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Abstract

Modern video understanding systems excel at tasks such as scene classification, object detection,
and short video retrieval. However, as video analysis becomes increasingly central to real-world ap-
plications, there is a growing need for proactive video agents—systems that not only interpret video
streams but also reason about events and take informed actions. A key obstacle in this direction
is temporal reasoning: while deep learning models have made remarkable progress in recognizing
patterns within individual frames or short clips, they struggle to understand the sequencing and
dependencies of events over time, which is critical for action-driven decision-making. Addressing
this limitation demands moving beyond conventional deep learning approaches. We posit that tack-
ling this challenge requires a neuro-symbolic perspective, where video queries are decomposed into
atomic events, structured into coherent sequences, and validated against temporal constraints. Such
an approach can enhance interpretability, enable structured reasoning, and provide stronger guaran-
tees on system behavior, all key properties for advancing trustworthy video agents. To this end, we
present a grand challenge to the research community: developing the next generation of intelligent
video agents that integrate three core capabilities—(1) autonomous video search and analysis, (2)
seamless real-world interaction, and (3) advanced content generation. By addressing these pillars,
we can transition from passive perception to intelligent video agents that reason, predict, and act,
pushing the boundaries of video understanding.
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1. Introduction

Consider an agentic system that utilizes video feed from the cameras of a home security system
(Figure 1) to perform the following complex user request:

Send me a notification when a person is walking up to my driveway with a package,
then automatically open the garage for three minutes to safely store the package and
lock everything back up when the delivery is complete.

Home-security owners increasingly expect video camera systems to handle tasks of this com-
plexity (Comeau, 2024). Beyond delivery automation, such a system should also be able to notify
law enforcement authorities if it recognizes an attempted break-in, send the exact video footage
of the incident, and autonomously trigger an alarm to lock all entry points to secure the premises.
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Figure 1: An Efficient Neuro-Symbolic Approach to Video Agents. We argue for a neuro-
symbolic approach to develop video agents that combines the per-frame or short-horizon reasoning
capabilities of neural perception models with the long-term reasoning abilities of symbolic frame-
works such as temporal logic tools. Here, we show one such example from a home security system,
where the agent is required to identify the presence of a delivery person and send the required noti-
fications.

Requests of this nature are not limited to home security; similar demands arise in defense (Shultz
and Clarke, 2020), autonomous driving (National Highway Traffic Safety Administration, 2024),
and social media analytics (Metricom, 2025). Endowing current video systems to process user
queries as shown above requires moving beyond passive analysis to reason about unfolding events
in real-time, and precisely interact with the real world with guarantees.

While deep learning excels at understanding short-term activities (e.g., detecting a person, ob-
ject, or short event), it struggles with temporal reasoning and long-term memory (see Section 2),
posing a significant challenge for video agents tasked with understanding complex user queries
(Choi et al., 2024). Furthermore, deep learning methods in isolation do not provide the necessary
interpretability or guarantees for either perceiving or acting.

In contrast, structured logic representations, such as temporal logic (TL) (Baier and Katoen,
2008), effectively address these challenges by explicitly encoding time-dependent sequences of
events such as “close the garage door within 20 minutes of opening it.” Therefore, we argue that
the next generation of video understanding systems will adopt a hybrid of deep learning (neuro) and
formal representations such as TL (symbolic). A neuro-symbolic approach can capture complex
temporal constraints while providing interpretability and formal guarantees with respect to user
specifications. Therefore, we posit that future video systems—which we term video agents—will
be built on three pillars:
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1. Video Search and Understanding: A video agent must identify and extract the relevant
frames that correspond to a complex temporally extended query. For instance, in the running
example, tagging a person with a package walking towards the front door as an attempted
delivery would require the system to process the progression of events over time.

2. Integrate Understanding with Real-World Action: Video agents must act in the real world
according to user specifications by integrating perception with downstream actions such as
calling relevant Application Programming Interfaces (APIs) (Chase, 2022). For example,
actions such as “Opening the garage for three minutes after detecting a delivery” or “Locking
down entry points during an attempted break-in” are enacted only after specific sequences of
events are identified.

3. Video Generation: Video agents must be rigorously tested through synthetic simulations for
edge cases, for instance, distinguishing between a delivery driver and an intruder or detecting
suspicious packages. Additionally, video generation serves as a tool for these agents to cre-
ate video clips that edit out sensitive user content for post-hoc analysis, for instance, in our
example, generating or editing video clips for law enforcement or delivery companies.

Hence, we propose a grand vision and challenge for the community to develop the next genera-
tion of neuro-symbolic video agents capable of analyzing videos (both offline and in real time) and
executing user-specified actions. We outline objectives for each desired capability—video search,
action execution, and video generation—and provide a starting point with relevant datasets (TLV
(Choi et al., 2024) for video search) and metrics (NeuS-V (Sharan et al., 2024) for video generation)
to motivate further research and development in this direction. Finally, we urge the research com-
munity to establish rigorously standardized benchmarks and systematically validate video agents as
these agents transition into safety-critical domains such as autonomous driving and home security.

2. Can Deep Learning Alone Solve Video Understanding?

In this section, we revisit a fundamental question: Can deep learning alone achieve comprehensive
video understanding, the key building block for any video agent? While state-of-the-art multimodal
foundation models such as GPT4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023), and Gemini
(Team et al., 2023) have demonstrated impressive capabilities for language and image tasks, these
models lack the ability to interpret extended temporal dependencies between events. In the follow-
ing, we highlight the key drawbacks of these foundation models in the context of video search and
generation, both critical for the agent’s operation.

Traditional deep learning models struggle to capture complex and long-term temporal depen-
dencies in videos. We attribute this to the temporal aggregation of semantic and activity-related
deep learning, which couples spatial and temporal feature processing. This limitation is demon-
strated with Neuro-Symbolic Video Search with Temporal Logic (NSVS-TL) (Choi et al., 2024).
NSVS-TL, as illustrated by its pipeline in Figure 2(a), maps videos into a probabilistic automaton by
converting frames into states using an off-the-shelf neural perception model. Complex user queries
are then converted into TL specifications. Consequently, NSVS-TL converts the video search prob-
lem into a verification problem and extracts the relevant clips that satisfy the TL specifications
corresponding to the user query. By decoupling spatial and temporal understanding, this approach
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(a) NSVS-TL Architecture. (b) NeuS-V Architecture.

Figure 2: NSVS-TL and NeuS-V System Diagrams. In (a), when given video feed from a security
system, NSVS-TL demonstrates its capability in identifying exactly when a delivery driver walks
up the stairs and drops a package off. Similarly, in (), a video generated by a foundation model
describing a delivery scenario is evaluated for temporal fidelity through NeuS-V.

significantly outperforms multimodal foundation models when faced with elaborate user queries, as
shown in Figure 3(a).

Foundation models for video generation deteriorate in performance with increasing complex-
ity of the text prompts. Dozens of text-to-video generation models exist (see Section 3 for a sum-
mary), however, evaluations on benchmarks such as NeuS-V (Sharan et al., 2024), with its pipeline
depicted in Figure 2(b), demonstrate a deficiency in temporal fidelity, where the semantic alignment
between video and prompt deteriorates with increasing user query complexity. Inspired by NSVS-
TL, NeuS-V first translates the text prompt into atomic propositions and a TL specification using
an optimized large language model (LLM). It then constructs a video automaton representation by
assigning semantic confidence scores to these propositions using a vision-language model (VLM).
Finally, NeuS-V computes the satisfaction probability by formally verifying the video automaton
against the TL specification to produce the final score. In Figure 3(b), we show that text-to-video
generation degrades when the number of events in the query increases. To mitigate this issue, we
posit that generative models need to be co-designed with temporal understanding frameworks.

Overall, deep learning models still struggle with both long-form video understanding and video
generation. Hence, video agents would need to be built via neuro-symbolic methods that blend deep
learning methods with formal logic representations and state machines.

3. Related Work

Video Search Existing research in video event detection predominantly focuses on tracking spatio-
temporal object information using deep neural networks to learn latent representations, such as mo-
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Figure 3: Foundation models struggle to perform video search and generation with increasing
complexity of user queries. However, neuro-symbolic approaches (NSVS-TL) effectively decou-
ple spatial and temporal reasoning using perception modules for spatial reasoning and temporal
logic (TL) to model long-term temporal dependencies. As a result, NSVS-TL outperforms foun-
dation models in complex video search tasks (a). Similarly, text-to-video models, like Pika, fail to
maintain temporal consistency as scenario complexity increases (b).

tion and position, for event detection and classification (Jiang et al., 2011; Medioni et al., 2001; Li
etal., 2022; Xu et al., 2015; Zheng et al., 2022; Doshi and Yilmaz, 2023; Feichtenhofer et al., 2016,
2017). These methods, while effective, demand substantial computational resources for training
and inference (Li et al., 2022; Feichtenhofer et al., 2016, 2017). Some works also extend this to
natural language-based event detection, employing VLMs like Video-LLaMA (Zhang et al., 2023a)
and Video-ChatGPT (Maaz et al., 2023), which integrate language foundation models such as GPT-
4 (OpenAl, 2023) and LLaMA (Touvron et al., 2023), for zero-shot event recognition and visual
question answering (VQA). However, their reliance on temporal aggregation limits precise frame
identification in long videos. Neuro-symbolic methods have been proposed to address this issue
by enabling structured reasoning over longer videos when searching for video clips (Cheng et al.,
2014; Yang et al., 2023; Choi et al., 2024, 2025b).

Video Agents Recent advancements in video agents have leveraged LLMs and VLMs to enable
decision-making, such as ReACT (Yao et al., 2023) powered through Langchain (Chase, 2022)
and ToolLLM (Qin et al., 2023). These have been applied in the video domain where tools have
been integrated with VLMs for tasks such as long-from video understanding (Jeoung et al., 2024;
Wang et al., 2024b), video generation for robotics (Soni et al., 2024), and video editing (Wang et al.,
2024a). While these agents demonstrate progress, they cannot be applied in real-world applications,
such as home security, which require the seamless integration of temporal reasoning, context-aware
decision-making, and robust interaction with external systems.

Video Generation Following the recent successes in text-to-image generation, text-to-video mod-
els such as SORA from OpenAl (OpenAl, 2024), GEN-3 Alpha from Runway (Research, 2024),
and PIKA (Labs, 2024) have seen increased proliferation. Although the exact architecture for these
models is unknown, text-to-video generation employs diffusion models (Ho et al., 2020), such as in
Phenaki (Villegas et al., 2022) and I2VGen-XL (Zhang et al., 2023b; Blattmann et al., 2023; Esser
et al., 2023), or autoregressive models, such as the CogVideo series (Hong et al., 2022; Yang et al.,
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2024). For a detailed survey on these methods, we refer you to Cho et al. (2024). These models are
inadequate for generating temporally correlated events (Sharan et al., 2024; Choi et al., 2025a), and
to our knowledge, neuro-symbolic methods for solving this problem have not been explored.

Neuro-symbolic Methods Many works explore approaches to building symbolic representations
for video classification (Feichtenhofer et al., 2019; Tran et al., 2019), event detection (Medioni
etal., 2001; Xu et al., 2015; Li et al., 2022), video question-answering (Yi et al., 2018; Chen et al.,
2022), robotics (Shoukry et al., 2017; has, 2019; Kress-Gazit et al., 2009), and autonomous driving
(Jha et al., 2018; Mehdipour et al., 2023). These methods either construct graph structures (Yu
et al., 2022; Mavroudi et al., 2020; Xiong et al., 2019), use latent-space representations as symbolic
representations (Sarkar et al., 2015; Bertasius et al., 2021; Kroshchanka et al., 2021), or leverage
formal language methods (Baier and Katoen, 2008) to design specifications.

4. The Formal Challenge

Our goal is to encourage the research community to develop the analogous version of the LLM-
based agent datasets, tasks, and evaluation frameworks (e.g., Tool Bench (Qin et al., 2023), Stable
Tool Bench (Guo et al., 2024), and Gorilla (Patil et al., 2023)) for the video domain to create and
evaluate video agents. To this end, we formalize the design goals of a video agent that leverages
deep-learning and neuro-symbolic methods to process videos and complex natural language queries.
The inputs and outputs of such a system are:

* Inputs

— Dataset: Videos annotated with natural language queries for temporally complex events
and their corresponding ground truth spans or actions. We provide a preliminary dataset
used for video search, the TLV Dataset in Section 5, for the community to build upon
and adapt for video agents.

— Tools: A set of apps or programs to be executed, such as calling Python code, exe-
cuting a state machine, or calling an API from an external library like Twilio (Twilio
Inc., 2025) and RapidAPI (RapidAPI). We encourage the community to develop open-
sourced API’s specific to video agent use-cases.

— Models: Deep learning models such as LLMs, VLMs, and Generative Models.
* Outputs
— Event Clips: A sequence of specific frames that correspond directly to a user query.
— Actions: A tool invoked with its inputs timed according to the user query.
— Synthetic Videos: Synthesized videos based on user queries and specifications.
* Metrics
— Accuracy of Events: F1-Score between the predicted spans and ground-truth spans.

— Tool Calling: Accuracy of the selected tool and its desired input (see Section 6).

— Synthetic Videos: VBench (Huang et al., 2024) for visual quality and NeuS-V (Sharan

et al., 2024) for temporal fidelity.
The primary objective of the video agent is to merge agentic workflows capable of tool in-
vocation (Chase, 2022) based on input videos and queries. Therefore, given a dataset annotated
with events and corresponding tool actions, the agent would predict which tool should be invoked
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for each query at specific instances in the video. The core technical requirements for each of the
capabilities for the video agent are:

1. Video Search: The video search task aims to predict the temporal span of a video clip that
corresponds to a given natural language query. This requires:

(a) Parsing Queries: Decompose the natural language query into semantic components
that include objects and short-term events or activities followed by a formal language
description of their temporal order.

(b) Perception: Orchestrate neural models to detect relevant objects and activities.

(c) Prediction: Predict temporal spans in the query-aligned video with high probability.

2. Tool Calling: The key capability of the video agent is to be able to call the right tools and
specify their input based on the user’s specifications and the context developed from the video.
The implementation of this task requires:

(a) Tool Selection: Run deep learning models to identify the right tool or API to call based
on the identified temporal spans from the video search task.

(b) Tool Invocation: Specify the inputs to the tool to be executed based on the identified
video clip—for instance, the message to be sent for a notification API.

3. Video Generation: The video generation task aims to synthesize videos that align with a
temporally extended natural language query. To accomplish this, the following are necessary:

(a) Synthesis: Synthesize novel scenarios based on the user’s custom queries.

(b) Evaluation: Ensure high visual quality while maintaining semantic coherence and ac-
curate temporal alignment with the query.

(c) Improvement and Editing: Iteratively improve the videos through reprompting or edit-
ing from neuro-symbolic feedback to meet the user’s specifications.

We provide initial data along with benchmarks and example agents for the community to build
upon on GitHub.

5. Datasets

A plethora of video datasets, such as Ego4D (Grauman et al., 2022), MSR-VTT (Xu et al., 2016),
and others (Nagrani et al., 2022; Chandrasegaran et al., 2025; Wang et al., 2023), annotate short
video clips with activities in natural language. However, they are not suitable for our purpose
because they lack annotations for temporally structured activities such as “The garage door opens
after the person is identified as a delivery driver.”

To develop video agent capabilities such as search, generation, and tool invocation, datasets
must include three key annotations: (1) frame-level temporal annotations for events (e.g., detect-
ing deliveries or break-ins), (2) specifications of tools and their inputs (e.g., notification type and
recipient), and (3) the temporal order of tool invocations (e.g., “alert homeowner before locking
doors”).
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Figure 4: TLV Dataset Specification-Video Pairing. An excerpt of the TLV dataset is shown here,
demonstrating the efficacy of the TLV dataset in showing the relationships between videos and TL
sequences. This figure was taken with permission from Choi et al. (2024).

The TLV dataset is a first step towards addressing these limitations. The TLV dataset (Choi
etal., 2024) recognizes the need to explicitly annotate when an event occurs and how they are tempo-
rally related. At a high level, the TLV dataset is designed with frame-level temporal annotations for
temporally dependent events. These annotations are compiled from a combination of static images
from leading image datasets, including Waymo (Sun et al., 2020) and NuScenes (Guo et al., 2020),
as illustrated in Figure 4, and the dataset is publicly accessible through Hugging Face. While TLV
facilitates evaluations on video content for video search with temporally correlated event queries, it
lacks the annotations pertaining to the tool invocation. This poses an interesting challenge, and we
empower the community to curate temporally meaningful datasets with timestamped annotations of
the tools used on the more modern video-activity datasets listed above.

6. Metrics
Consider our running example described in Section 1.

How can we evaluate the success of a video agent that is capable of video search
and toolchain execution in both real-world and good quality synthetically generated
scenarios?

A comprehensive evaluation metric for agents would consider computational efficiency, video
processing latency, state machine generation latency, and resource consumption, such as energy and
memory. However, for this challenge, we will focus specifically on evaluating the accuracy of the
video agent and video generation.

Event Search Accuracy for Video Search In the video search domain, we propose utilizing
classification metrics, such as the F1 score. This metric, the aggregation of precision and recall, is
calculated based on the accurate identification of frames relevant to a given search query compared
against ground truth labels provided by datasets like the TLV dataset.

Evaluating Tool Calling A comprehensive metric to evaluate video agents would ensure that
agents interpret events accurately, maintain temporal coherence with user specifications, and execute
actions with appropriate inputs. We list the components as follows:
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Figure 5: What is the Correct Action for the Agent? At a first glance, both agents summarize the
video nearly identically. However, upon closer inspection, Agent 1, although more vague, correctly
identifies the parked delivery truck and notifies the homeowner. In contrast, Agent 2, while more
detailed, hallucinates a right turn on an intersection, leading to no action.

* Event-Specific Tool Invocation: The metric must assess the accuracy of the tools executed
in response to specific events. For instance, in Figure 5, the agent must correctly notify the
homeowner when a delivery person is detected approaching.

* Temporal Alignment with the Prompt: The evaluation must ensure that the temporal order
of tool invocation adheres to the specified sequence. For example, the garage door should be
closed only after the delivery person leaves the driveway but before they leave the package.
Similarly, if a break-in is detected, the system must simultaneously trigger an alarm, lock all
entry points, and notify law enforcement authorities.

* Correct Inputs to Tools: The tools invoked by the agent must receive accurate and contextu-
ally appropriate inputs. For instance, notifications should be sent to the correct recipient (e.g.,
notifying law enforcement in case of a break-in).

Video Generation Evaluation Video generation necessitates an assessment of both visual quality
and temporal fidelity. Existing evaluation metrics, such as those based solely on VQA (Wu et al.,
2023a,b), emphasize visual quality, neglecting temporal coherence in the process. Consequently,
these metrics may yield high scores, even for videos that fail to represent the prompt’s intended
sequence of events. To address this deficiency, we propose a two-pronged evaluation approach:
one benchmark to assess visual quality and another to evaluate temporal adherence. Specifically,
we suggest employing VBench (Huang et al., 2024) as the standard for visual quality assessment,
complemented by NeuS-V (Sharan et al., 2024), a metric we have discussed earlier that conducts
temporal coherence evaluations on the generated video by converting its natural language prompt
into atomic events and semantics with TL specifications.

7. Architecture Discussion and Open Questions

In this section, we pose several questions and ideas to the research community to expand the scope
for neuro-symbolic video agents to multimodal inputs, multiple formal language representations,
and multiagent setups.
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Multimodal: Audio, Video, and Beyond. At its core, our description of a video agent decom-
poses user queries into fundamental atomic events that can be detected using computer vision. How-
ever, consider the case where a video agent must respond to multimodal triggers, such as a home
security system awaiting the audio of a door knock. How can I modify my agent framework to
allow for complex, multimodal triggers? For this system, the role of the neural model extends be-
yond pure video analysis, encompassing the complex orchestration of multimodal information to
facilitate robust and adaptable symbolic reasoning.

How is Formal Language Specified? The temporal structure of events through formal language
presents a unique challenge. From Section 1, we described formal language through TL, allowing
the video agent to capture temporal information in user queries. However, video agents are not mar-
ried to a single type of formal language framework; if precise timings were vital, video agents can
leverage approaches such as Linear Temporal Logic (LTL) or Signal Temporal Logic (STL). Now,
consider the need to track spatial relationships or distances between objects. This idea warrants the
exploration of more flexible formal language, such as state machines or pipelines akin to LangChain
(Chase, 2022). Ultimately, any approach must be both expressive and scalable, capable of capturing
complex temporal dependencies while remaining computationally feasible for verification. Further
exploration is encouraged to determine which approach, or combination of approaches, yields the
most robust representation framework.

Multi-Agent Equals Multi-Camera? Consider an agentic security system developed for a large
apartment complex with dozens of security cameras instead of one. How can these cameras in-
terface with each other to create one cohesive system? This now becomes a multi-agent problem
where atomic propositions can be derived from different security cameras across the complex. This
introduces several key challenges: What mechanisms facilitate the fusion of disparate spatial and
temporal information into a unified representation? Furthermore, how can the system reason about
events occurring across multiple viewpoints, effectively resolving potential ambiguities and incon-
sistencies? The goal for a multi-agent system is to move beyond the simple aggregation of camera
data and towards a truly robust system that can reason about complex, distributed events with en-
hanced situational awareness.

8. Conclusion

The development of neuro-symbolic video agents marks the next frontier in video understanding,
blending the pattern recognition capabilities of deep learning with the interpretability and tempo-
ral reasoning strengths of symbolic methods. These hybrid systems address critical limitations of
current models, such as poor long-term memory and a lack of guarantees for perception and action.
By bridging low-level recognition with high-level logic, neuro-symbolic approaches enable robust
performance in complex settings like home security, autonomous driving, and beyond. They em-
power systems to reason over temporal sequences, generate synthetic content for edge cases, and
translate understanding into action seamlessly. We encourage the research community to expand
this paradigm by exploring architectures and methods that tightly integrate learning with formal
reasoning, paving the way towards intelligent video agents.
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