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Abstract
Neural networks (NNs) are powerful tools for solving complex partial differential equations (PDEs)
with high accuracy. However, many NN-based solvers are designed as general-purpose models or
lack theoretical grounding, limiting their ability to capture essential solution properties such as
regularity, conservation, and entropy conditions. This issue is especially critical for hyperbolic
conservation laws, which govern wave propagation and shock formation, and are among the most
challenging PDEs to solve accurately. This tutorial examines both supervised and unsupervised
NN-based solvers from computational and theoretical perspectives, with a focus on NN-based fi-
nite volume methods (FVMs) tailored to conservation laws. In the supervised setting, NN solvers
learn from available solution data, such as Riemann problems, to capture characteristic solution
structures, while the unsupervised approach employs a weak formulation loss to enforce the correct
weak solution behavior. In practice, both the supervised and unsupervised variants tend to learn the
entropic solution, effectively handling discontinuities and shocks, and outperforming comparable
numerical schemes in accuracy. This tutorial aims to provide a deeper understanding of NN-based
solvers for PDEs and to present structure-preserving neural methods for scientific computing.
Keywords: Neural networks, PDEs, Unsupervised Learning, Weak Formulation, PINNs, Conser-
vation Laws.

1. Introduction and Related Work

In this tutorial, we provide an overview of NN-based approaches for approximating solutions to
PDEs, with a particular focus on hyperbolic equations. Specifically: (i) We review both supervised
and unsupervised learning methods, highlighting their strengths and limitations. (ii) We examine
how core analytical properties of PDE solutions, such as regularity, stability, and conservation laws,
influence the design of NN architectures. Particular attention is given to the challenges posed by
hyperbolic PDEs, which often exhibit discontinuities and other irregular behaviors. (iii) We also
discuss recent hybrid approaches that integrate classical numerical schemes with NNs to mitigate
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CANESSE† FU† LICHTLÉ† NICK ZINAT MATIN† LIU DELLE MONACHE BAYEN

discretization-induced errors. These methods represent important progress toward bridging the gap
between PDE theory and NN-based solvers, and provide insight into how learning-based methods
can approximate true PDE solutions.

PDEs model a vast range of physical and engineering systems, from fluid dynamics to elec-
tromagnetism, making it crucial to approximate their solutions efficiently and accurately (Evans,
2022). We start with a general time-evolutionary PDE in the form of

∂tu+Lu = ξ, (t, x) ∈ [0, T ]× U ,
u(0, x) = u◦(x), x ∈ U ,
u(t, x) = g(t), (t, x) ∈ [0, T ]× ∂U ,

(1)

where t ∈ [0, T ] is the time variable, with final time T > 0, x ∈ U ⊂ Rd is the spatial variable,
L is a differential operator acting on u, ξ is a source term, u◦ and g are the initial and boundary
value functions, ∂U denotes the boundary of the spatial domain U , and the unknown function u :
[0, T ] × U → Rn (with n = 1 for scalar equations and n > 1 for systems of PDEs) is a solution
of (1) if it satisfies the equations in some appropriate sense (e.g., classically or weakly). Closed
form solutions of model (1) exist for only a few simple models, such as the Lax-Hopf formula for
conservation laws and Hamilton-Jacobi equations (Claudel and Bayen, 2010), and in the majority
of real-world problems one needs to approximate the solution through numerical methods.

Classical numerical schemes, including finite difference, finite volume (FV), and finite element
(FE) methods (LeVeque, 2002; Cockburn et al., 2012; Muftu, 2022), approximate PDE solutions
through spatial and temporal discretization. These methods have been extensively studied and,
in some cases, provide well-established convergence guarantees. However, they are limited by
discretization errors that propagate through computations and accumulate over time. Moreover, in
high-dimensional settings, numerical methods suffer from the curse of dimensionality, leading to
high computational costs (Cohen and DeVore, 2015).

NNs are a promising alternative for approximating PDE solutions (Sirignano and Spiliopoulos,
2018; Sirignano et al., 2020; Fan et al., 2020), offering flexibility in handling high-dimensional sys-
tems, integrating large datasets (Shi et al., 2021), and exploring solutions over parameter spaces in
mesh-free representations. However, despite these advantages, NN-based approaches can struggle
to preserve fundamental solution properties, such as stability, conservation laws, and uniqueness,
leading to potential accuracy loss and instability (Kutyniok et al., 2022; Ruthotto and Haber, 2020).

Various NN architectures have been proposed for solving PDEs. In supervised learning, the
model can be trained on PDE data consisting of initial problems and their exact (or high-fidelity)
solutions, using regression-based loss functions (Li et al., 2020; Lu et al., 2021). In unsupervised
learning, the residual of the PDE is minimized in the loss of a Physics-Informed NN (PINN) (Raissi
et al., 2017, 2019), allowing the model to learn PDEs without requiring any data. Finally, semi-
supervised learning combines both methods, balancing a data-driven term and a physics-informed
regularization term in the loss function (Shi et al., 2022; Sharpless et al., 2025).

1.1. Supervised Learning Approaches

In supervised learning, a NN is trained to approximate a PDE by minimizing a regression loss based
on a dataset of exact or high-fidelity numerical solutions. The main strength of the supervised
learning approach is that one does not require any knowledge of PDE equations; one only needs
sufficient data. The training dataset consists of pairs of input conditions (such as initial conditions
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(ICs) and boundary conditions) and their corresponding exact solutions. The NN then learns to
minimize the difference between its predicted solutions and the ground truths.

This approach allows the model to learn a mapping from input conditions to solutions, effec-
tively acting as a solver of the PDE it is trained on. Different deep learning approaches can be
leveraged to accomplish this. One of the earliest applications was convolutional NNs (CNNs) (Le-
Cun et al., 1998) for surrogate modeling (Zhu and Zabaras, 2018), where the authors demonstrated
that deep CNNs could learn complex solution mappings with high accuracy while reducing com-
putational costs. Graph NNs (GNNs) (Bronstein et al., 2017) have been introduced as a powerful
architecture for PDEs on unstructured grids (Brandstetter et al., 2022), which operate on graph-
based representations, making them well-suited for irregular mesh discretizations. Beyond tradi-
tional neural architectures, neural operators have gained significant attention for their ability to
learn mappings between infinite-dimensional function spaces. More precisely, let A and B be sep-
arable Banach spaces. Suppose we have observations (aj , bj) where aj ∼ λ is an independent and
identically distributed sequence from a probability measure λ supported on A, and bj = F ∗(aj).
The goal is to construct the solution operator F ∗ of the parametric PDE. Let Θ be a finite dimen-
sional parameter space and Fθ : A → B be a parametric (nonlinear) operator. The goal is then to
find θ ∈ Θ such that Fθ ≈ F ∗. This can then be described by

min
θ∈Θ

Ea∼λ[C(Fθ(a),F
∗(a))]

where C : B × B → R is a cost function. Two established methods that follow this concept are:
Fourier Neural Operator (FNO) (Li et al., 2020), which learns an operator in Fourier space,

capturing complex frequency-domain patterns. Unlike traditional grid-based PDE solvers, it maps
ICs to solutions directly, offering potential speedups and resolution invariance, enabling zero-shot
super-resolution. However, it demands large, high-quality datasets, especially for complex PDEs.

Deep Operator Network (DeepONet) (Lu et al., 2021), which learns nonlinear operators, in-
cluding PDE solutions, using two subnetworks: a branch network encoding ICs and a trunk network
encoding output locations. Given an IC and a query point, DeepONet directly predicts the solution
at that point, enabling efficient, grid-free evaluations.

1.2. Unsupervised Learning Approaches

Unsupervised learning is useful when data is scarce or costly to generate. For PDEs, explicit analyt-
ical solutions are often unavailable and numerical solvers are computationally expensive, making it
infeasible to generate large-scale training datasets (Guo et al., 2020). To overcome these challenges,
unsupervised neural solvers aim to solve PDEs without relying on solution data, instead enforcing
physical constraints directly within the loss function.

One of the most established unsupervised learning approaches for solving PDEs is PINNs (Raissi
et al., 2019). PINNs can be constructed from most NN-based PDE solvers by augmenting or replac-
ing their supervised loss. For conservation laws equations, the loss function reads:

L(θ) = ∥∂tûθ + ∂xψ(ûθ)∥2L2([0,T ]×U) ,

where ûθ is the NN approximation, θ is the NN parameters, and ψ is a flow function. The most
common framework is based on NNs that take x, t or any other variables as input, and output the
solution at the given point. In this case, the loss can be easily computed and backpropagated through
automatic differentiation (Raissi et al., 2017).

3
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While PINNs have been successfully applied to elliptic and parabolic equations (Shin et al.,
2020), their performance deteriorates when applied to hyperbolic PDEs such as conservation laws,
which contain shocks and expansion waves. Mishra and Molinaro (2023); De Ryck et al. (2024)
provided rigorous theoretical analysis showing that standard PINNs fail to properly approximate
weak solutions for highly irregular hyperbolic problems (see Section 2) that contain high-frequency
oscillations or sharp discontinuities. The primary reason is that automatic differentiation struggles
with discontinuous functions, leading to large approximation errors in shock-dominated regimes.
Relatedly, recent work by Park et al. (2024) highlights a broader structural issue in PINNs, namely,
their inability to regulate solution derivatives, which may also contribute to instability in challenging
regimes. Although their proposed variable splitting strategy targets second-order PDEs, it under-
scores the need for architectural innovations to enhance robustness across PDE classes.

To address these issues, weak formulations have been proposed as an alternative loss function
for unsupervised learning in hyperbolic PDEs (Yang and Foster, 2021; Shang et al., 2023):

L(θ) = E

(∫
[0,T ]

∫
U
ûθ∂tφ+

∫
[0,T ]

∫
U
ψ(ûθ)∂xφ

)2
 , (2)

where the expectation is taken over the probability space (Φ,B,P) with Φ = C1
c ([0, T ] × U ;R),

Borel σ-algebra B, and probability measure P. In practice, the set Φ is composed of compactly sup-
ported polynomials. The key advantage of the weak formulation (2) is that the differential operators
are only applied to the test functions, which are chosen to be sufficiently smooth to avoid noisy
numerical differentiation. This approach aligns with classical numerical schemes, such as FVMs
and discontinuous Galerkin methods, which rely on weak formulations for stability and accuracy in
hyperbolic problems (Cockburn and Shu, 1998).

Recent advancements in neural weak solvers have further improved the robustness of unsuper-
vised PDE learning. Neural Galerkin methods (Bruna et al., 2024) integrate variational principles
into neural architectures, enabling more structured representations of PDE solutions. Future re-
search aims to explore adaptive test function selection, hybrid weak-supervised approaches, and
memory-efficient neural architectures for high-dimensional PDEs.

2. Structural-Based NN Solvers

While current approaches primarily focus on the computational efficiency of NN solvers, they often
fail to preserve the theoretical properties of specific PDE classes (the differential operator L in (1)).
Ensuring the convergence of NN solvers requires designing them with key analytical PDE properties
in mind; e.g., the functional space of existence (regularity), convergence to the unique entropy
solution, stability, conservation of quantities (such as mass), bounds, and physical constraints.

NN approximation is generally significantly more accurate for PDEs with regular solutions.
Hyperbolic equations present a unique challenge due to singularities such as shocks and expansion
waves, making solution approximation difficult near these points. NN-based FVMs aim to address
this, as they are designed to preserve essential mathematical properties of PDEs. NN solvers can
learn to mitigate accumulation errors arising from discretization in classical numerical schemes.
Following the FVM structure can help improve the accuracy and stability of NN solvers, particularly
in capturing critical solution behaviors inherent to hyperbolic systems. We begin by reviewing
fundamental concepts of this PDE class to highlight its challenges.
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Equations of Conservation Laws. We are interested in conservation laws of the form:{
∂tu(t, x) + ∂x[ψ(u(t, x))] = 0

u(0, x) = ϕ(x)
where (t, x) ∈ R+ × R. (3)

The flux function ψ is assumed to only depend on the density function u : R+ × R → [0, umax]
where umax is the maximum density. The flux function can be characterized by ψ : u 7→ uv(u)
where v : [0, umax] → [0, vmax] is the velocity function which can be any decreasing function such
that v(0) = vmax and v(umax) = 0. Let us first recall the solution of conservation laws.

Definition 1 A function u ∈ C([0, T ];L1
loc(R)) (where L1

loc is the space of locally integrable
functions) is a weak solution of Equation (1) if for any test function φ ∈ C1

c ((−∞, T ]× R,R),∫ T

0

∫
R
{u∂tφ+ ψ(u)∂xφ}+

∫
R
u◦φ(0, ·) = 0. (4)

The Kružkov entropy solution (Kružkov, 1970) is the unique weak solution such that for all k ∈ R
and all non-negative test function φ ∈ C1

c ((−∞, T ]×R,R+), the entropy residual is non-negative:

0 ≤ R(u, φ, k)
def
=

∫ T

0

∫
R
|u− k|∂tφ+ sign(u− k)[ψ(u)− ψ(k)]∂xφ+

∫
R
|u◦ − k|φ(0, ·). (5)

In particular, a key observation from Definition 1 is that weak solutions are not necessarily
unique in the entropic sense. For instance, shock formation or discontinuous initial conditions can
lead to multiple weak solutions that fail to satisfy the entropy condition.

Analytical Complexity of the Solution. Given an initial condition ϕ ∈ L1 ∩BV(R), the solution
to Equation (1) exists in the sense of Definition 1, and in addition for any t ∈ R+, u(t, ·) ∈
BV(R; [0, umax]), the space of bounded variation functions over R (Kružkov (1970)). It should be
noted that a function of total variation can have singular behavior, and derivatives are only defined
in the sense of measures: u ∈ BV(U), if and only if there exists a finite Radon measure µ such that∫

U
u∂xφdx = −

∫
U
φdµ;

i.e. the Radon measure µ defines the distributional derivative of function u(t, ·). This explains
that the derivatives in this space are difficult to handle and require careful approximation in compu-
tational schemes. This is crucial because many existing learning methods in the literature are not
theoretically viable in this setting. For instance, PINNs do not provide a suitable framework for
defining a loss for this class of functions.

2.1. Supervised Schemes

While the solutions of hyperbolic PDEs exhibit specific irregularities, there exist FV and FE numer-
ical schemes that are provably strongly stable and convergent. By leveraging key ideas from these
schemes, the following provides a theoretical foundation for analyzing and explaining the accuracy
improvements of NN solvers over the corresponding numerical methods.
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We consider a discretization (∆t,∆x) of the domain [0, T ]× [0, L] where T, L > 0. Let

uni =
1

∆x

∫
Ii

u(tn, x) dx and Fn
i+1/2 =

∫ tn+1

tn

ψ(u(t, xi+1/2)) dt

denote the average solution on cell Ii = [xi−1/2, xi+1/2] at time tn = n∆t, and the time-averaged
flux across the cell interface at xi+1/2 from tn to tn+1. Let ûni and F̂n

i+1/2 be the corresponding
numerical approximations. In particular, the neural flux is given by N (ûni , û

n
i+1), where N is the

NN. The approximate update rule, which becomes exact when using the true values, is given by

∀i, n, ûn+1
i = ûni −∆t∆x−1(F̂n

i+1/2 − F̂n
i−1/2) where F̂n

i+1/2
def
= N (ûni , û

n
i+1). (6)

The main properties of the supervised NN-based solver (6) are as follows (Morand et al., 2024):
• Due to the update structure, the conservation of mass is preserved (hard constraint).
• The neural flux is unique up to a constant. One could force uniqueness of the flux function by

considering v̂ni = N (ûni , û
n
i+1) and F̂n

i+1/2 = ûni v̂
n
i or adding a soft constraint N (0, 0) = 0.

• The NN is trained on Riemann problems (initial conditions with two constant pieces, see
Figure 1), ensuring it learns solutions that inherently satisfy the entropy condition.

The performance of the trained supervised model is detailed in Section 4; Table 1 shows it achieves
higher accuracy than common FVMs from the literature. In particular, Figure 3 illustrates how,
as the mesh refines, the NN consistently outperforms Godunov (Godunov, 1959), a classical FVM
known to converge to the true solution of the PDE. More precisely, EN < EG for a constant ratio
∆t∆x−1, where EN and EG are the approximation errors associated with the proposed model and
the Godunov updates, respectively. Another notable observation is that the proposed model appears
to converge at the same rate as Godunov, i.e. EN = Θ(EG), for a fixed CFL condition.

2.2. Unsupervised Schemes

Consider an unsupervised learning approach that follows the FV-based structure (6), with the weak
loss formulation (2). It can be computed as L(θ) = Eφ[Lφ(θ)

2], where

Lφ(θ)
def
=

N∑
n=1

I∑
i=1

(
ûni (θ)

∫ xi+1/2

xi−1/2

[φ]
tn+1

tn + ψ(ûni (θ))

∫ tn+1

tn

[φ]
xi+1/2
xi−1/2

)
(7)

and the expectation is taken over uniformly distributed compactly supported polynomials.

Entropy Solution. From a theoretical point of view, conservation laws admit infinitely many
weak solutions, among which there exists a unique entropy solution (it should be noted that the
concept of entropy solution in multi-dimension requires more analytical rigor as the entropy solution
might not be unique in this case). Naturally, to guide NN solvers toward the entropy solution, one
may include a regularization term Lk(θ) = maxφR(û(θ), φ, k) in the loss, over Sobolev space
φ ∈W 1,∞

◦ ([0, T ]× U), where k ∈ R and the entropy residual R is defined as in (5).
Let S = {(ti, xi)}i∈{1,··· ,M} ⊂ [0, T ]× R be the spatiotemporal discretization. Define

ET (θ∗S ,S, φ∗
S , k

∗
S)

def
= min

θ
max
φ

max
k

(Lφ(θ)
2 + Lk(θ)) and E(θ) def

=

∫
R
|ûθ(T, x)− u(T, x)|dx

as the minimum training error achievable, and the prediction error, respectively. The following error
bound can then be calculated analytically.
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(a) Shock wave. (b) Expansion wave. (c) Evaluation IC.
0

1

2

3

4

Figure 1: Exact solution for two Riemann problem and one piecewise-constant IC from the evaluation set.

Theorem 2 (De Ryck et al. (2024)) With probability of at least 1− δ, we have that

E(θ∗S) ≲ ET (θ∗S ,S, φ∗
S , k

∗
S) +K1

√
ln

(
K2

δε3

)
+ (1 + ∥ûθ∗∥C1) ln(ε

−3)ε.

The constants ε, K1, and K2 depend on M (number of samples), L (NN depth) and W (NN width).

For training purposes, adding an entropy regularization term implies that one needs to deal with
a max-min optimization problem, which is computationally expensive. On the other hand, when
imposing the weak loss function (2) only, NN solvers appear to learn entropy solutions. From an
analytical point of view, it is strongly desirable to understand why such a phenomena happens.

3. Analytical Insights into NN-Based Solvers

This section aims to provide analytical intuition for how NN-based solvers can improve upon tra-
ditional numerical schemes, based on empirical observations from trained models. Specifically,
Figure 2 compares the neural flux N (·, ·), defined as in (6), with the numerical flux F(·, ·) at cell
boundaries in two scenarios: varying uR with fixed uL, and vice versa, where uR and uL are the two
inputs to both N and F . We denote as uc the critical density of the flow. The figure shows that the
NN solver’s flux corrects that of Godunov, leading to higher predictive accuracy. Let us formalize
the discussion to some extent. Let us define

Yu
def
= {v ∈ [0, umax] : ∂2F(u, v) ≡ 0} , Ŷu

def
= {v ∈ [0, umax] : ∂1F(v, u) ≡ 0} (8)

where the derivatives v 7→ ∂2F(u, v) and v 7→ ∂1F (v, u) are defined almost everywhere. Given u,
these sets consist of values of v for which the numerical flux is constant. Next, we define

Γ1
def
= [0, uc) ∩

{ ⋃
r>0

{u : u− r ∈ Yu}
}
, Γ2

def
= [uc, umax) ∩

{ ⋃
r>0

{
u : u+ r ∈ Ŷu

}}
. (9)

The sets Γi, i = 1, 2 illustrate the values of u < uc (resp. u ≥ uc), some neighborhood of
which belongs to Yu (resp. Ŷu). In particular, for u ∈ Γ1, there exists a δ ∈ (0, r∗) with r∗ def

=
sup {r : u− r ∈ Yu, u ∈ Γ1}, where Γ1 is defined as in (9), η ∈ (0, 1) and λ > 0, such that with
probability of at least 1− η we have

|N (u, u− δ)− ψ(u)| ≤ |F(u, u− δ)− ψ(u)| − λ. (10)

This means the neural flux is more consistent with the value of the flux in some neighborhood of u.
Similarly, for u ∈ Γ2, there exists a δ ∈ (0, r∗∗) with r∗∗ def

= sup{r : u+ r ∈ Ŷu, u ∈ Γ2}, where
Γ2 is defined as in (9), η ∈ (0, 1) and λ > 0, such that with probability of at least 1− η we have

|N (u+ δ, u)− ψ(u)| ≤ |F(u+ δ, u)− ψ(u)| − λ. (11)

7
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1st order FVM Higher order FVM FEM
GD LF EO NN SV NN USV ENO WENO DG

L1 4.5e−2±7e−3 3.5e−1±6e−2 4.6e−2±7e−3 2.9e−2±5e−3 3.1e−2±5e−3 4.5e−2±2e−2 4.6e−2±2e−2 1.3e−2±2e−3

L2 7.3e−3±3e−3 2.2e−1±7e−2 7.4e−3±3e−3 3.7e−3±1e−3 4.3e−3±2e−3 1.2e−2±6e−3 1.2e−2±7e−3 9.7e−4±5e−4

Rel. 4.8e−2±4e−2 4.0e−1±4e−1 4.9e−2±5e−2 3.4e−2±4e−2 3.5e−2±3e−2 2.3e−2±7e−3 2.2e−2±7e−3 1.2e−2±7e−3

Table 1: We compare the performance of the NN models (SV: supervised; USV: unsupervised) against common numerical schemes
from the literature. Each method is evaluated on the entire evaluation set (500 ICs) described in Section 4. We report mean and standard
deviation of L1 error (mean(|u− û|)), L2 error (mean((u− û)2)), and relative error (mean(|u− û|/|max{ε, u}|)).

Overall, Equations (10) and (11) aim to provide intuition for why the NN-based solver achieves
higher accuracy compared to traditional numerical solvers.

4. Experiments and Discussion

The supervised and unsupervised models trained following the NN-based FVM formulation (Sec-
tions 2.1 and 2.2) are compared against the following numerical schemes: first-order FVMs (Lax-
Friedrichs (LF) (Lax, 1954), Godunov (GD) (Godunov, 1959), and Engquist-Osher (EO) (Engquist
and Osher, 1981)), higher-order FVMs (Essentially Non-Oscillatory (ENO) and Weighted ENO
(WENO) (Shu, 1999)), and Discontinuous Galerkin (DG) (Hu and Shu, 1999), an FE method.

4.1. Experimental Setup

Datasets The supervised and unsupervised models are trained on a dataset of equally-spaced Rie-
mann initial problems

{
(uL, uR) ∈ {iN−1umax | i = 0, . . . , N}2, uL ̸= uR

}
(i.e., simple shock

and expansion waves; see Figure 1), computed on a coarse grid (∆x = ∆t = 5e−2). The evaluation
set consists of 500 randomly-generated complex piecewise-constant ICs on a finer grid (∆x = 5e−3

and ∆t = 5e−4) with 30 pieces each (see Figure 1), for T = 1000 timesteps. Their exact solutions
are computed numerically using the Lax-Hopf algorithm (Simoni and Claudel, 2017).

Training The model is a 1D CNN with six convolution layers (kernel size 1, 16 channels), totaling
∼ 1000 parameters, which is equivalent to sliding a fully-connected NN across cells. It is trained
to predict T steps autoregressively, with T increased from 10 to 50 and the learning rate decreased
from 10−4 to 10−5 over 50,000 epochs. Training is done with ∆x = ∆t (CFL = 1) and takes
∼ 30 minutes on an A5000 GPU. The NN surpasses Godunov’s accuracy within minutes; the rest
is fine-tuning. Full hyperparameters and dataset size were selected by search.

4.2. Performance Evaluation and Analysis of Deep Learning Schemes

We evaluate two first-order NN-based FVMs: a supervised model (Section 1.1) and an unsupervised
one (Section 1.2). Table 1 shows that both models outperform standard first-order schemes and
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Figure 2: Comparison between the neural flux for the NN models and the numerical flux based on the Godunov scheme.
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Figure 3: Convergence plot for the supervised model. The average L2 error is computed against the exact solution on the evaluation
set, with standard deviation shown as error bars. The ratio ∆t/∆x = 0.1 remains constant as the mesh is refined.

even surpass higher-order ENO and WENO methods in L1 and L2 errors, with lower variance. This
demonstrates the models’ ability to generalize from training on coarse Riemann data to evaluation
on fine-mesh complex initial problems. As expected, DG achieves the best overall accuracy and
stability, however it is significantly more complex and computationally demanding than the simpler
FV approaches and requires careful numerical implementation.

Figure 3 shows that both learned models (from Sections 2.1 and 2.2) achieve lower errors than
Godunov across mesh sizes while matching its convergence rate, suggesting they approximate en-
tropy solutions, since Godunov converges to the entropy solution as the discretization tends to zero.
Figure 4 compares the final timestep of each method to the PDE solution, capturing maximum ac-
cumulated error over the whole autoregressive prediction. The learned models are generally more
accurate, especially near shocks. In contrast, Godunov suffers from a known sonic glitch when the
flux derivative vanishes (e.g., when the density equals 2) (Van Leer et al., 1989).

Finally, the learned numerical flux (6) is analyzed. One key property that a numerical flux F̂
must have in most proofs of convergence is being non-decreasing in its first argument and non-
decreasing in its second argument (Bertoluzza et al., 2009). Figure 2 illustrates that the Godunov
numerical flux respects this condition. However, this is done in an artificial way that also verifies
the consistency property: for all u, F̂ (u, u) = ψ(u). Overall, the results suggest that NNs provide
a competitive alternative to traditional schemes, particularly in accurately capturing discontinuities.

4.3. Applications of Supervised Learning to Traffic Modeling

PDE-based models rely on idealized conditions that often fail in real-world scenarios. NN-based
models can be applied beyond PDE-based settings; in this case, we consider their application to
highway traffic flow using vehicle trajectory data from a 14.5-minute drone video capturing a high-
way segment with no entrance or exit ramps (Wu et al., 2022), including approximately two minutes
of free flow followed by four observable shock waves. Flow, density, and speed metrics are extracted
from this data, with density values given for t ∈ [0, 870s] and x ∈ [0, 400m] (see Figure 6, left).
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Figure 4: Example final state after T = 1000 timesteps for a piecewise-constant IC from the evaluation set.
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Figure 5: Traffic flow prediction on the training wave. Left: Ground Truth. Mid: Godunov prediction. Right: NN prediction.

Model Training and Evaluation We consider a supervised model (as described in Section 1.1)
that was trained on about 8% of the data (the fourth wave, t ∈ [800s, 870s]) and validated on the
remaining 92% (t ∈ [0, 800s]). Boundary conditions were imposed from the observed density data,
as opposed to synthetic extrapolations, to ensure physical realism and a meaningful evaluation.

Results and Discussion To establish a baseline, widely-used flux functions (Triangular, Green-
shield, Trapezoidal, Greenberg, and Underwood) are considered. They are fitted to the real data,
then incorporated into the Godunov scheme to generate numerical predictions. It appears that a
calibrated triangular flux performs best in approximating the observed traffic dynamics. Figure 5
compares the predictions of the trained NN model and those of Godunov on the training set. Fig-
ure 6 (right) then tests the model (trained on only 70 seconds, i.e., 8% of the data) on the entire
dataset. While Godunov struggles to generalize due to its fixed flux function, the model adapts
without requiring any flux tuning. However, it remains constrained by its 1st-order formulation. Fu-
ture work can incorporate higher-order inputs, account for time and space dependencies, or employ
more complex memory-based or attention-driven NN architectures, to achieve higher accuracy.

5. Conclusion

This tutorial illustrated how NN-based approaches can enhance the approximation of PDE solu-
tions, potentially surpassing classical numerical schemes. However, this comes with a fundamental
challenge: NNs typically do not have the theoretical guarantees or convergence properties that have
been proven for traditional methods. Several key directions thus remain open for future work. First,
ensuring robustness and theoretical guarantees for NN-based approximations is crucial, particularly
in preserving physical constraints and conservation laws. Second, extending these methods to more
complex PDEs and high-dimensional systems will test their scalability. Third, integrating learning-
based solvers with hybrid approaches, combining data-driven techniques with classical numerical
methods, may improve accuracy and robustness.
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Figure 6: Left: Heatmap of the density training dataset where the red (resp. blue) box shows the subset of data used during training
(resp. evaluation). Right: Autoregressive model prediction on the whole evaluation dataset.
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