that if our trained encoder can distinguish between
DFAs that are not bisimilar, then it solves Problem 1, as bisimilar DFAs are different representations
for the same task–no need to distinguish them. Next, we formally state this result, solving Problem 1.

Theorem 3 Let DΣ,n be a DFA space, ϕ be an encoder, and π∗ be a policy s.t.

π∗ ◦ ϕ∗ = argmax
π◦ϕ

JDΣ,n
(π ◦ ϕ),

where JDΣ,n
(π ◦ ϕ) is given by Equation (2). Then, ϕ∗ solves Problem 1.

The proof is given in the appendix. Intuitively, since our encoder can distinguish bisimilar DFAs
and bisimilar DFAs represent the same task, one can equivalently reformulate the DFA-conditioned
RL problem given in Definition 6, which is defined over DΣ,n, as one over Z , solving Problem 1.
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Figure 1: Left: learning curves for the method in Section 4. Center: heatmap of Equation (1) between
various DFAs. Right: learning DFA-conditioned policies for RA tasks with number of states sampled
uniformly from [3, 6], comparing DFA embeddings from Section 4 and Yalcinkaya et al. (2024).

5. Experiments

We implemented the technique given in Section 4 using a GATv2 model as our DFA encoder and
Reach-Avoid Derived (RAD) DFAs with at most 10 states, which are plan DFAs, both presented in
Yalcinkaya et al. (2024). One difference in our GATv2 model is that given a DFA with n states, we
do n message-passing steps, instead of doing it for a fixed number as in Yalcinkaya et al. (2024). To
break the symmetry, caused by taking the absolute value of the reward difference, we trained the
policy using the reward difference without the absolute value. Figure 1(a) shows that our training
technique finds the fixed point, where the objectives from Section 4 are given as losses. We then
tested the accuracy as well as the generalization capabilities of these DFA embeddings. To do so,
we generated RAD, Reach (R), and Reah-Avoid (RA) DFAs. During training the number of states
of a RAD DFA was sampled from a truncated geometric distribution (with 10 as the upper bound)
whereas during testing we sampled it using a bounded uniform distribution. We also generated
out-of-distribution (OOD) DFAs with the number of states sampled uniformly between 11 and 20.
We computed bisimulation metrics, i.e., the normalized ℓ2-norms, between the embeddings of these
DFAs. Figure 1(b) gives these results in the form of a heatmap, demonstrating the correctness of the
learned DFA embeddings–0 on the diagonal. We further checked whether any of these sampled DFAs
(both in-distribution and OOD ones) are mapped to the same embedding (up to a 10−8 accuracy) or
not, and we confirm that the encoder has a 100% success rate in these samples. Figure 1(c) compares
our new pretraining technique from Section 4 with our previous pretraining procedure based on
solving DFAs (Yalcinkaya et al. (2024)), which does not guarantee correctness, showing that the
correctness of DFA embeddings improves downstream policy learning. All results are over 5 seeds.

6. Conclusion

In this work, we established a theoretical framework for DFA-conditioned RL and showed its PAC-
learnability. We then introduced a method for learning provably correct automata embeddings,
ensuring optimal multi-task policy learning. Our approach builds on the promising results of DFA-
conditioned RL, leveraging pretrained and frozen DFA embeddings to enable the learning of policies
for temporally extended objectives specified at runtime. Our experimental evaluation confirms the
theoretical guarantees of our method, demonstrating DFA-embeddings enable optimal multi-task RL.
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Appendix A. Goal-Conditioned Reinforcement Learning

Here, for reference, we present the standard Goal-Conditioned Reinforcement Learning (GCRL)
problem. We start by defining the environment model for conditioning on goals, usually given as
sets of states or continuous regions, as done by Schaul et al. (2015); Liu et al. (2022).

Definition 10 (Goal-Conditioned MDP) A goal-conditioned MDP extends the standard MDP by
incorporating a goal space given by a goal distribution G ∈ ∆(2S), where G is a distribution over
sets of states, and therefore a goal is a set of states. It is defined as the tuple

MG = ⟨S,A, P,RG , ιG , γ⟩,

where:

• RG : S ×A×G→ R is the goal-conditioned reward function, and

• ιG : S ×G→ [0, 1] is the initial state-goal distribution defined by ιG(s, g) = ι(s)G(g).

Given a goal-conditioned MDP, the standard GCRL problem is to find a policy that achieves a
given goal, which was first introduced by Schaul et al. (2015).

Definition 11 (Goal-Conditioned Reinforcement Learning) Given a goal-conditioned MDPMG ,
the Goal-Conditioned Reinforcement Learning (GCRL) problem is to find a policy

π : S ×G→ ∆(A),

which maps a state-goal pair (s, g) to a distribution over actions, that maximizes the expected
cumulative discounted reward:

JMG (π) = Es0,g∼ιG

[
st∈g∑
t=0

γtRG(st, at, g)

]
,

where trace {(st, at)}t≥0 is generated by at ∼ π(st) and st+1 ∼ P (st, at) until st ∈ g is reached.
The objective is to solve

π∗ = argmax
π

JMG (π).

The standard GCRL formulation doesn’t inherently allow for specifying temporally extended
tasks since the goals are defined as sets of states. In theory, one can extend the state definition to a
product state and specify temporal tasks within that product state; however, such approaches limit the
scalability of the GCRL framework. On the other hand, our DFA-conditioned RL formulation given
in Definition 6 allows for specifying temporal tasks and enables optimal multi-task policy learning.

Appendix B. Pseudometrics and Metrics

Definition 12 (Pseudometric and Metric) Let X be a nonempty set. A function d : X × X →
[0,∞) is called a pseudometric on X if for all x, y, z ∈ X the following conditions hold:

1. Non-negativity: d(x, y) ≥ 0.
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2. Identity on the diagonal: d(x, x) = 0.

3. Symmetry: d(x, y) = d(y, x).

4. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

If d(x, y) = 0 implies x = y, then d is a metric.

Essentially, a metric is a function measuring the distance between any two points in a space,
satisfying non-negativity, symmetry, the triangle inequality, and it equals zero if and only if the two
points are identical. A pseudometric, on the other hand, allows distinct points to have a distance of
zero, meaning it might not fully distinguish between different points in the space.

Appendix C. Proofs of Theorems and Lemmas

Theorem 1 If a learning algorithm A is PAC-MDP as defined in Definition 7, then for any DFA-
conditioned MDPM |LMDΣ,n

, ϵ > 0, and p ∈ (0, 1), there exists a polynomial function

N ′ = f

(
|S| · |DΣ,n|, |A|,

1

ϵ
,
1

p
,

1

1− γ

)
s.t. the total number of ϵ-suboptimal steps taken by A is at most N ′ with probability at least 1− p.

Proof A DFA-conditioned MDPM |L MDΣ,n
is defined over the state space S × DΣ,n, where

DΣ,n is a DFA space. Since DΣ,n is finite (as all DFAs in DΣ,n has a finite alphabet Σ and at most n
states), the product state space has size |S| · |DΣ,n| and is an MDP. Thus, any PAC-MDP algorithm
that works for MDPs with state space size |S| will also work on the product MDP with state space
size |S| · |DΣ,n|, with sample complexity increasing by at most a factor polynomial in |DΣ,n|.

Lemma 1 Given a DFA space DΣ,n, two DFAs A,A′ ∈ DΣ,n are bisimilar if and only if they are
bisimilar states in the induced deterministic MDPMDΣ,n

, i.e.,

∀A,A′ ∈ DΣ,n, A ∼ A′ ⇐⇒ A ∼MDΣ,n
A′.

Proof If A ∼ A′, then they must agree on acceptance, by Definition 3. We have RDΣ,n
(A) = 1 if

and only if A = A⊤. Since A and A′ are bisimilar, A = A⊤ ⇐⇒ A′ = A⊤. The same reasoning
for the −1 reward case gives RDΣ,n

(A) = RDΣ,n
(A′), i.e., A and A′ satisfy reward equivalence in

MDΣ,n
. For any a ∈ Σ, TDΣ,n

(A, a) results in a DFA bisimilar to TDΣ,n
(A′, a) due to Definition 3.

By induction on the structure of A and A′, their transitions preserve bisimilarity, satisfying the
transition equivalence. Therefore, we have A ∼ A′ =⇒ A ∼MDΣ,n

A′.
If A ∼MDΣ,n

A′, then RDΣ,n
(A) = RDΣ,n

(A′). Thus, A and A′ must agree on acceptance by
Definition 5. For every a ∈ Σ, TDΣ,n

(A, a) ∼MDΣ,n
TDΣ,n

(A′, a) by Definition 5. By induction
on the DFA transition structure (which is finite), TDΣ,n

(A, a) and TDΣ,n
(A′, a) are bisimilar. As

transitions under all a ∈ Σ preserve bisimilarity, the initial states q0 and q′0 must be related under the
bisimulation relation. Thus, A and A′ are bisimilar, i.e., A ∼ A′ ⇐= A ∼MDΣ,n

A′.
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Theorem 2 LetM = ⟨S,A, T,R, ι, γ⟩ be a deterministic MDP. Define operators:

dk(s, t)←
∣∣∣R(s, πk(s, t))−R(t, πk(s, t))

∣∣∣+ γ dk−1
(
T (s, πk(s, t)), T (t, πk(s, t))

)
,

πk(s, t)← argmax
a∈A

{
|R(s, a)−R(t, a)|+ γ dk−1 (T (s, a), T (t, a))

}
.

Then, there exists unique fixed points d∗ and π∗, and d∗ is a bisimulation metric.

Proof LetM = ⟨S,A, P,R, ι, γ⟩ be an MDP. Define

dk(s, t)← argmax
a∈A
{|R(s, a)−R(t, a)|+ γW1(d) (P (s, a), P (t, a))} ,

whereW1 is the 1-Wasserstein metric. Ferns et al. (2004) showed that this operator has a unique
fixed point d∗, and d∗ is a bisimulation metric. Later, Castro (2020) proved that ifM is deterministic,
with transition function T , then the 1-Wasserstein metric above implies as follows:

W1(d) (P (s, a), P (s, a)) = d (T (s, a), T (s, a)) .

We write the distance and the policy update separately since we want to learn the argmax–hard to
compute directly. However, then we need to prove that the distance metric still has a unique fixed
point when updated with actions from a policy being simultaneously learned. A useful result due
to Zhang et al. (2020) (which we present by combining with the result of Castro (2020) and our
notation) shows that given a continuously improving policy π, the following operator:

dk(s, t)← |R(s, π(s, t))−R(t, π(s, t))|+ γd (T (s, π(s, t)), T (s, π(s, t)))

has a unique fixed point d∗, and d∗ is a π∗-bisimulation metric. In our case, π∗ is the argmax policy
and therefore the unique fixed point d∗ is a bisimulation metric.

Lemma 2 Let DΣ,n be a DFA space, ϕ∗ be an encoder, and π∗ be a policy s.t.

π∗ ◦ ϕ∗ = argmax
π◦ϕ

JDΣ,n
(π ◦ ϕ),

where JDΣ,n
(π ◦ ϕ) is given by Equation (2). Then, ϕ∗ satisfies:

∀A,A′ ∈ DΣ,n, A ∼ A′ ⇐⇒ ϕ∗(A) = ϕ∗(A′).

Proof By Theorem 2, d∗(A,A′) = ∥ϕ̂∗(A) − ϕ̂∗(A′)∥2 is a bisimulation metric. Therefore,
d∗(A,A′) = 0 =⇒ A ∼MDΣ,n

A′ by Definition 9 and thus, by Lemma 1, we have A ∼ A′. As
d∗(A,A′) = 0 implies ϕ∗(A) = ϕ∗(A′), we have A ∼ A′ ⇐⇒ ϕ∗(A) = ϕ∗(A′). The forward
direction is true since if A ∼ A′, then d∗(A,A′) = 0 by Definition 9; thus, ϕ∗(A) = ϕ∗(A′).

Theorem 3 Let DΣ,n be a DFA space, ϕ be an encoder, and π∗ be a policy s.t.

π∗ ◦ ϕ∗ = argmax
π◦ϕ

JDΣ,n
(π ◦ ϕ),

where JDΣ,n
(π ◦ ϕ) is given by Equation (2). Then, ϕ∗ solves Problem 1.

Proof The optimal encoder ϕ∗ maps two DFAs to the same latent representation if and only if they
are bisimilar by Lemma 2. So, every unique task in DΣ,n is represented in Z . Therefore, the problem
given in Definition 6 can be equivalently reformulated over Z , which solves Problem 1.
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