
Proceedings of Machine Learning Research vol 288:1–15, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

PCA-DDReach: Efficient Statistical Reachability Analysis of Stochastic
Dynamical Systems via Principal Component Analysis

Navid Hashemi NAVIDHAS@USC.EDU
Department of Computer Science, University of Southern California, Los Angeles, USA

Lars Lindemann LLINDEMA@USC.EDU
Department of Computer Science, University of Southern California, Los Angeles, USA

Jyotirmoy V. Deshmukh JDESHMUK@USC.EDU

Department of Computer Science, University of Southern California, Los Angeles, USA

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
This paper proposes a scalable data-driven algorithm for reachability analysis of complex cyber-
physical systems (CPS) without requiring parametric models. Traditional methods rely on known
physical dynamics, which are often unavailable due to system complexity or variability. Instead, we
treat such systems as black boxes and use trajectory data to learn predictive models. To quantify
prediction uncertainty and ensure safety, we integrate conformal inference (CI) — a statistical tool
for probabilistic guarantees — with Principal Component Analysis (PCA) to reduce conservatism
and enhance scalability. Our method constructs probabilistic reachable sets that are less conservative
under distribution shifts compared to prior CI-based methods. We validate the approach on high-
dimensional systems, including a 12D quadcopter and a 27D powertrain model, demonstrating
improved accuracy and computational efficiency over existing techniques.
Keywords: Reachable set estimation, Conformal Inference, Principal Component Analysis

1. Introduction

System verification tools are crucial for ensuring correctness prior to testing, implementation, or
deployment, particularly in expensive, high-risk, or safety-critical systems Zhang et al. (2023);
Schilling et al. (2022); Komendera et al. (2012). In real-world implementations, we face two signifi-
cant challenges for system verification: (1) assuming access to an underlying model for the system is
often prohibitive, and (2) the presence of noise and uncertainty results in stochastic systems, requiring
us to perform statistical verification to obtain probabilistic safety certificates. Data-driven statistical
reachability analysis is a well-established tool for statistical verification, and has been applied to
safety-critical problems across various domains, including, autonomy, medical imaging and CPS.
Devonport et al. (2021); Fisac et al. (2018); Fan et al. (2017); Hashemi et al. (2024b).

In the context of data-driven statistical reachability analysis, given a user-specified threshold
δ ∈ (0, 1), the goal is to produce a set that ensures that any trajectory during deployment lies within
this set with a probability of no less than δ. As explained in the "Related Work" section, our work
is motivated by the method proposed in Hashemi et al. (2024b). This methodology involves three
main steps: (1) learning a deterministic surrogate model from sampled trajectories, (2) performing
reachability analysis on the surrogate model, and (3) using robust conformal inference Cauchois
et al. (2024) to calculate an inflating hypercube. This inflating hypercube quantifies the necessary
expansion of the surrogate model’s reachable set to provide provable probabilistic guarantees on the
flowpipe that is obtained for the black-box oracle.

© 2025 N. Hashemi, L. Lindemann & J.V. Deshmukh.

HASHEMI LINDEMANN DESHMUKH

Nonetheless, the utilized technique in Hashemi et al. (2024b) to integrate robust conformal
inference, can be adjusted to reduce the level of conservatism. Our first contribution in this paper is
to address this issue, by combining robust conformal inference with Principal Component Analysis
(PCA), and we show this adjustment results in tighter inflating hypercubes and probabilistic reachable
sets. In Hashemi et al. (2024b), the authors assume a single model that maps the initial state to the
entire trajectory1. However, this results in a large model, which limits the scalability of reachability
analysis for extended horizons. Training such a large model becomes inefficient. Furthermore, the
model’s large size makes accurate methods for surrogate reachability infeasible, necessitating the
use of conservative over approximation techniques. In response, our second contribution here is to
address these challenges by presenting a new training strategy that effectively resolves for all of
these listed scalability issues. We propose training a set of independent small models, each mapping
the initial state to a separate sub-partition of the trajectory. This approach eliminates the need for
iterating a model over time while maintaining smaller models that are more suitable for efficient
training and efficient surrogate reachability analysis.

Related Work. In the context of data-driven reachability analysis, typically, to obtain the reachable
set, a dataset of system trajectories needs to be available, e.g., from a black box simulator. In
Devonport et al. (2021), the authors use Christoffel functions2 to learn the model of the system from
such a dataset and generate probabilistic reachable sets. This methodology has been extended in
Tebjou et al. (2023) by incorporating conformal inference Vovk (2012) to improve its data efficiency.
In Devonport and Arcak (2020a), a Gaussian process-based classifier is employed to learn a model
that distinguishes between reachable and unreachable states to approximate the reachable set. In
Devonport and Arcak (2020b); Dietrich et al. (2024) scenario optimization is used to generate
probabilistic reachable sets. The method in Fisac et al. (2018) assumes partial knowledge of the
system and leverages the dataset to perform statistical reachability analysis. Similarly, the work
presented in Fan et al. (2017) uses the dataset to learn an exponential discrepancy function that
estimates trajectory’s sensitivity to uncertainty, enabling the computation of probabilistic reachable
sets. Of our particular interest is the method proposed by Hashemi et al. (2024b), which suggests
learning a system model on this dataset via ReLU neural networks and then conduct statistical
reachability analysis via conformal inference. By leveraging the ability of neural networks to model
complex, high-dimensional relationships alongside the data efficiency of conformal inference, this
approach establishes an efficient and structured framework for statistical reachability analysis.
Additionally, the probabilistic guarantees proposed by Hashemi et al. (2024b) remain valid even
when there is a distribution shift between the training and deployment environments. This is the main
reason we focus on extending this work instead of building on other existing methodologies.

Conformal inference (CI) is a data-efficient method for formally providing guarantees on the
δ-quantile of distributions. This method involves sampling an i.i.d. scalar dataset, sorting the samples
in ascending order, and demonstrating that one of the sorted samples represents the δ-quantile. The
integration of CI with formal verification techniques has recently received noticeable interest, that is
primarily due to its accuracy and level of scalability. For instance, Bortolussi et al. (2019) merges CI
with neural state classifiers to develop a stochastic runtime verification algorithm. Lindemann et al.
(2023); Zecchin et al. (2024) employ CI to guarantee safety in MPC control using a trained model.
Tonkens et al. (2023) applies CI for planning with probabilistic safety guarantees, and Hashemi et al.

1. This approach is motivated by the fact that training a one-step model and iterating it over time leads to the well-known
issue of cumulative errors

2. See Lasserre and Pauwels (2019); Marx et al. (2021) for more details about the Christoffel functions.

2

PCA-DDREACH

(2024b) integrates CI with existing neural network reachability techniques and provides a scalable
reachability analysis on stochastic systems, see Lindemann et al. (2024) for a recent survey article.

Notation. We use bold letters to represent vectors and vector-valued functions, while caligraphic
letters denote sets and distributions. The set {1, 2, . . . , n} is denoted as [n]. The Minkowski sum is
indicated by ⊕. We use x ∼ X to denote that the random variable x is drawn from the distribution
X . We present the structure of a feedforward neural network (FFNN) with ℓ hidden layers as an
array [n0, n1, . . . nℓ+1], where n0 denotes the number of inputs, nℓ+1 is the number of outputs, and
ni, i ∈ [ℓ] denotes the width of the i-th hidden layer. We denote ei ∈ Rn as the i-th base vector of
Rn. We also denote ⌈x⌉ as the smallest integer greater than x ∈ R.

2. Preliminaries

2.1. Stochastic Dynamical Systems
Consider a set of random vectors S0, . . . , SK ∈ S indexed at times 0, . . . ,K and with state space
S ⊆ Rn. A realization of this stochastic process is a sequence of values s1, . . . , sK, denoted as
system trajectory σreal

s0 . The joint distribution over S1, . . . , SK is the trajectory distribution Dreal
S,K,

while the marginal distribution of S0 is known as the initial state distribution W . It is assumed that
W has support over a compact set of initial states I, implying Pr[s0 /∈ I] = 0.

Training and Deployment Environments. In the training environment, we pre-record or simulate
datasets to conduct reachability analysis. Conversely, the deployment environment refers to the real
world where we apply our reachable sets. There is typically a difference between the distribution of
trajectories in the training and deployment environments. We refer to this difference as distribution
shift. In this paper, we assume that for a predefined distribution on initial states s0 ∼ W , the real-
world trajectories σreal

s0 are sampled from σreal
s0 ∼ Dreal

S,K, whereas the simulated trajectories σsim
s0 are

sampled from σsim
s0 ∼ Dsim

S,K.

2.2. Surrogate Model: Reachability & Error Analysis
A surrogate model F : I ×Θ → SK, with trainable parameters θ ∈ Θ, can be trained by sampling
K-step trajectories σsim

s0 ∼ Dsim
S,K from the simulator to predict the trajectory σsim

s0 ∈ SK given its
initial state s0 ∈ I. We call this dataset T trn, and we denote the predicted trajectory by,

σ̄s0 = F(s0 ; θ), where, F(s0 ; θ) =
[
F1(s0), . . . ,F

n(s0), . . . ,F
(K−1)n+1(s0), . . . ,F

nK(s0)
]⊤

(1)
where, F(k−1)n+ℓ(s0) is the ℓth state component at the kth time-step in the trajectory3. Let eℓ ∈ Rn

denote the ℓ-th basis vector of Rn. For a trajectory s1, . . . sK, and s0 ∼ W , for j = (k − 1)n + ℓ,
we define the prediction errors as,

Rj = e⊤ℓ sk − Fj(s0), k ∈ [K], ℓ ∈ [n]. (2)

In this paper, we introduce the residual ρ : RnK → R≥0 as a function of the prediction errors Rj ,
where j ∈ [nK]. In this section, we present a previously proposed example of such a function and
later introduce an adjustment to reduce the conservatism in probabilistic reachability.

3. Here, the dimension and time steps are stacked into a single vector.

3

HASHEMI LINDEMANN DESHMUKH

Definition 1 (Simulation & Real Residual Distribution) If the residual is generated by σsim
s0 ∼

Dsim
S,K, we denote the residual distribution as ρ ∼ J sim

S,K where J sim
S,K is the simulation residual

distribution. Conversely, if the residual is generated by σreal
s0 ∼ Dreal

S,K, we denote it as ρ ∼ J real
S,K

where J real
S,K is the real residual distribution.

We also utilize total variation, Takezawa (2005) as a metric to quantify their distribution shift, τ ≥ 0.
In other word, τ = TV(J sim

S,K,J real
S,K), where TV refers to the total variation.

Surrogate Flowpipe and Star-Set. The surrogate flowpipe X̄ ⊂ RnK is defined as a superset of
the image of F(I ; θ). Formally, for all s0 ∈ I, we need that F(s0 ; θ) ∈ X̄ . Due to the recent
achievements in verifying neural networks with ReLU activations, we limit ourselves to the choice
of ReLU neural networks as our surrogate models, and we rely on the NNV toolbox from Tran
et al. (2020) to compute the surrogate flowpipe. Although other activation functions can be used,
we anticipate more conservative results if non-ReLU activation functions are utilized. We choose to
use NNV in our analysis here, because it can yield accurate reachability results in settings where
neural networks with ReLU activation function are used. The approach in Tran et al. (2020) employs
star-sets (an extension of zonotopes) to represent the reachable set and utilizes two main methods:
(1) the exact-star method, which performs precise but slow computations, and (2) the approx-star
method, which is faster but it is more conservative.

Definition 2 (Star set Bak and Duggirala (2017)) A star set Y ⊂ Rd is a tuple ⟨c, V, P ⟩ where
c ∈ Rd is the center, V = {v1, v2, . . . , vm} is a set of m vectors in Rd called basis vectors, and
P : Rm → {⊤,⊥} is a predicate. The basis vectors are arranged to form the star’s d ×m basis
matrix. Given variables µℓ ∈ R, ℓ = 1, . . . ,m, the set of states represented by the star is given as:

Y =

{
y | y = c+

m∑
ℓ=1

(µℓvℓ) s.t. P (µ1, . . . , µm) = ⊤

}
. (3)

2.3. Conformal Inference & Probabilistic Reachability
A key step toward probabilistic reachability is to provide a provable δ-quantile for the residual. Let
ρ1 < ρ2 < . . . < ρL represent L different i.i.d. residuals sampled from J sim

S,K, and sorted in ascending
order. Given a confidence probability, δ ∈ (0, 1), a provable tight upper bound for the δ-quantile
of the residuals ρ ∼ J real

S,K is computable from samples ρi ∼ J sim
S,K, i ∈ [L], using robust conformal

inference proposed in Cauchois et al. (2024) that is an extension of CI, proposed in Vovk (2012).
The theory of conformal inference states that for a new sample ρ ∼ J sim

S,K, the rank ℓ :=
⌈(L+ 1)δ⌉ ≤ L satisfies Pr[ρ < ρℓ] ≥ δ. This implies that ρℓ serves as a provable upper bound for
the δ-quantile of J sim

S,K. However, this result does not extend to another residual ρ ∼ J real
S,K , which is

drawn from a different distribution. To address this distribution shift, the theory of robust conformal
inference introduces an adjustment to conformal inference. It establishes that for any random variable
ρ ∼ J real

S,K satisfying TV(J real
S,K ,J sim

S,K) ≤ τ with a threshold τ > 0, we have Pr[ρ < ρℓ∗] > δ, where

ℓ∗ := ⌈(L+ 1)(1 + 1/L)(δ + τ)⌉, ℓ∗ ≤ L. (4)

Thus, ρℓ∗ serves as an upper bound for the δ-quantile of J real
S,K .

Inflating Hypercube. In reachability analysis, the main purpose for the definition of the residual
is to achieve a bounding region that will cover the random sequence of prediction errors, PE =

4

PCA-DDREACH

[R1, R2, . . . , RnK] with a confidence δ ∈ (0, 1). In this case, as suggested by Cleaveland et al.
(2024), the max() operator over the absolute value of all errors is a suitable choice. The authors in
Hashemi et al. (2024b), for some positive constants αj , j ∈ [nK] (details on the choice of αj can be
found in Hashemi et al. (2024b)), define the residual

ρ := R = max(α1|R1|, α2|R2|, . . . , αnK|RnK|), (5)

and show that such a bounding region is achievable by computing an upper bound for the δ-quantile
of residual, R. In other words, assuming R∗ as the mentioned upper bound, we have,

Pr[R < R∗] ≥ δ⇐⇒Pr[P ∗(R1, . . . , RnK)=⊤] ≥ δ, P ∗(R1, . . . , RnK)=
nK∧
j=1

(|Rj |<R∗

αj
) (6)

where R∗ is efficiently obtainable via robust conformal inference. As defined in (6), the predicate
P ∗ implies that for every component Rj , j = 1, . . . , nK of the vector PE we have −R∗/αj ≤ Rj ≤
R∗/αj . This describes a hypercube which can be formulated as the following star set:

δX = ⟨ 0nK×1, InK, P
∗(R1, . . . , RnK) ⟩ ⊂ RnK. (7)

Since Pr[P ∗ = ⊤] ≥ δ, this star set serves as such a bounding region for PE. We refer to this
bounding region as inflating hypercube.

δ-Confident Flowpipe & Probabilistic Reachability. For a given confidence probability δ ∈ (0, 1),
and s0 ∼ W , we say that X ⊆ RnK is a δ-confident flowpipe if for any random trajectory σreal

s0 ∼
Dreal

S,K, we have Pr[σreal
s0 ∈ X] ≥ δ. In this paper, our ultimate goal is to propose a δ-confident

flowpipe. To compute such a flowpipe, the authors in Hashemi et al. (2024b) suggest simulating
a set of trajectories, σsim

s0 ∼ Dsim
S,K, s0 ∼ W and training a ReLU NN surrogate model F(s0; θ) on

this dataset. This model will be utilized to compute for its surrogate reachset, X̄ ⊂ RnK. They
also sample a new set of trajectories σsim

s0 ∼ Dsim
S,K, s0 ∼ W for error analysis on F(s0; θ) through

robust conformal inference to compute for another hypercube δX ⊂ RnK, known as the inflating
hypercube, that covers the prediction errors Rj , j ∈ [nK] for trajectories σreal

s0 ∼ Dreal
S,K, with a

provable probabilistic guarantee, and finally they propose the following lemma to compute for the
δ-confident flowpipe on σreal

s0 ∼ Dreal
S,K, s0 ∼ W . See Hashemi et al. (2024b) for the proof.

Lemma 3 Let X̄ be a surrogate flowpipe of the surrogate model F for the set of initial conditions I .
Let PE :=

[
R1, R2, . . . , RnK

]
be the sequence of prediction errors for σreal

s0 ∼ Dreal
S,K, where s0 ∼ W ,

and let δX be the inflating hypercube for PE such that Pr[PE ∈ δX] > δ. Then the inflated reachset
X = X̄ ⊕ δX is a δ-confident flowpipe for σreal

s0 ∼ Dreal
S,K where s0 ∼ W .

2.4. Problem Definition
We are interested in computing a δ-confident flowpipe X from a set of trajectories σsim

s0 collected
from Dsim

S,K so that X is also valid for all trajectories σreal
s0 ∼ Dreal

S,K when the total variation between
J real
S,K and J sim

S,K is less than τ > 0. While we are motivated by the results in Hashemi et al. (2024b)
which propose a solution to the stated problem, we note that their solution lacks scalability and
accuracy that results in sometimes large levels of conservatism, i.e., the set X is unnecessarily large.

The primary sources of conservatism and inaccuracy in the methodology described in Hashemi
et al. (2024b) stem from the training process for the surrogate model F(s0 ; θ) and the method used
to compute the inflating hypercube δX . In the following sections, we address both issues and propose
solutions to improve the accuracy and scalability of this approach for the reachability analysis.

5

HASHEMI LINDEMANN DESHMUKH

Figure 1: This figure shows the division of the trajectory into N different segments σsim,q
s0 , q ∈ [N]

3. Scalable and Accurate Data Driven Reachability Analysis

In this section, we introduce two key adjustments to the methodology of Hashemi et al. (2024b) to
enhance scalability and reduce conservatism.

3.1. Improved Scalabilty and Accuracy for Training Surrogate Models
In this section, we introduce a new training strategy for the model F(s0 ; θ) that avoids the scalability
issues arising from the surrogate model’s large size when handling long time horizons, as encountered
in Hashemi et al. (2024b). Figure 1 illustrates a realization of a trajectory σsim

s0 := s1, . . . , sK over
the horizon K. In this figure, we divide the time horizon into N segments, each with length Tq, where
q ∈ [N]. We denote each trajectory segment as σsim,q

s0 , q ∈ [N], defined as:

σsim,q
s0 := stq+1, stq+2, . . . , stq+Ti , tq =

q−1∑
ℓ=1

Tℓ, t1 = 0. (8)

The key idea is to directly link each trajectory segment σsim,q
s0 , q ∈ [N] to its initial state s0 ∈ I.

Thus, we can train an independent model Fq(s0 ; θq), q ∈ [N] for each segment, which predicts
σsim,q
s0 directly based on the initial state s0. This model is also used to compute surrogate flowpipes for

the trajectory segments X̄q, q ∈ [N], representing the image of set I through the model Fq(I ; θq).
Here are the reasons why this new training strategy for the trajectory σsim

s0 resolves all the
scalability issues, we listed for Hashemi et al. (2024b), in the Introduction section. First and foremost,
since all surrogate models Fq(s0 ; θq), q ∈ [N] are directly connected to the initial state, we do not
need to iterate them sequentially over the time horizon for prediction of states in σsim,q

s0 , q ∈ [N], thus
eliminating the problem of cumulative errors over the time horizon. Furthermore in this setting, the
size of the models Fq(s0 ; θq), q ∈ [N] can be small. The small size of the models allows for efficient
computation of surrogate flowpipes X̄q := Fq(I ; θq) for each segment via exact-star reachability
analysis4. Additionally, the smaller models Fq(s0 ; θq), q ∈ [N] enable efficient training of accurate
models for each trajectory segment. Furthermore, although we have to train more models using this
technique, we can train them in parallel as they are totally independent processes.

Once the surrogate flowpipes X̄q = ⟨c̄q, V̄ q, P̄q⟩, for q ∈ [N], are obtained as star sets, the
surrogate flowpipe for the entire trajectory forms another star set, X̄ = ⟨c̄, V̄ , P̄ ⟩. This global
surrogate flowpipe is constructed by concatenating all individual star sets X̄q, for q ∈ [N], which
implies: c̄ =

[
c̄⊤1 , . . . , c̄

⊤
N

]⊤, V̄ = diag
(
V̄ 1, . . . , V̄ N

)
and P̄ =

∧N
q=1 P̄q.

3.2. Accurate Inflating Hypercubes via Principal Component Analysis
Principal Component Analysis (PCA) is a mathematical technique used to identify the principal
directions of variation in a dataset. Given a dataset of L data points, xi ∈ Rn, i ∈ [L], PCA estimates

4. However, if the set of initial states I is large and the partitioning of I is not scalable (high dimensional states), we
remain limited to using approx star. Nevertheless, even for this case, the small size of the model significantly reduces
the conservatism of approx star.

6

PCA-DDREACH

Figure 2: The figure shows the projection of prediction errors for two-dimensional states over a
horizon of K = 2. The left figure illustrates the projection on the (R1, R2) axes (e.g., k = 1), and
the right figure displays the projection on the (R3, R4) axes (e.g., k = 2). This figure provides a
comparison between the inflating hypercubes for a confidence level δ ∈ (0, 1), generated by the PCA
approach (red hypercubes) and the method proposed in Hashemi et al. (2024b) (green hypercubes). It
clearly demonstrates the superior accuracy of the PCA technique compared to the other method. The
principal axes for k = 1, 2 are (r1, r2) and (r3, r4), respectively.

the covariance matrix, Σ ⪰ 0,Σ ∈ Rn×n of data points xi, i ∈ [L]. The eigenvectors of Σ, known
as principal components, define the directions along which the data exhibits the highest variance,
while the corresponding eigenvalues quantify the magnitude of variance along each direction. These
principal components form an orthonormal basis that aligns with the natural structure of the data,
providing key insights into its intrinsic geometric properties.

The authors in Hashemi et al. (2024b) use the function in (5) to define the residual ρ and compute
the corresponding inflating hypercube δX . However, their technique imposes two conservative
constraints. First, the center of the hypercube is always located at the origin. Second, the edges of the
hypercube are restricted to be aligned with the direction of the trajectory state components.

To address these limitations, we propose an adjustment on the definition of the residual ρ in
equation (5), that enables us to overcome these issues. We integrate the concepts of Conformal
Inference (CI) and Principal Component Analysis (PCA) in our new definition for the residual. This
approach provides the principal axes as the orientation of inflating hypercube and noticeably reduces
its size. In other words, our approach enhances the accuracy of conformal inference by manipulating
the coordinate system, inspired by PCA. However, in the context of CI, altering the coordinate system
has also been addressed in other works, such as Tumu et al. (2024); Sharma et al. (2024).

To obtain the principal axes, given the simulated trajectories from the training dataset σsim
s0,i ∈

T trn, i ∈ [|T trn|], for each segment q ∈ [N], we use the trajectory segment σsim,q
s0,i and its correspond-

ing surrogate model Fq(s0,i; θq) to compute the corresponding set of prediction errors. Specifically,
for each segment q ∈ [N] and data index i ∈ [|T trn|], we collect:

PEq
i =

[
R

tqn+1
i , R

tqn+2
i , . . . , R

(tq+Tq)n
i

]
(9)

and approximate the average and covariance as follows:

PE
q
=

∑|T trn|
i=1 PEq

i

|T trn|
, Σq =

∑|T trn|
i=1

(
PEq

i− PE
q
)⊤ (

PEq− PE
q
)

|T trn|
. (10)

We then apply spectral decomposition on the covariance matrix Σq to obtain the array of eigenvectors
Vq ∈ RTqn×Tqn. Here, the principal axes for the trajectory segment q ∈ [N] are centered on PE

q
,

and are aligned with the eigenvectors Vq
ℓ , ℓ ∈ [Tqn], which are the ℓ-th columns of the matrix Vq.

7

HASHEMI LINDEMANN DESHMUKH

Given the initial state, s0 ∼ W , assume a trajectory s1, . . . , sK that is not necessarily sampled
from Dsim

S,K and also is not necessarily a member of the training dataset. For any segment q ∈ [N] of
this trajectory, we map its vector of prediction errors PEq =

[
Rtqn+1, Rtqn+2, . . . , R(tq+Tq)n

]
to the

principal axes. We do this with a linear map, as,[
rtqn+1, rtqn+2, . . . , r(tq+Tq)n

]
= Vq⊤(PEq − PE

q
), (11)

and utilize the parameters rj , tqn+1 ≤ j ≤ (tq+Tq)n to define the residual. Collecting the mapped
prediction errors for all segments q ∈ [N], we propose our definition for residual as follows:

ρ := max

(
|r1|
ω1

,
|r2|
ω2

, . . . ,
|rnK|
ωnK

)
(12)

where the scaling factors ωj , j ∈ [nK] are the maximum magnitude of parameters rji , i ∈ |T trn|, that
are obtained from the training dataset. In other words,

ωj = max(|rj1|, |r
j
2|, . . . , |r

j
|T trn||), j ∈ [nK]. (13)

Although we use the training dataset T trn to determine hyperparameters, Vq, PE
q
, and ωj for

defining the residual, reusing T trn to generate the inflating hypercube with robust conformal inference
violates CI rules. Thus, in order to generate the inflating hypercube, we first sample a new i.i.d. set of
trajectories from the training environment Dsim

S,K, which we denote as the calibration dataset.

Definition 4 (Calibration Dataset) The calibration dataset Rcalib is defined as:

Rcalib=

{
(s0,i, ρi)

∣∣∣∣∣ s0,i ∼ W, σsim
s0,i ∼ Dsim

S,K,

ρi = max(
|r1i |
ω1

, . . . ,
|rnK

i |
ωnK

)

}
. (14)

Here, σsim
s0,i , i ∈ |Rcalib| refers to the trajectory starting at the ith initial state sampled from W ,

generated from Dsim
S,K. The parameters rji are also as defined in equation (11).

Consider sorting the i.i.d. residuals ρi ∼ J sim
S,K collected in the calibration dataset Rcalib by

their magnitude: ρ1 < ρ2 < . . . < ρ|Rcalib|. Our goal is to provide a provable upper bound for the
δ-quantile of a residual ρ ∼ J real

S,K , given knowledge of a radius τ > 0 such that the total variation
TV(J real

S,K ,J sim
S,K) < τ . In this case, robust conformal inference Cauchois et al. (2024) suggests using

the rank ℓ∗ from equation (4) and selecting ρ∗δ,τ := ρℓ∗ as an upper bound for the residual’s δ-quantile.
In other words, for a residual ρ ∼ J real

S,K , we have Pr[ρ < ρ∗δ,τ] > δ.

Proposition 5 Assume ρ∗δ,τ is the δ-quantile of ρ ∼ J real
S,K , computed over the residuals ρi ∼

J sim
S,K from the calibration dataset Rcalib where TV(J real

S,K ,J sim
S,K) < τ . For the residual ρ =

max
(

|r1|
ω1

, |r2|
ω2

, . . . , |rnK|
ωnK

)
sampled from the distribution J real

S,K , and the trajectory division setting,

Tq, q ∈ [N], it holds that, Pr
[
P (r1, . . . , rnK) = ⊤

]
> δ, where,

P (r1, . . . , rnK)=

N∧
q=1

Pq(r
tqn+1, . . . , r(tq+Tq)n), Pq(r

tqn+1, . . . , r(tq+Tq)n):=

(tq+Tq)n∧
j=tqn+1

(
−ωjρ

∗
δ,τ ≤ rj ≤ ωjρ

∗
δ,τ

)
,

(15)
and rj is the mapped version of prediction errors Rj , j ∈ [nK] on principal axes.

8

PCA-DDREACH

Proof The proof follows as the residual ρ is the maximum of the normalized version of parameters
rj , j ∈ nK so that

ρ = max

(
|r1|
ω1

,
|r2|
ω2

, . . . ,
|rnK|
ωnK

)
⇐⇒

nK∧
j=1

[
|rj | ≤ ρωj

]
. (16)

Now, since Pr[ρ ≤ ρ∗δ,τ] ≥ δ as well as ρ < ρ∗δ,τ ⇐⇒ |rj | < ρ∗δ,τωj for all j ∈ [nK], we can claim
that Pr[

∧nK
j=1[|rj | ≤ ρ∗δ,τωj]] ≥ δ. The guarantee proposed in (15) is the reformulation of this results

in terms of the division setting, Tq, q ∈ [N].

Referring to Def. 2, and using the predicates Pq(r
tqn+1, . . . , r(tq+Tq)n), q ∈ [N] from Proposition 5 we

can introduce the inflating hypercubes, δXq, q ∈ [N] as star sets. In other words, from equation (11),
for any q ∈ [N] we can compute the prediction errors as,

PEq = PE
q
+ Vq

[
rtqn+1, rtqn+2, . . . , r(tq+Tq)n

]
(17)

which implies δXq = ⟨PEq
,Vq, Pq(r

tqn+1, . . . , r(tq+Tq)n)⟩, and thus the concatenation of the star sets
δXq, serves as an inflating hypercube for PE. Therefore, we denote the inflating hypercube of the
entire trajectory by δX = ⟨PE, V, P ⟩ where V = diag

(
V 1, . . . , V N

)
and P =

∧N
q=1 Pq.

Finally, based on Lemma 3, the δ-confident flowpipe on the entire trajectory X can be obtained
through the inflation of surrogate flowpipe X̄ with the inflating hypercube δX , i.e., X = X̄ ⊕ δX .

Remark 6 Figure 2 shows the advantage of the PCA approach by illustrating prediction errors
of a 2-dimensional state over 2 consecutive time steps5. This figure also provides a schematic of
the inflating hypercubes generated by our residual definition and those generated by the definition
proposed in (5). The primary function of the vectors PE

q
, q ∈ [N] is to reposition the surrogate

reachsets X̄q to locations that require minimal inflation, and the main role of Vq is to further reduce
the necessary level of inflation.

4. Numerical Evaluation

To simulate real-world systems capable of producing actual trajectory data, we employ stochastic
difference equation-based models with additive Gaussian noise to account for uncertainties in
observations, dynamics, and potential modeling errors. Our theoretical guarantees apply to any
real-world distribution σreal

s0 ∈ Dreal
S,K, provided that the residual distribution shift TV(J sim

S,K,J real
S,K) is

below a given threshold τ . Here we evaluate our results on three different case studies. The first two
experiments involve a 12-D quadcopter with τ = 0, while the final experiment focuses on a 27-D
powertrain model where the distribution shift is upper-bounded at τ = 4%. In Experiment 1, we
compare our approach with Hashemi et al. (2024b). However, since that methodology does not scale
well for trajectories with large number of time-steps, K, we address Experiments 2 and 3, only using
the methodology proposed in this paper. The next two sections provide a general overview of the
experiments, with detailed information deferred to the Appendix. Table 1 also presents the details of
the numerical results.

5. Division setting: K = 2, n = 2, N = 2, and T1 = T2 = 1.

9

HASHEMI LINDEMANN DESHMUKH

Specification Training Surrogate Reachability Inflating Hypercube

Exp #: δ τ # avg runtime | T trn | # avg runtime(method) runtime | Rcalib |

1 99.99% 0 100 39.6 sec 42, 000 100 1.43 sec (E) 2.08 sec 20, 000
2 99.99% 0 451 33.65 sec 20, 000 4501 0.030 sec (E) 116.58 sec 20, 000
3 95% 4% 400 40.6 sec 10, 000 4000 0.064 sec (A) 142.02 sec 10, 000

Table 1: Shows details of the experiments. The models are trained in parallel with 18 CPU workers.
Thus, the average training runtime may vary by selecting different number of workers. The words E,
and A represent exact-star and approx-star, respectively.

4.1. 12-Dimensional Quadcopter
We consider the 12-dimensional quadcopter system under stochastic conditions for two different
case studies. Trajectories are simulated using two ODE models from Hashemi et al. (2024b) and
Hashemi et al. (2024a) as our simulators. The state variables include the quadcopter’s position
(x1, x2, x3), velocity (x4, x5, x6), Euler angles (x7, x8, x9) representing roll, pitch, and yaw angles,
and angular velocities (x10, x11, x12). We also include zero mean additive Gaussian process noise
v ∼ N (012×1,Σv) to the simulators with covariance Σv = diag

(
[0.05× 11×6, 0.01× 11×6]]

2
)
.

In both examples, the set of initial states s0 ∈ I is taken from the cited papers, with the distribution
s0 ∼ W being uniform.

4.2. 27-Dimensional Powertrain
We use the powertrain system proposed by Althoff and Krogh (2012) as our simulator, which is a
hybrid system with three modes. To introduce stochastic conditions, we add zero-mean Gaussian
process noise, v ∼ N (027×1,Σv), where Σv = diag

(
10−5 × 11×27

)
, to their simulator, defining

the distribution σsim
s0 ∼ Dsim

S,K. This system is highly sensitive to noise, which is a key reason we
addressed it in this paper. For example, Figure 6 shows the angular velocity of the last rotating mass,
x27, both with and without noise. Following Althoff and Krogh (2012), we simulate trajectories with
a sampling time of δt = 0.0005 over a horizon of 2 seconds (K = 4000), and consider their set of
initial states I 6. We also define the trajectory division setting as N = 4000, Tq = 1, q ∈ [N]. The
ReLU NN models are with structure [27, 54, 27]. To reduce the training runtime, we again follow
the analytical interpolation strategy we introduced for Experiment 2.

5. Acknowledgements

This work was partially supported by the National Science Foundation through the following
grants: CAREER award (SHF-2048094), CNS-1932620, CNS-2039087, FMitF-1837131, CCF-SHF-
1932620, IIS-SLES-2417075, funding by Toyota R&D and Siemens Corporate Research through the
USC Center for Autonomy and AI, an Amazon Faculty Research Award, and the Airbus Institute for
Engineering Research. This work does not reflect the views or positions of any organization listed.

6. Conclusion

We introduced a scalable technique for reachability in real-world settings. Our results demonstrate
that integrating PCA with Conformal inference significantly enhances the accuracy of error analysis.
We validated the effectiveness of our approach across three distinct high-dimensional environments.

6. In this case the set I proposed in Althoff and Krogh (2012) is a large and high dimensional set, thus the exact star does
not scale, and we are restricted to utilized approx star for surrogate reachability.

10

PCA-DDREACH

References

Matthias Althoff and Bruce H Krogh. Avoiding geometric intersection operations in reachability
analysis of hybrid systems. In Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control, pages 45–54, 2012.

Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of large linear
systems with inputs. In International Conference on Computer Aided Verification, pages 401–420.
Springer, 2017.

Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A Smolka, and Scott D Stoller. Neural
predictive monitoring. In Runtime Verification: 19th International Conference, RV 2019, Porto,
Portugal, October 8–11, 2019, Proceedings 19, pages 129–147. Springer, 2019.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
predictions even when distributions shift. Journal of the American Statistical Association, pages
1–66, 2024.

Matthew Cleaveland, Insup Lee, George J Pappas, and Lars Lindemann. Conformal prediction
regions for time series using linear complementarity programming. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 20984–20992, 2024.

Alex Devonport and Murat Arcak. Data-driven reachable set computation using adaptive gaussian
process classification and monte carlo methods. In Proc. of ACC, pages 2629–2634, 2020a.

Alex Devonport and Murat Arcak. Estimating reachable sets with scenario optimization. In Learning
for dynamics and control, pages 75–84. PMLR, 2020b.

Alex Devonport, Forest Yang, Laurent El Ghaoui, and Murat Arcak. Data-driven reachability analysis
with christoffel functions. In Proc. of CDC, pages 5067–5072, 2021.

Elizabeth Dietrich, Alex Devonport, and Murat Arcak. Nonconvex scenario optimization for data-
driven reachability. In 6th Annual Learning for Dynamics & Control Conference, pages 514–527.
PMLR, 2024.

Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. Dryvr: Data-driven verification and
compositional reasoning for automotive systems. In International Conference on Computer Aided
Verification, pages 441–461. Springer, 2017.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Navid Hashemi, Bardh Hoxha, Danil Prokhorov, Georgios Fainekos, and Jyotirmoy V Deshmukh.
Scaling learning-based policy optimization for temporal logic tasks by controller network dropout.
ACM Transactions on Cyber-Physical Systems, 8(4):1–28, 2024a.

Navid Hashemi, Lars Lindemann, and Jyotirmoy V Deshmukh. Statistical reachability analysis of
stochastic cyber-physical systems under distribution shift. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 43(11):4250–4261, 2024b.

11

HASHEMI LINDEMANN DESHMUKH

Erik Komendera, Daniel Scheeres, and Elizabeth Bradley. Intelligent computation of reachability sets
for space missions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26,
pages 2299–2304, 2012.

Jean B Lasserre and Edouard Pauwels. The empirical christoffel function with applications in data
analysis. Advances in Computational Mathematics, 45:1439–1468, 2019.

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dynamic
environments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

Lars Lindemann, Yiqi Zhao, Xinyi Yu, George J Pappas, and Jyotirmoy V Deshmukh. Formal
verification and control with conformal prediction. arXiv preprint arXiv:2409.00536, 2024.

Swann Marx, Edouard Pauwels, Tillmann Weisser, Didier Henrion, and Jean Bernard Lasserre.
Semi-algebraic approximation using christoffel–darboux kernel. Constructive Approximation,
pages 1–39, 2021.

Christian Schilling, Marcelo Forets, and Sebastián Guadalupe. Verification of neural-network control
systems by integrating taylor models and zonotopes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8169–8177, 2022.

Apoorva Sharma, Sushant Veer, Asher Hancock, Heng Yang, Marco Pavone, and Anirudha Majumdar.
Pac-bayes generalization certificates for learned inductive conformal prediction. Advances in
Neural Information Processing Systems, 36, 2024.

Kunio Takezawa. Introduction to nonparametric regression. John Wiley & Sons, 2005.

Abdelmouaiz Tebjou, Goran Frehse, et al. Data-driven reachability using christoffel functions
and conformal prediction. In Conformal and Probabilistic Prediction with Applications, pages
194–213. PMLR, 2023.

Sander Tonkens, Sophia Sun, Rose Yu, and Sylvia Herbert. Scalable safe long-horizon planning in
dynamic environments leveraging conformal prediction and temporal correlations. In Long-Term
Human Motion Prediction Workshop, International Conference on Robotics and Automation, 2023.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. Nnv: the neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems. In Proc. of CAV, pages 3–17,
2020.

Renukanandan Tumu, Matthew Cleaveland, Rahul Mangharam, George Pappas, and Lars Lindemann.
Multi-modal conformal prediction regions by optimizing convex shape templates. In 6th Annual
Learning for Dynamics & Control Conference, pages 1343–1356. PMLR, 2024.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian conference on
machine learning, pages 475–490. PMLR, 2012.

Matteo Zecchin, Sangwoo Park, and Osvaldo Simeone. Forking uncertainties: Reliable prediction
and model predictive control with sequence models via conformal risk control. IEEE Journal on
Selected Areas in Information Theory, 2024.

12

PCA-DDREACH

Figure 3: Shows the comparison with Hashemi et al. (2024b). The blue and red borders are projections
of our and their δ-confident flowpipes respectively with δ = 99.99%. The shaded regions show the
density of the trajectories from T trn.

Figure 4: Shows the projection of our δ-confident flowpipe on each component of the trajectory state.
The shaded area are the simulation of trajectories from T trn.

Chi Zhang, Wenjie Ruan, and Peipei Xu. Reachability analysis of neural network control systems.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 15287–15295,
2023.

13

HASHEMI LINDEMANN DESHMUKH

Figure 5: Shows the projection of our δ-confident flowpipe on the first 8
components of the trajectory state. There is a shift between the distribution of
deployment and training environments. The shaded area are the trajectories
sampled from the deployment environment.

0 0.5 1 1.5 2

15

20

25

30

35

40

45

Figure 6: Shows the
comparison of angu-
lar velocity of the last
rotating mass in pres-
ence and absence of
the process noise.

Appendix A. Detail of the Experiments

A.1. Experiment 1:[Comparison with Hashemi et al. (2024b)]

Here we address Experiment 2 from Hashemi et al. (2024b) for comparison of the results. In this
experiment, a quadcopter hovers at a specific elevation, and its trajectories are simulated over a
horizon of K = 100 time steps, with a sampling time of δt = 0.05. The δ-confident flowpipe has
a confidence level of δ = 99.99%. Compared to Hashemi et al. (2024b), our approach achieves a
higher level of accuracy. This improvement is due to our training strategy, which allows us to use
exact-star for surrogate reachability, and our PCA-based technique, which results in smaller inflating
hypercubes. In this experiment, we use a trajectory division setting of N = 100, Tq = 1, for q ∈ [N],
with ReLU neural network surrogate models structured as [12, 24, 12]. Figure 3 shows the projection
of the flowpipe on each state in comparison with the results of Hashemi et al. (2024b), and Table 1
shows the detail of the experiment.

A.2. Experiment 2: [Sequential Goal Reaching Task]

In this example, we consider the quadcopter scenario described in Hashemi et al. (2024a), where a
controller is designed to ensure that the machine accomplishes a sequential goal-reaching task. We
also include the previously mentioned process noise in the simulator to include stochasticity. Given
the quadcopter’s tendency for unpredictable behavior, we significantly reduce the sampling time in
this instance. The trajectories are sampled at a frequency of 1 KHz over a 5-second horizon, resulting
in 5000 time steps. Our objective is to perform reachability analysis for time steps 500 through 5000
with the level of confidence δ = 99.99%. We propose a trajectory division setting of N = 5000 with
Tq = 1 for q ∈ [N]. To reduce the runtime for model training, we employ analytical interpolation.
Specifically, we select every tenth time step for model training, and for i ∈ 50, 51, . . . , 500, and
j ∈ [10], we regenerate all the ReLU neural network surrogate models using the following formula:

F10i+j = (1− 0.1j)F10i + 0.1jF10(i+1) (18)

where the models F10i have a structure of [12, 24, 12]. We then utilize these regenerated ReLU
neural network surrogate models for surrogate reachability through exact star reachability analysis,
as well as error analysis using PCA-based conformal inference. Figure 4 shows the resulting flowpipe
and Table 1 shows the detail of the experiment.

14

PCA-DDREACH

A.3. Experiment 3: [Reachability with Distribution shift]

Let’s assume the real world trajectories σreal
s0 ∼ Dreal

S,K are such that its covariance of process noise is
20% larger than Σv. In this case, the threshold τ = 0.04 is a valid upper-bound for TV(J sim

S,K,J real
S,K).

In this experiment, given the threshold, τ we generate a δ-confident flowpipe for σreal
s0 with δ = 95%.

Figure 5 shows the projection of our computed flowpipe on the first 8 components of states, and
Table 1 shows the detail of the experiment.

15

	Introduction
	Preliminaries
	Stochastic Dynamical Systems
	Surrogate Model: Reachability & Error Analysis
	Conformal Inference & Probabilistic Reachability
	Problem Definition

	Scalable and Accurate Data Driven Reachability Analysis
	Improved Scalabilty and Accuracy for Training Surrogate Models
	Accurate Inflating Hypercubes via Principal Component Analysis

	Numerical Evaluation
	12-Dimensional Quadcopter
	27-Dimensional Powertrain

	Acknowledgements
	Conclusion
	Detail of the Experiments
	Experiment 1:[Comparison with hashemi2024statistical]
	Experiment 2: [Sequential Goal Reaching Task]
	Experiment 3: [Reachability with Distribution shift]

