
Proceedings of Machine Learning Research 288:1–24, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Modularity in Query-Based Concept Learning

Benjamin Caulfield BCAULFIELD@BERKELEY.EDU
unaffiliated

Sanjit A. Seshia SSESHIA@EECS.BERKELEY.EDU

University of California, Berkeley, CA, USA

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
We define and study the problem of modular concept learning, which is learning a concept that is
a cross-product (i.e., Cartesian product) of component concepts. The theory of concept learning
provides a framework for analyzing algorithms for inductive synthesis of programs and systems,
which involves synthesis from examples and queries. Modular concept learning is important for
systems that can be broken into subsystems that each act independently of the other. We analyze
this problem with respect to different types of queries that are made to an oracle, formalized as an
oracle interface. We show that if a given oracle interface cannot directly answer questions about
the components, learning can be difficult, even when the components are easy to learn with the
same type of oracle queries. Specifically, we show that learning from membership, equivalence, or
subset queries is hard. However, these problems become tractable when oracles are given a positive
example and are allowed to ask membership queries.
Keywords: Active Learning, Exact Learning, Inductive Synthesis, Query-Based Learning, Mod-
ularity

1. Introduction
Concept learning uses examples and queries to find the best hypothesis (i.e., concept) from a pre-
scribed set of valid hypotheses. In exact concept learning, the learned concept must exactly match
a target “correct” concept. It is often not possible to do this from examples alone, and learners often
need to make specific queries, such as membership queries that ask “is this example consistent with
the target concept” (i.e., is it an element of the target set) (Angluin, 1988).

This field of exact concept learning has been particularly relevant for inductive synthesis, which
aims to synthesize programs (concepts) from examples or other observations. Inductive synthesis
has found application in formal methods, program analysis, software engineering, and related areas,
for problems such as invariant generation (e.g. (Garg et al., 2014)), program synthesis (e.g., (Solar-
Lezama et al., 2006)), compositional reasoning (e.g. (Cobleigh et al., 2003)), and software analysis
(e.g., (Vaandrager, 2017; Howar and Steffen, 2018)). The special nature of query-based learning
for formal synthesis, where a program is automatically generated to fit a high-level specification
through interaction with oracles, has also been formalized as oracle-guided inductive synthesis
by Jha and Seshia (2017).

However, the existing theory of query-based concept learning does not exploit the modular-
ity present in programming languages and formalisms. Researchers in the field of exact concept
learning will often fix a concept class and then study which queries are needed to learn concepts
in that class. When a different concept class is studied, an entirely new algorithm will need to be
developed from scratch, even if it is composed of already studied concept classes.

We introduce the idea of modular concept learning, which allows us to break down concept
classes into their components and study the learnability of the larger class in terms of the learnabil-
ity of the components. We focus on the case when concepts are the cross-products (i.e., Cartesian

© 2025 B. Caulfield & S.A. Seshia.

CAULFIELD SESHIA

Query Name Symbol Complexity Oracle Definition
Single Positive Query 1Pos n/a Return a fixed x ∈ c∗

Positive Query Pos #Pos Return an x ∈ c∗ that has not yet been given
as a positive example (if one exists)

Membership Query Mem #Mem Given element x, return ‘true’ iff x ∈ c∗

Equivalence Query EQ #EQ Given c ∈ C, return ‘true’ if c = c∗ otherwise
return x ∈ (c\c∗) ∪ (c∗\c)

Subset Query Sub #Sub Given c ∈ C, return ‘true’ if c ⊆ c∗ otherwise
return some x ∈ c\c∗

Superset Query Sup #Sup Given c ∈ C, return ‘true’ if c ⊇ c∗ otherwise
return some x ∈ c∗\c

Example Query EXD #EX(D) Samples x from distribution D and returns x
with a label indicating whether x ∈ c∗

Table 1: Types of queries studied in this paper. The expression under “Complexity” is a variable
representing how many instances of that query the algorithm needs to learn the target
concept. It is used, for example, in Figure 2.

products) of component concepts. This occurs when a system can be broken into subsystems that
act independently of each other. We describe below two problem instances where such modular
learning can be useful: one in program synthesis via “sketching” (Solar-Lezama et al., 2006), and
another on learning automata, where algorithms such as Angluin’s algorithm for learning determin-
istic finite automata (DFAs) has had particular success (Angluin, 1987) . For example, Angluin’s
algorithm uses membership and equivalence queries. We show that when an automaton is made of
several independent components, our results can reduce the number of equivalence queries expo-
nentially in the number of components.

We will focus on the queries given in Table 1. The results are summarized in Table 2, and
include both upper and lower bounds. Learning cross-products from equivalence queries or subset
queries is intractable, while learning from just membership queries is polynomial, though some-
what expensive. We show that when a learning algorithm is allowed to make membership queries
and is given a single positive example, previously intractable problems become tractable. This sit-
uation of being given one (or more) positive examples is motivated by practice: for example, the
LoopInvGen invariant synthesis tool generates positive examples by executing the program (Padhi
et al., 2019), and the use of concept learning for synthesizing the switching logic for hybrid au-
tomata (Seshia, 2012). Appendix B shows that learning cross-products from superset queries is no
more difficult than learning each individual concept seperately. Appendix F studies the complexity
of Probably Approximately Correct learning (PAC learning) and shows how it can be improved
when membership queries are allowed.

1.1. Sample Application: Program Synthesis by Sketching

To illustrate the learning problem, consider the sketching problem given in Figure 1. Here we
want to find the set of possible initial values for x and y that can replace the ?? values so that the
program satisfies Φ, using Φ as a black-box oracle mapping x and y inputs to ‘true’ and ‘false’.

Looking at the structure of this program and specification, we can see that the correctness of
these two variables are independent of each other. Correct x values are correct independent of y
and vice-versa. Therefore, the set of settings will be the cross-product of the acceptable settings

2

MODULAR CONCEPT LEARNING

int x = ??;
int y = ??;
int a = f(x);
int b = g(y);

Φ = ϕ1(a) ∧ ϕ2(b) x

y

•(x1, y1)

•(x2, y2)

Figure 1: A simple partial program to be synthesized to satisfy a specification Φ (left) and the
correct set of initial values for x and y (right).

for each variable. If an oracle can answer queries about correct x or y values separately, then the
oracle can simply learn the acceptable values separately and take their cross-product.

If these sets of correct values are continuous intervals, the correct settings will look something
like the rectangle shown in Figure 1. If we had access to an algorithm that could learn intervals from
queries, we could try to use this algorithm as a blackbox in order to create a “product-learner” to
learn their cross-product (i.e., the rectangle). This product-learner would begin instances A1 and A2

of the interval-learning algorithm, which we call the “sublearners”, and try to answer the queries the
sublearners ask. The product-learner would only have access to an oracle that can answer queries
about the rectangle, not the intervals. For example, if both sublearners need a positive example, the
product-learner can query the oracle for a positive example. Given the positive example (x1, y1)
as shown in the figure, the product-learner can then pass x1 and y1 to each of the sublearners as
positive examples.

However, this does not apply to negative examples, such as (x2, y2) in the figure. In this
example, x2 is in its target interval, but y2 is not. When just given the negative example (x2, y2),
the product-learner has no way of knowing which dimension a negative element fails on. Handling
negative counterexamples is one of the main challenges of this paper.

1.2. Sample Application: Learning Automata

Consider the problem of learning a finite automaton that is the product of two or more compo-
nent automata. Algorithm 1 of this paper can make black-box queries to Angluin’s well-known
algorithm for learning finite automata (Angluin, 1987) from membership and equivalence queries,
without knowing anything of her original algorithm.

To see why it may be useful to learn the product of two component automata, consider an
automaton representing the proper input/output interactions of a simple vehicle. Assume the vehicle
can be split into two systems: the headlights and the motor controls.

It may be reasonable to assume that these two systems act independently. So the correct in-
put/output sequence for motor controls is true regardless of the state of the headlights, and vice-
versa. This allows us to make inferences like “The brakes should always activate after the brake
pedal is pushed, regardless of whether the high-beams are on”.

Now consider the problem of learning this automaton from oracle interactions or labelled ex-
amples (i.e., examples that are labelled with a ‘yes’ or ‘no’). If the labels and oracle answers are
subsystem-specific (e.g., “The headlights are incorrect in this example”), then it might be possible
to learn each subsystem separately.

But there are a few reasons why this subsystem-specific feedback might not be possible:

3

CAULFIELD SESHIA

1. If the oracle answers queries by running simulations, it might not be obvious which subsystem is
responsible for a fault. (e.g., “Did the car crash because the high-beams were on or because the breaks
didn’t function correctly?”)

2. When only learning from labelled examples, the data might not include this subsystem information.

3. The oracle may be implemented by an existing model which does not have this subsystem information.

This last case is relevant in system deobfuscation, where black-box queries are made to a com-
plex model in order to learn a simple representation of that model. That simpler representation
might be used to explain the model to a human, or it might be checked against a logical specifica-
tion.

In particular, recent work has focused on using Angluin’s algorithm to learn finite automata
from RNNs Weiss et al. (2017). If the RNN could be split into independent subsystems, but was
not trained in a modular fashion using data with subsystem-specific information, then a naive ap-
plication of Angluin’s algorithm would require learning the product automaton.

If the headlights-automaton has n states and the motor control automaton has m states, then
the product of these two automata might be of size mn. Learning this product automaton
from Angluin’s algorithm would require O(mn) equivalence queries. However, we can leverage
the learning algorithms from this paper to learn the same automaton in O(m + n) equivalence
queries. If an automaton is made of k components of size n, this process can reduce the number
of equivalence queries from O(nk) to O(kn), resulting in an exponential increase in efficiency.
The appendix develops these ideas in further detail.

1.2.1. REUSING COMPONENT ALGORITHMS

Another important application of this work is the reuse of existing learning algorithms for previ-
ously unstudied concept classes. For example, assume that we have a different model of a car, which
uses an interval of acceptable internal temperatures and an automaton representing the car’s motor
controls. Again, we might assume the car’s motor controls are correct regardless of its temperature
and vice-versa. This model might be represented as the cross-product of an interval of integers
(representing the acceptable temperatures) and a finite automaton (representing motor controls).
Although it is unlikely that a learning algorithm for this particular type of model would have been
studied, individual learning algorithms for intervals and automata have been. A researcher could
then use these two algorithms as the black-box sublearners to learn the entire model.

2. Notation

This paper deals with concept learning, a type of machine learning where hypotheses are rep-
resented as sets. We use X to represent the “universe” over which learning is done, called the
instance space (or just space). A concept over X is a set c ⊆ X . A concept class C over X is a
set of concepts over X . The goal of concept learning is to find a hypothesis (i.e., concept) c in C
that best fits a target concept c∗ in C. Excluding the section on PAC learning, we focus on exact
learning, meaning the algorithm should return the target concept c∗. For example, when learning
regular languages, the instance space X might be the set {a, b}∗ (i.e., all finite strings using a and
b) and the concept class C would be the set of regular languages defined using only a and b.

In the following proofs, we assume we are given concept classes C1, C2, . . . , Ck defined over
instance spaces X1, X2, . . . , Xk. Each target concept c∗i in each Ci is learnable from algorithm Ai

(called thesublearner) using queries to an oracle that can answer any queries in a set Qsubc. This
set Qsubc contains the available types of queries, which are taken from the list of queries shown in
Table 1. For example, ifQsubc = {Mem,EQ}, then each Ai can make membership and equivalence
queries to its corresponding oracle.

4

MODULAR CONCEPT LEARNING

Qprod = Qsubc Qprod = Qsubc ∪ {Mem, 1Pos}

Qsubc ↓ #q #Mem #q

Pos Not Possible Not Possible Not Possible

Sup
∑

#Supi 0
∑

#Supi

Mem (maxi{#Memi})k
∑

#Memi
∑

#Memi

Sub k
∑

#Subi lg(k)
∑

#Subi
∑

#Subi

EQ k
∑

#EQi lg(k)
∑

#EQi

∑
#EQi

{ EQ, Mem}
#Mem #EQ

(maxi{#Memi +#EQi})k
∑

#EQi

#Mem #EQ∑
#Memi

+ lg(k)
∑

#EQi

∑
#EQi

Figure 2: Final collection of query complexities for learning cross-products. The rows represent
the set Qsubc of queries needed to learn each Ci. The columns determine whether the
cross-product is learned from queries in justQsubc orQsubc∪{Mem, 1Pos}. In the latter
case, the column is separated to track the number of membership queries and queries
in Qsubc that are needed. The value k denotes the number of dimensions (i.e., concept
classes) included in the cross-product. If |Qsubc| = 1, then #q is the number of queries
to the one element of Qsubc that are needed to learn the cross-product. In the case when
Qsubc = {Mem,EQ}, the meaning of #q is not defined, so the complexity of each case
is split into #Mem and #EQ.

For each query q ∈ Qsubc, we say algorithm Ai makes #qi (or #qi(c
∗
i)) many q queries to

the oracle in order to learn concept c∗i , dropping the index i when unambiguous. We replace the
term #q with a more specific term when the type of query is specified. For example, an algorithm
A might make #Mem many membership queries to learn c.

Unless otherwise stated, we will assume any index i or j ranges over the set {1 . . . k}. We
write

∏
Si or S1 × · · · × Sk to refer to the k-ary Cartesian product (i.e., cross-product) of sets Si.

We use Sk to refer to
∏k

i=1 S.
We use vector notation x to refer to a vector of elements (x1, . . . , xk), x[i] to refer to xi, and

x[i← x′
i] to refer to x with x′

i replacing value xi at position i. The concept class formed by taking
the cross product of the subclasses is defined by ⊠k

i=1Ci := {
∏

ci | ci ∈ Ci, i ∈ {1, . . . , k}}. We
write c or

∏
ci for any element of ⊠k

i=1Ci and will often denote c by (c1, . . . , ck) in place of
∏

ci.
Thus the target concept, c∗ in ⊠k

i=1Ci can be represented as (c∗1, . . . , c
∗
k).

The product oracle is able to answer queries about the target concept c∗. The types of queries
this oracle can answer are in the set Qprod, which are taken from the queries in Table 1. We now
have enough to state the problem of this paper.

Problem Statement: For different sets of queries,Qsubc andQprod, can we bound the number
of queries needed to learn a concept in ⊠Ci as a function of each query complexity, #qi, for
each q ∈ Qsubc?

5

CAULFIELD SESHIA

There are far too many combinations of sets Qsubc and Qprod to consider in one paper. In
this paper we will mostly focus on the cases when |Qsubc| = 1 and Qprod = Qsubc or Qprod =
Qsubc ∪ {1Pos,Mem}, as these cases are more likely to appear in practice.

3. Simple Lower Bound
We will start with a simple lower bound on learnability from EQ, Sub, and Mem. See Figure 3 for
a visual representation of this proposition. We will see later that this lower bound is tight when
learning from membership queries, but not equivalence or subset queries. The appendix shows that
learning from superset queries is in fact easy.

Proposition 1 For any positive integer n, there exists a concept class C1 that is learnable from n many
queries posed to Qsubc ⊆ {Mem,EQ,Sub} such that learning Ck

1 requires at least nk many queries when
Qprod = Qsubc.

Proof Let C1 := {{j} | j ∈ {0 . . . n}}.
We can learn C1 in n membership, subset, or equivalence queries by querying, for all j between

0 and n, either j ∈ c∗, {j} ⊆ c∗1, or {j} = c∗1, respectively. However, a learning algorithm for
the product class C, defined by C := Ck

1 , requires more than nk queries. To see this, note that Ck
1

contains all singletons in a space of size (n+ 1)k.
So for each subset query {x} ⊆ c∗, if {x} ≠ c∗, the oracle will return x as a counterexample,

giving no new information. Likewise, for each equivalence query {x} = c∗, if {x} ≠ c∗, the oracle
can return x as a counterexample. Therefore, any learning algorithm must query x ∈ c∗, {x} ⊆ c∗,
or {x} = c∗ for (n+ 1)k − 1 values of x in {0, . . . , n}k.

4. Learning From Membership Queries and One Positive Example

. . .

(1, 1) (2, 1) (3, 1) (4, 1) (n, 1)

. . .

(1, 2) (2, 2) (3, 2) (4, 2) (n, 2)

. . .

...

(1, n) (2, n) (3, n) (4, n) (n, n)

Figure 3: Representation for C × C in
Proposition 1, when k = 2. The
circle around each point repre-
sents a singleton set in C × C.

X1

X2

c∗1

c∗2
•

(x1, x2)

• (y1, y2)

• (y1, x2)

•
(x1, y2)

Figure 4: The figure for Example 1 on han-
dling counter-examples with mem-
bership queries.

Ideally, learning the cross-product of concepts should be about as easy as learning all the in-
dividual concepts. The last section showed this is not the case when learning with equivalence,
subset, or membership queries. However, when the learner is given a single positive example and
allowed to make membership queries, the number of queries becomes tractable. This is due to the
following simple observation.

6

MODULAR CONCEPT LEARNING

Observation 1 Fix sets S1, S2, . . . , Sk, points x1, x2, . . . , xk and an index i. If xj ∈ Sj for all j ̸= i, then
(x1, x2, . . . , xk) ∈

∏
Si if and only if xi ∈ Si.

This suggests a simple method for handling counterexamples. Given a positive example p ∈ c∗

and a counterexample x ̸∈ c∗, query p[j ← xj] ∈ c∗ for each j. Recall that p[j ← xj] is the result
of replacing the jth element of p with xj . So by the above observation, there will be some j such
that p[j ← xj] ̸∈ c∗ and we can infer that xj ̸∈ c∗j . The appendix shows that we can use binary
search to find such a j in lg(k) queries, but we will focus on using k queries here. This process
closely matches that of empirical sciences, where variables are fixed by a control and then a single
variable is changed. This process is better explained in the following example.

Example 1 Figure 4 shows an example of using membership queries to handle a counter-example. The
rectangle represents the target hypothesis c∗ = c∗1 × c∗2. The point p = (x1, x2) is a positive example and
(y1, y2) is a negative counter-example. The algorithm wants to find whether (y1, y2) is a negative example
because y1 ̸∈ c∗1 or y2 ̸∈ c∗2. It then constructs p[1 ← y1] (i.e., (y1, x2)) and queries p[1 ← y1] ∈ c∗. The
oracle returns ‘true’, so y1 ∈ c∗1. It then repeats the process and queries p[2← y2] ∈ c∗. The oracle returns
‘false’, so y2 ̸∈ c∗2, and the oracle passes y2 to learner A2 as a counterexample.

We now have enough information to present the following theorem.

Theorem 2 Assume a single positive example p ∈ c∗ is given.

1. If Qsubc = Qprod = {Mem}, then c∗ is learnable in
∑

#Memi membership queries.

2. IfQsubc = Qprod = {EQ}, then c∗ is learnable in lg(k) ·
∑

#EQi membership queries and
∑

#EQi

equivalence queries.

3. If Qsubc = Qprod = {Sub}, then c∗ is learnable in lg(k) ·
∑

#Subi membership queries and∑
#Subi subset queries.

4. If Qsubc = Qprod = {Mem,EQ}, then c∗ is learnable in lg(k) ·
∑

#EQi +
∑

#Memi membership
queries and

∑
#EQi equivalence queries.

Proof (Sketch) See Appendix C for full proofs and algorithm descriptions.
Item 1 The algorithm learns by simulating each Ai in sequence, moving on to Ai+1 once

Ai returns a hypothesis ci. For any membership query Mi made by Ai, Mi ∈ c∗i if and only if
p[i ← Mi] ∈ c∗ by Observation 1. Therefore the algorithm is successfully able to simulate the
oracle for each Ai, yielding a correct hypothesis ci.

Item 2 The algorithm asks for an equivalence query, ci = c∗i , from each learner Ai. It then
queries

∏
ci to the oracle. Negative counter-examples are handled as in Example 1. If a positive

counter-example x is given, then x[i] is passed as a positive counter-example to each Ai.
Item 3 (Similar to Item 2) The algorithm asks for a subset query, ci ⊆ c∗i , from each learner Ai.

It then queries
∏

ci to the oracle. Negative counter-examples are handled similarly to in Example
1. The logarithmic factor can be achieved by a simple binary-search-like handling of queries (See
Algorithm C in Appendix C).

Item 4 See Algorithm 5. The learning algorithm answers membership queries for each Ai as
in Item 1 until an equivalence query is asked. The equivalence queries are then combined as in Item
2 and passed to the oracle.

7

CAULFIELD SESHIA

5. Learning From Only Membership Queries

We have seen that learning with membership queries can be made significantly easier if a single
positive example is given. If no positive example is given, then Proposition 1 gives a lower bound on
the number of membership, subset, or equivalence queries needed. This section gives an algorithm
showing that this bound is tight whenQsubc = Qprod = {Mem} orQsubc = Qprod = {Mem,EQ}.
The algorithm uses membership queries so that either a positive example is found or the target
concept is learned. Once a positive example is found, the learning algorithm from Section 4 can be
used.

Somewhat surprisingly, even if Qsubc = Qprod = {Mem,EQ}, only membership queries are
needed to find a positive example. We present the algorithm for learning when Qsubc = Qprod =
{Mem,EQ} in Algorithm 1, since the algorithm is essentially the same if no equivalent queries are
allowed. Unlike the other algorithms in this paper, this algorithm assumes that we can choose an
element in each hypothesis. There might not be an efficient algorithm for this choosing. However,
choosing an arbitrary element will likely be more efficient than checking the equivalence of two
concepts. We only need to choose elements from k ·maxi{#EQi} hypotheses, so this requirement
is not too restrictive.

Proposition 3 If Qsubc = Qprod = {Mem,EQ}, then Algorithm 2 can find a positive example using
maxi{#Memi +#EQi}k membership queries or at most one equivalence query.

Proof (Sketch: see Appendix D for full proof) Algorithm 2 answers the queries posed by each
sublearner. For each sublearner Ai, there are two possible cases: (I) every answer to that sublearner
is correct or (II) some answer to that sublearner is incorrect. In case (I), the sublearner will even-
tually return the correct concept (and an element from that concept is added to Ti). In case (II),
the answer xi ̸∈ c∗i (in response to a membership query) or the counterexample xi ∈ Si\c∗i (in
response to an equivalence query) must be incorrect. Either way, xi is in c∗i and xi is added to Ti.
So in either case each Ti will eventually contain a positive element. Since a membership query is
made to every possible element in

∏
Ti, an element of c∗ will be found.

As mentioned before, finding a positive example whenQsubc = Qprod = {Mem} is essentially
the same process as Algorithm 2. The main difference is that we make the initial query ∅ = c∗ at the
beginning of the algorithm. Appendix D shows that when ∅ ∈ ⊠Ci, there is no way to determine
if c∗ = ∅ using membership queries. Algorithm 2 will find a positive example if one exists, or run
indefinitely otherwise. In all other cases, Algorithm 2 works with only membership queries.

6. Learning from Equivalence or Subset Queries is Hard

The previous section showed that learning cross-products of membership queries requires at most
O(maxi{#Memi}k) membership queries. A natural next question is whether this can be done for
equivalence and subset queries (i.e., whenQsubc = Qprod = {EQ} orQsubc = Qprod = {Sub}}).

In this section, we answer that question in the negative. We will construct a concept class C
that can be learned from n equivalence or subset queries but which requires at least kn queries to
learn Ck. We define C to be the set {c(s) | s ∈ N∗}, where c(s) is defined over strings such that
c(λ) := {λ}×N, c(s) := ({s}×N)∪ csub(s), and csub(s ·a) := ({s}× (N\{a}))∪ csub(s). For
example, c(1 · 2) = ({1 · 2} ×N) ∪ ({1} × (N\{2})) ∪ ({λ} × (N\{1})). Here, 1 · 2 refers to the
concatenation of symbols 1 and 2.

To learn c(s), it is enough to find the underlying string s. This can be done by constructing
longer prefixes of s from the counter-examples given by an oracle. So, an algorithm learning
c(1 · 2 · 3) from equivalence queries might start by querying c(λ) and getting a negative counter-
example (λ, 1). It can then infer that 1 is a prefix of the target string s. It then queries c(1) and

8

MODULAR CONCEPT LEARNING

LearnMemEQ()
Get positive example p
while some Ai has not completed do

for each Ai do
// Answer Mem queries

until an EQ query
is made

while Ai queries xi ∈ Ci do
Query p[i← xi] ∈ c∗

Return answer to Ai
Receive learned concept Si or a

query Si = c∗i from Ai

Query
∏

Si = c∗

if
∏

Si = c∗ then
return

∏
Si

else
Receive c.e. x

if x ∈
∏

Si then
for i ∈ {1, . . . , k} do

Query p[i← xi] ∈ c∗

if p[i← xi] ̸∈ c∗ then
Pass c.e. xi to Ai

else
// x ∈ c∗\

∏
Si

for i ∈ {1, . . . , k} do
if xi ̸∈ Si then

Pass c.e. xi to Ai
return

∏
Si

Algorithm 1: Learn cross-product with
queries Qsubc = {EQ,Mem} and Qprod =
{EQ,Mem, 1Pos}

FindPos()
if ∅ ∈ C then

Query ∅ = c∗

return counterexample
Initialize all Ti := ∅
while True do

for i ∈ {1, . . . , k} do
Ask Ai for query
if No possible query then

Pass
if Ai returns ci then

Choose yi ∈ ci
Add yi to Ti

if Ai queries xi ∈ c∗i then
Add xi to Ti

Pass “False” to Ai

else
Ai queries Si = c∗i
Choose yi ∈ Si

Pass yi as c.e. to Ai

Add yi to Ti

for Unqueried y ∈
∏

Ti do
Query y ∈ c∗

if y ∈ c∗ then
return y

Algorithm 2: Finds positive example
when Qsubc = Qprod = {Mem,EQ}.

gets a negative counter-example (1, 2). It then queries c(1 · 2) and gets a negative counter-example
(1 · 2, 3). Finally, it queries the correct concept c(1 · 2 · 3) and is done. Appendix E proves the
following proposition and gives the full algorithm description.

Proposition 4 There exist algorithms for learning from equivalence queries or subset queries such that any
concept c(s) ∈ C can be learned from |s| queries.

We will now demonstrate a lower bound on learning Ck from subset queries from an adversarial
oracle. This will imply that Ck is hard to learn from equivalence queries, since an adversarial
equivalence query oracle can give the exact same answers and counterexamples as a subset query
oracle.

It is easy to learn C, since each new counterexample gives at least one more character in the
target string s. When learning a concept,

∏
c(si), it is not clear which dimension a given counterex-

ample applies to. Specifically, a given counterexample x could have the property that x[i] ∈ c(si)
for all i ̸= j, but the learner cannot infer the value of this j. It must then proceed by considering all
possible values of j, requiring exponentially more queries for longer si.

9

CAULFIELD SESHIA

To see this, consider the following example, where a learner must learn c(s1) × c(s2), when
|s1|+ |s2| = 2.

Example 2 First, the learner queries (c(λ), c(λ)) to the oracle and receives a counter-example ((λ, 1), (λ, 2)).
We now know either s1 starts with 1 or s2 starts with 2. The learner queries (c(1), c(λ)) and receives coun-
terexample ((1, 3), (λ, 4)). If s1 starts with 1, then either s1 = 1 ·3 or s2 starts with 4. If s1 doesn’t start with
1, then we’ve learned nothing. The learner queries (c(λ), c(2)) and receives counterexample ((λ, 5), (2, 6)).
At this point, there are four possible values of c∗: (c(1), c(4)), (c(1 ·3), c(λ)), (c(5), c(2)) and (c(λ), c(2 ·6)).
The learner must query all but one of these in order to find the correct concept.

A learning algorithm that uses the above strategy would need 2(|s1|+|s2|) queries to learn a
concept c(s1) × c(s2) of arbitrary length. In Appendix E, we show that this is in fact the best
strategy. Namely, we demonstrate an adversarial oracle such that any learner that does not use the
above strategy must fail. That oracle and the corresponding proofs yield the following theorem.

Theorem 5 Any algorithm learning Ck from subset (or equivalence) queries requires at least kr queries to
learn a concept

∏
c(si), where r =

∑
|si|. Equivalently, the algorithm takes k

∑
#Subi subset (or k

∑
#EQi

equivalence) queries.

7. Related Work on Modularity

Modularity has been fairly well-studied in statistical machine learning with uses in neural networks
(Bottou and Gallinari, 1991; Anand et al., 1995; Auda and Kamel, 1999) and cyber-physical sys-
tems (Bradley, 2010). However, there has been less work on studying modularity in computational
learning theory. The main work on this subject, by Bshouty et. al., has studied the problem of learn-
ing compositions of concept classes using equivalence queries (Ben-David et al., 1997; Bshouty,
1998). Here the composition for a class C is the set C∗ built from all boolean combinations of
concepts from C. Their work is orthogonal to our own, as the current paper allows for composition
of many different classes but does not account for all boolean combinations. Moreover, their work
only studies PAC-learning and learning from equivalence queries.

8. Conclusion

This paper is a first look at the problem of modular concept learning, with a focus on learning the
cross-product of concept classes. It shows that learning cross-products can become exponentially
hard when using membership, equivalence, and subset queries. These learning problems become
easier when a single positive example is given and the learner is allowed to use membership queries.
We also demonstrate a method for systematically finding a positive example from membership
queries alone. Further results on PAC-learnability of cross-products can be found in Appendix F.

Future work in this area can study more permutations of usable queries Qsubc and Qprod.
Additionally, as the specification in Figure 1 demonstrates, the product concept class represents a
conjunction of its subclasses. It may be interested to study modular learning of other fixed boolean
operations, such as ‘or’ or ‘implication’.

Acknowledgments

This work was largely done while the first author was affiliated with UC Berkeley. It was supported
in part by NSF grant 1139138, by Microsoft Research, and by the iCyPhy center.

10

MODULAR CONCEPT LEARNING

References
Rangachari Anand, Kishan Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. Efficient classification for

multiclass problems using modular neural networks. IEEE Transactions on Neural Networks, 6(1):117–
124, 1995.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation, 75
(2):87–106, 1987.

Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

Gasser Auda and Mohamed Kamel. Modular neural networks: a survey. International Journal of Neural
Systems, 9(02):129–151, 1999.

Shai Ben-David, Nader H Bshouty, and Eyal Kushilevitz. A composition theorem for learning algorithms
with applications to geometric concept classes. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 324–333, 1997.

Léon Bottou and Patrick Gallinari. A framework for the cooperation of learning algorithms. In Advances in
neural information processing systems, pages 781–788, 1991.

David M Bradley. Learning in modular systems. Technical report, Carnegie Mellon Univ., Pittsburgh PA,
2010.

Nader H Bshouty. A new composition theorem for learning algorithms. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 583–589, 1998.

Jamieson M Cobleigh, Dimitra Giannakopoulou, and Corina S Păsăreanu. Learning assumptions for com-
positional verification. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 331–346. Springer, 2003.

Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. Ice: A robust framework for learning
invariants. In International Conference on Computer Aided Verification, pages 69–87. Springer, 2014.

Falk Howar and Bernhard Steffen. Active automata learning in practice. In Machine Learning for Dynamic
Software Analysis: Potentials and Limits, pages 123–148. Springer, 2018.

Susmit Jha and Sanjit A Seshia. A theory of formal synthesis via inductive learning. Acta Informatica, 54
(7):693–726, 2017.

Saswat Padhi, Rahul Sharma, and Todd Millstein. LoopInvGen: A loop invariant generator based on precon-
dition inference. ArXiv e-prints, 2019.

Sanjit A. Seshia. Sciduction: Combining induction, deduction, and structure for verification and synthesis.
In Proceedings of the Design Automation Conference (DAC), pages 356–365, June 2012.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combinatorial
sketching for finite programs. ACM Sigplan Notices, 41(11):404–415, 2006.

Frits W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017. doi: 10.1145/2967606. URL
https://doi.org/10.1145/2967606.

11

https://doi.org/10.1145/2967606

CAULFIELD SESHIA

Aad Van Der Vaart and Jon A Wellner. A note on bounds for VC dimensions. Institute of Mathematical
Statistics collections, 5:103, 2009.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks using
queries and counterexamples. arXiv preprint arXiv:1711.09576, 2017.

Appendix A. Automata Learning
This section further develops the applications on learning automata that were stated in the intro-
duction.

Given a finite set of alphabet Σ, a set Γ ⊆ Σ, and a string s ∈ Σ∗, the projection of s to Γ,
written πΓ(s) is formed by removing all symbols from s that are not in Γ. More formally, for the
empty string λ, πΓ(λ) = λ. For all t ∈ Σ∗ and a ∈ Σ, πΓ(ta) = πΓ(t)a if a ∈ Γ and πΓ(ta) =
πΓ(t) if a ̸∈ Γ. Projection can be extended to languages L ⊆ Σ∗ by πΓ(L) := {πΓ(s) | s ∈ L}.

The following definition formalizes the concept of independence discussed in the introduction.

Definition 6 Let Σ be a finite alphabet and let P = {Σ1, . . . ,Σk} be a partitioning of Σ into disjoint
subsets. We say P is independent on the language L ⊆ Σ∗ if for each s ∈ Σ∗, s ∈ L if and only if for all
i ∈ {1, . . . , k}, πΣi(s) ∈ πΣi(L).

To understand this definition, consider the following example. Let |s|a be the number of occur-
rences of a character a in the string s (similar for b). Define L := {s | |s|a ≡ 0 mod 2 and |s|b ≡
0 mod 3} for L ⊆ {a, b}∗. Then the partition P = {{a}, {b}} acts independently on L.

We can restate this concept of independence in term of cross products. The following proposi-
tion follows immediately from the definition of independence.

Proposition 7 For any finite alphabet Σ and formal language L ⊆ Σ∗ and partition P = {Σ1, . . . ,Σk} on
Σ. If P act independently on L, then for any s ∈ Σ∗, (πΣ1

(s), . . . , πΣk
(s)) ∈

∏
πΣi

(L) if and only if s ∈ L.

An algorithm to learn these cross products can be constructed from any oracle answering ques-
tions about the language L. Each query about cross products is translated to an equivalent query
about L. The query (s1, . . . , sk) ∈

∏
πΣi(L) is translated to s1 · · · · · sk ∈ L. To answer the query∏

Li =
∏

πΣi
(L), let L′ be the largest set in Σ such that for all i, πΣi

(L) = Li. To construct
this set, let Mi be the automaton accepting each Li. For each Mi add self-loops to each state la-
belled with the characters in Σ\Σi. The intersection of the resulting languages is the set L′, and∏

Li =
∏

πΣi
(L) if and only if L′ = L. These constructions can also be used to answer subset,

superset, and example queries.

Appendix B. Easy Results
We show two simple results, learning from positive examples is not always possible and learning
from superset queries is easy.

Proposition 8 There exist concepts C1 and C2 that are each learnable from constantly many positive queries,
such that C1 × C2 is not learnable from any number of positive queries.

Proof Let C1 := {{a}, {a, b}} and set C2 := {N,Z\N}. To learn the set in C1, pose two positive
queries to the oracle, and return {a, b} if and only if both a and b are given as positive examples.
To learn C2, pose one positive query to the oracle and return N if and only if the positive example
is in N. An adversarial oracle for C1 × C2 could give positive examples only in the set {a} × N.

12

MODULAR CONCEPT LEARNING

Each new example is technically distinct from previous examples, but there is no way to distinguish
between the sets {a} × N and {a, b} × N from these examples.

The next proposition makes use of the following simple observation:

Observation 2 For sets S1, S2, . . . , Sk and T1, T2, . . . , Tk, assume
∏

Si ̸= ∅. Then
∏

Si ⊆
∏

Ti if and
only if Si ⊆ Ti, for all i.

Proposition 9
IfQsubc = Qprod = {Sup}, then there is an algorithm that learns any concept c∗ ∈

∏
Ci in

∑
#Supi(c

∗
i)

queries.

Proof Algorithm B learns ⊠Ci by simulating the learning of each Ai on its respective class Ci.
The algorithm asks each Ai for superset queries Si ⊇ c∗i , queries the product

∏
Si to the oracle,

and then uses the answer to answer at least one query to some Ai. Since at least one Ai receives
an answer for each oracle query, at most

∑
#Supi(c

∗
i) queries must be made in total.

We will now show that each oracle query results in at least one answer to an Ai query (and that
the answer is correct). The oracle first checks if the target concept is empty and stops if so. If no
concept class contains the empty concept, this check can be skipped. At each step, the algorithm
poses query

∏
Si to the oracle. If the oracle returns ’yes’ (meaning

∏
Si ⊇ c∗), then Si ⊇ c∗i for

each i by Observation 2, so the oracle answers ’yes’ to each Ai. If the oracle returns ’no’, it will give
a counterexample x = (x1, . . . , xk) ∈ c∗\

∏
Si. There must be at least one xi ̸∈ Si (otherwise,

x would be in
∏

Si). So the algorithm checks xj ∈ Sj for all xj until an xi ̸∈ Si is found. Since
x ∈ c∗, we know xi ∈ c∗i , so xi ∈ c∗i \Si, so the oracle can pass xi as a counterexample to Ai.

Note that once Ai has output a correct hypothesis ci, Si will always equal ci, so counterexam-
ples must be taken from some j ̸= i.

Result: Learn
∏

Ci from Superset Queries
if ∅ ∈ Ci for some i then

Query ∅ ⊇ c∗

if ∅ ⊇ c∗ then
return ∅

for i = 1 . . . k do
Set Si to initial subset query from Ai

while Some Ai has not completed do
Query

∏
Si to oracle

if
∏

Si ⊇ c∗ then
Answer Si ⊇ c∗i to each Ai

Update each Si to new query
else

Get counterexample x = (x1, . . . , xk)
for i = 1 . . . k do

if xi ̸∈ Si then
Pass counterexample xi to Ai

Update Si to new query
for i = 1 . . . k do

if Ai outputs ci then
Set Si := ci

return
∏

ci
Algorithm 3: Algorithm for learning from Superset Queries

13

CAULFIELD SESHIA

Appendix C. Learning From Membership Queries and One Positive Example

We prove results relating to learning from membership queries and one positive example.

Proposition 10 Let x be a negative example. Given a positive example, Algorithm C returns an i such that
xi ̸∈ c∗i using at most lg(k) membership queries.

Proof We show by induction that at each step of the algorithm, there is an index i ∈ [low, 2 · up−
low] such that xi ̸∈ c∗i . Base: Since up = ⌈k/2⌉ and low = 1 the range [low, 2 · up− low] equals
[1, k]. By Observation 1 there is some xi ̸∈ c∗i , since x ̸∈ c∗. Inductive: assume this has held for
all previous steps. So either there is an i in [low, up] or in [up, 2 · up− low] such that xi ̸∈ c∗i . By
the construction of p′ and Observation 1, if i ∈ [low, up], then p′ ∈ c∗. So the new up (call it up′)
will be set to low+⌈(up− low)/2⌉, so [low, up] = [low, 2 ·up′− low] and the property still holds.
If i ̸∈ [low, up], then i ∈ [up, 2 ·up− low] and p′ ̸∈ c∗. In this case, the new low and up (low′ and
up′) will be up and up+⌈(up−low)/2⌉, respectively. So [up, 2·up−low] = [low′, 2·(up′)−low′]
and the property still holds. Since the size of up− low decreases by one half each round, after lg(k)
rounds low = up and so i ∈ [low, 2 · up− low] = [low, low].

Input: p: positive example (in c∗) x: counter example
Output: i such that x[i] ̸∈ c∗i
HandleCounterexample (p, x):

// lower and upper bounds
low := 1 up := ⌈k/2⌉

for j = 1 . . . lg(k) do
p′ := p
p′[i] := x[i] for low ≤ i ≤ up
size := up− low
Query p′ ∈ c∗

if p′ ̸∈ c∗ then
low := up

up := low + ⌈size/2⌉
return low

Algorithm 4: Find dimension on which counterexample fails

Theorem 2: Assume a single positive example p ∈ c∗ is given.

• If Qsubc = Qprod = {Mem}, then c∗ is learnable in
∑

#Memi(c
∗
i) membership queries.

• If Qsubc = {EQ} (respectively Qsubc = {Sub}) and Qprod = {EQ,Mem} (respectively Qprod =
{Sub,Mem}), then c∗ is learnable in lg(k) ·

∑
#qi(c

∗
i) membership queries and

∑
#EQi(c

∗
i) equiv-

alence queries (respectively
∑

#Subi(c
∗
i) subset queries).

• If Qsubc = Qprod = {Mem,EQ}, then c∗ is learnable in lg(k) ·
∑

#EQi(c
∗
i) +

∑
#Memi(c

∗
i)

membership queries and
∑

#EQi(c
∗
i) equivalence queries.

Proof
Proof of Item 1 See Algorithm C in this appendix. The algorithm learns by simulating each

Ai in sequence, moving on to Ai+1 once Ai returns a hypothesis ci. For any membership query
Mi made by Ai, Mi ∈ c∗i if and only if p[i←Mi] ∈ c∗ by Observation 1. Therefore the algorithm
is successfully able to simulate the oracle for each Ai, yielding a correct hypothesis ci.

14

MODULAR CONCEPT LEARNING

Proof of Item 2 The learning process for either subset or equivalence queries is described in
Algorithm C, with differences marked in comments. In either case, once the correct cj is found for
any j, Sj will equal cj for all future queries, so any counterexamples must fail on an i ̸= j.

We separately show for each type of query that a correct answer is given to at least one learner
Ai for each subset (resp. equivalence) query to the cross-product oracle. Moreover, at most lg(k)
membership queries are made per subset (resp. equivalence) query, yielding the desired bound.

Subset Queries: For each subset query
∏

Si ⊆ c∗, the algorithm either returns ‘yes’ or gives a
counterexample x = (x1, . . . , xk) ∈

∏
Si\c∗. If the algorithm returns ’yes’, then by Observation

2 Si ⊆ c∗i for all i, so the algorithm can return ’yes’ to each Ai. Otherwise, x ̸∈ c∗, so there is an i
such that xi ̸∈ c∗i . Algorithm C is used to find the xi ̸∈ c∗i in lg(k) queries.

Equivalence Queries: For each equivalence query
∏

Si = c∗, the algorithm either returns
’yes’, or gives a counterexample x = (x1, . . . , xk). If the algorithm returns ‘yes’, then a valid
target concept is learned. Otherwise, either x ∈

∏
Si\c∗ or x ∈ c∗\

∏
Si. In the second case, as

with superset queries, Algorithm C is used to find the xi ̸∈ c∗i in lg(k) queries. Once the xi ̸∈ c∗i is
found it is given to Ai as a counterexample.

Proof of Item 3 The learning algorithm is described in Algorithm 1. The algorithm uses the
positive example to answer membership queries. By Observation 1, for any membership query xi

made by Ai, xi ∈ c∗i if and only if p[i ← xi] ∈ c∗. So each membership query posed by an Ai is
answered with one membership query posed by the cross-product learner.

Membership queries are answered until each Ai poses an equivalence query Si = c∗i (if Ai

has terminated with the correct answer, we just assume Si equals c∗i). The learning algorithm then
queries

∏
Si = c∗ and receives a counterexample x := (x1, . . . , xk) or it receives a ‘yes’ and

terminates. The algorithm checks if x ∈
∏

Si and handles each case seperately.

If x ∈
∏

Si: then x ∈ (
∏

Si)\c∗. So there is an i such that xi ̸∈ c∗i . Algorithm C is used
to find the xi ̸∈ c∗i in lg(k) queries. Since x ∈

∏
Si, xi ∈ Si\c∗i , so xi is passed to Ai as a

counterexample to the query Si = c∗i . This takes at most k membership queries.

If x ̸∈
∏

Si: then x ∈ c∗\
∏

Si, since it is a counterexample. So there is an i such that
xi ̸∈ Si. Since the algorithm has access to each Si, it can check this explicitly without using any
counter-examples.

In either case, at least one Ai receives a counterexample to its equivalence query, so this process
is done at most

∑
#EQi(c

∗
i) times, using at most k membership queries per process. This yields

the stated bound on query complexity.

15

CAULFIELD SESHIA

for i = 1 . . . k do
Set Si to initial query from Ai

while Some Ai has not completed do
Query

∏
Si to oracle

if the oracle returns ‘yes’ then
Pass ‘yes’ to each Ai // If Qsubc = {EQ} each sublearner will

immediately complete

else
Get counterexample x = (x1, . . . , xk)
if x ∈ c∗\

∏
Si then

// Only happens if Qsubc = {EQ}
for i = 1 . . . k do

if xi ̸∈ Si then
Pass counterexample xi to Ai

Update Si to new query from Ai

else
for i = 1 . . . k do

Query p[i← xi] ∈ c∗ if p[i← xi] ̸∈ c∗ and xi ∈ Si then
Pass counterexample xi to Ai

Update Si to new query from Ai
Each Ai returns some ci return

∏
ci

Algorithm 5: Learn when Qsubc = {EQ} (or Qsubc = {Sub}) and Qprod = Qsubc ∪
{Mem, 1Pos}

Input: p: Positive Example in X
Learn (p):

for i = 1 . . . k do
while Ai has not completed do

Get query xi ∈ c∗i from Ai

Query p[i← xi] ∈ c∗

Pass answer to Ai

if Ai returns guess ci then
Break

return
∏

ci
Algorithm 6: Learn from Membership Queries and One Positive Example

Appendix D. Learning From Only Membership Queries
Observation 3 In general, Algorithm 5 cannot distinguish determine if c∗ = ∅ using only membership
queries, even when subconcepts are learnable with only membership queries

Proof Consider the concept classes C1 = {{1}, ∅} and C2 = {{j} | j ∈ N}. We can find the
correct concepts in C1 or in C2 using membership queries. For any finite number of membership
queries, there is no way to distinguish between the sets ∅ and {(1, j)} for some j that has yet to be
queried.

Proposition 3 IfQsubc = Qprod = {Mem,EQ}, then Algorithm 5 can find a positive example
using maxi{(#Memi +#EQi)}k membership queries and at most one equivalence query.

16

MODULAR CONCEPT LEARNING

Proof

Since the algorithm might give inconsistent answers to the sublearners, there is no guarantee
that Ai can always give a new query. This is handled in the case marked ”If no possible query” in
the algorithm.

At the start of the algorithm, if the concept class includes the empty concept, the algorithm
queries ∅ = c∗. If ∅ = c∗, the concept is learned. Otherwise, some positive counter-example from
c∗ must be given. The rest of the algorithm then assumes that is not a valid hypothesis.

The remaining part of the algorithm simulates each Ai in parallel until every Ti contains an
element of c∗i . At this point, the algorithm will stop, since all possible elements of

∏
Ti are posed

as membership queries.

For each Ai, either every answer to a query from Ai is correct or at least one answer is incorrect.
We will discuss each case separately. Every answer is correct: In this case Ai will eventually
query the correct hypothesis c∗i . Since c∗i ̸= ∅, some element of c∗i will then be added to Ti.
Some answer to Ai is incorrect: If an incorrect answer to a membership query is given, then for
some query xi ∈ c∗i , the answer “False” is incorrect. So xi ∈ c∗i and Ti will contain a positive
example. If an incorrect answer to an equivalence query is given, either the counter-example is
incorrect or the statement that they are not equivalent is incorrect. If an incorrect counterexample
yi to the query Si = c∗i is given, then yi ∈ c∗i , since we already know yi ∈ Si. If the statement
Si ̸= c∗i is incorrect, then some element of c∗i will then be added to Ti.

The algorithm adds at most one element to Ti per query and must stop once every Ai has made
enough queries to learn c∗i , yielding the stated bound.

Appendix E. Learning From Equivalence and Subset Queries is Hard

This appendix proves the propositions and theorems showing learning from equivalence or subset
queries is hard. We will start by showing C is easy to learn.

An important part of the construction of C is that for any two strings s, s′ ∈ N, we have that
c(s) ⊆ c(s′) if and only if s = s′. This implies that a subset query will return true if and only if the
true concept has been found. Moreover, an adversarial oracle can always give a negative example
for an equivalence query, meaning that oracle can give the same counterexample if a subset query
were posed. So we will show that C is learnable from equivalence queries, implying that it is
learnable from subset queries.

Proposition 4 There exist algorithms for learning from equivalence queries or subset queries
such that any concept c(s) ∈ C can be learned from |s| queries.

Proof Algorithm E shows the learning algorithm for equivalence queries, and Figure 5 show
the decision tree. This algorithm starts by querying c(λ) to an oracle. When learning c(s) for any
s ∈ N∗, the algorithm will construct s by learning at least one new element of s per query. Each new
query to the oracle is constructed from a string that is a substring of s If a positive counterexample
is given, this can only yield a longer substring of s and so learning is done in less than |s| time.

17

CAULFIELD SESHIA

c(λ)

c(1) c(2) ...

c(11) c(12) ...

(λ, 1)
(λ, 2)

(1, 1)
(1, 2)

Figure 5: A tree representing Algorithm E. Nodes are labelled with the queries made at each step,
and edges are labelled with the counterexample given by the oracle.

Result: Learns C
Set s = λ while True do

Query c(s) to Oracle if Oracle returns ‘yes’ then
return c(s)

end
if Oracle returns (s′,m) ∈ c∗\c(s) then

Set s = s′

end
if Oracle returns (s,m) ∈ c(s)\c∗ then

Set s = sm
end

end
Algorithm 7: Learning C from equivalence queries.

We will prove a lower-bound on learning Ck from subset queries from an adversarial oracle.
This will imply that Ck is hard to learn from equivalence queries, since an adversarial equivalence
query oracle can give the exact same answers and counterexamples as a subset query oracle.

First, we need a couple definitions.
A concept

∏
c(si) is justifiable if one of the following holds:

• For all i, si = λ

• There is an i and an a ∈ N and w ∈ N∗ such that si = wa, and the k-ary cross-product c(s1)× · · · ×
c(w) × · · · × c(sk) was justifiably queried to the oracle and received a counterexample x such that
x[i] = (w, a).

A concept is justifiably queried if it was queried to the oracle when it was justifiable.

For any strings s, s′ ∈ N∗, we write s ≤ s′ if s is a substring of s′, and we write s < s′ if s ≤ s′

and s ̸= s′. We say that the sum of string lengths of a concept
∏

c(si) is of size r if
∑
|si| = r

Proving that learning is hard in the worst-case can be thought of as a game between learner
and oracle. The oracle can answer queries without first fixing the target concept. It will answer
queries so that for any n, after less than kn queries, there is a concept consistent with all given

18

MODULAR CONCEPT LEARNING

JQ: (c(λ), c(λ))
CE: ((λ, 1), (λ, 2))

JQ: (c(1), c(λ))
CE: ((1, 3), (λ, 4))

JQ: (c(λ), c(2))
CE: ((λ, 5), (2, 6))

JQ: (c(1 · 3), c(λ)) JQ: (c(1), c(4)) JQ: (c(5), c(2)) JQ: (c(λ), c(2 · 6))

1 ≤ s1 2 ≤ s2

1, 3 ≤ s1 4 ≤ s2 5 ≤ s1 2, 6 ≤ s2

Figure 6: The tree of justifiable queries used in Example 2. Each node lists the justifiable query (JQ)
and counterexample (CE) given for that query. The edges below each node are labelled
with the possible inferences about s1 and s2 that can be drawn from the counterexample.

oracle answers that the learning algorithm will not have guessed. The specific behavior of the
oracle is defined as follows:

• It will always answer the same query with the same counterexample.

• Given any query
∏

c(si) ⊆ c∗, the oracle will return a counterexample x such that for all i, x[i] =
(si, ai), and ai has not been in any query or counterexample yet seen.

• The oracle never returns ‘yes’ on any query.

The remainder of this section assumes that queries are answered by the above oracle. An
example of answers by the above oracle and the justifiable queries it yields is given below.

Example 3 Consider the following example when k = 2. First, the learner queries (c(λ), c(λ)) to the oracle
and receives a counter-example ((λ, 1), (λ, 2)). The justifiable concepts are now (c(1), c(λ)) and (c(λ), c(2)).
The learner queries (c(1), c(λ)) and receives counterexample ((1, 3), (λ, 4)). The learner queries (c(λ), c(2))
and receives counterexample ((λ, 5), (2, 6)). The justifiable concepts are now (c(1), c(4)), (c(1 · 3), c(λ)),
(c(5), c(2)) and (c(λ), c(2 ·6)). At this point, these are the only possible solutions whose sum of string lengths
is 2. The graph of justifiable queries is given in Figure 6.

The following simple proposition can be proven by induction on sum of string lengths.

Proposition 11 Let
∏

c(si) be a justifiable concept. Then for all w1, w2, . . . , wk where for all i, wi ≤ si,∏
c(wi) has been queried to the oracle.

Proposition 12 If all justifiable concepts
∏

c(si) with sum of string lengths equal to r have been queried,
then there are kr+1 justifiable queries whose sum of string lengths equals r + 1

Proof This proof follows by induction on r. When r = 0, the concept
∏

c(λ) is justifiable.For
induction, assume that there are kr justifiable queries with sum of string lengths equal to r. By
construction, the oracle will always chose counterexamples with as-yet unseen values in N. So
querying each concept

∏
c(si) will yield a counterexample x where for all i, x[i] = (si, ai) for

new ai. Then for all i, this query creates the justifiable concept
∏

c(s′j), where s′j = sj for all

19

CAULFIELD SESHIA

j ̸= i and s′i = c(si · ai). Thus there are kr+1 justifiable concepts with sum of string lengths equal
to r + 1.

We are finally ready to prove the main theorem of this section.
Theorem 5 Any algorithm learning Ck from subset (or equivalence) queries requires at least

kr queries to learn a concept
∏

c(si), whose sum of string lengths is r. Equivalently, the algorithm
takes k

∑
#qi subset (or equivalence) queries.

Proof Assume for contradiction that an algorithm can learn with less than kr queries and let this al-
gorithm converge on some concept c =

∏
c(si) after less than kr queries. Since less than kr queries

were made to learn c, by Proposition 12, there must be some justifiable concept c′ =
∏

c(s′i) with
sum of string lengths less than or equal to r that has not yet been queried. By Proposition 11, we
can assume without loss of generality that for all wi ≤ s′i,

∏
c(wi) has been queried to the oracle.

We will show that c′ is consistent with all given oracle answers, contradicting the claim that c is
the correct concept. Let cv :=

∏
c(vi) be any concept queried to the oracle, and let x be the given

counterexample. If for all i, vi ≤ s′i, then by construction, there is a j with x[j] = (vj , aj) such
that vj · aj ≤ s′j , so x is a valid counterexample. Otherwise, there is an i such that vi ̸≤ s′i.
So ({vi} × N) ∩ c(s′i) = ∅, so x is a valid counterexample. Therefore, all counterexamples are
consistent with c′ being correct concept, contradicting the claim that the learner has learned c.

Appendix F. PAC Learning
This section discusses the problem of PAC-learning the cross-products of concept classes.

Previously, Van Der Vaart and Wellner (2009) have shown the following bound on the VC-
dimension of cross-products of sets:

VC(
∏

Ci) ≤ a1log(ka2)
∑
VC(Ci)

Here a1 and a2 are constants with a1 ≈ 2.28 and a2 ≈ 3.92. As always, k is the number of
concept classes included in the cross-product.

The VC-dimension gives a bound on the number of labelled examples needed to PAC-learn a
concept, but says nothing of the computational complexity of the learning process. This complexity
mostly comes from the problem of finding a concept in a concept class that is consistent with a set of
labelled examples. We will show that the complexity of learning cross-products of concept classes
is a polynomial function of the complexity of learning from each individual concept class, for a
fixed VC-dimension. The algorithm’s complexity increases exponentially with the VC-dimension.

First, we will describe some necessary background information on PAC-learning.

F.1. PAC-learning Background

Definition 13 Let C be a concept class over a space X . We say that C is efficiently PAC-learnable if there
exists an algorithm A with the following property: For every distribution D on X , every c∗ ∈ C, and every
ϵ, δ ∈ (0, 1), if algorithm A is given access to EX(c∗,D) then with probability 1− δ, A will return a c′ ∈ C
such that error(c′) ≤ ϵ. A must run in time polynomial in 1/ϵ, 1/δ, and size(c∗).

The oracle EX(c∗,D) samples elements from X according to distributionD and labels whether
each element is in c∗. We will refer to ϵ as the ‘accuracy’ parameter and δ as the ‘confidence’ pa-
rameter. The value of error(c) is the probability that for an x sampled from D that c(x) ̸= c∗(x).
PAC-learners have a sample complexity function mC(ϵ, δ) : (0, 1)

2 → N. The sample complexity
is the number of samples an algorithm must see in order to PAC-learn a concept with parameters ϵ
and δ.

20

MODULAR CONCEPT LEARNING

Given a set S of labelled examples in X , we will use A(S) to denote the concept the algorithm
A returns after seeing set S .

A learner Ai is an empirical risk minimizer (ERM) if Ai(S) returns a c ∈ C that minimizes
the number of misclassified examples (i.e., it minimizes |{(x, b) ∈ S | c(x) ̸= b}|). A well-
known theorem restated in the next subsection shows that an ERM can PAC-learn a concept from
polynomially many examples. Our goal is thus to show how to construct an ERM for the cross-
products from the learning algorithms A1 and A2.

F.2. PAC-Learning Cross-Products
We now have enough background to describe the strategy for PAC-learning cross-products. For
ease of explanation, we will just describe learning the cross-product of two concepts. As above,
assume concept classes C1 and C2 and PAC-learners A1 and A2 are given. We define Ti(ϵ, δ) as
the runtime of the sublearner Ai to PAC-learn with accuracy parameter ϵ and confidence parameter
δ.

Assume that C1 and C2 have VC-dimension d1 and d2, respectively. We can use the bound
from van Der Vaart and Weller to get an upper bound d on the VC-dimension of their cross-product.
Assume the algorithm is given an ϵ and δ and there is a fixed target concept c∗ = c∗1× c∗2. Theorem
18, which is well known in the PAC-literature, is restated below (Theorem 6.7 from Shalev-Shwartz
and Ben-David (2014)). It gives a bound on the sample complexity mC1×C2(ϵ, δ).

Theorem 14 If the concept class C has VC dimension d, then there is a constant, b, such that applying an
Empirical Risk Minimizer A to mC(ϵ, δ) samples will PAC-learn in C, where

mC(ϵ, δ) ≤ b
d · log(1/ϵ) + log(1/δ)

ϵ

The algorithm will take a sample of labelled examples of size mC1×C2(ϵ, δ). Our goal is to
construct an Empirical Risk Minimizer for C1 × C2. In our case, the target concepts c∗1 and c∗2 are
in C1 and C2, respectively. Therefore, for any sample S, an Empirical Risk Minimizer will yield a
concept in C1 × C2 that is consistent with S. This process is shown in Algorithm F.3.

We will now argue that Algorithm F.3 is correct. Let S be any such sample the algorithm
takes. This set can easily be split into positive examples S+ and negative examples S−, both in
X1×X2. The algorithm works by maintaining sets labeled samples L1 and L2 for each dimension.
For any (x1, x2) ∈ S+, it holds that x1 ∈ c∗1 and x2 ∈ c∗2 so (x1,⊤) and (x2,⊤) are added to
L1 and L2 respectively. For any (x1, x2) ∈ S−, we know that x1 ̸∈ c∗1 or x2 ̸∈ c∗2 (or both),
but it is not clear which is true. However, since the goal is only to create an Empirical Risk
Minimizer, it is enough to find any concepts C1 and C2 that are consistent with these samples.
Let S−

1 := {x | ∃y, (x, y) ∈ S−}, let m = |S−
1 | and order the elements of S−

1 by x1, x2, . . . , xm.
The following lemma gives a bound on the number of concepts consistent with these examples.

Lemma 15 |{(c(x1), c(x2), . . . , c(xm)) | c ∈ C1}| ≤ (em/d)d

Proof By the definition of growth function, |{(c(x1), c(x2), . . . , c(xm)) | c ∈ C1}| ≤ GC1
(m).

By lemma 19, GC1(m) ≤ (em/d)d.

In other words, there are less than (em/d)d assignments of truth values to elements of S−
1 that

are consistent with some concept in C1. If the algorithm can check every c1 ∈ C1 consistent with
S+ and S−

1 , it can then call A2 to see if there is any c2 ∈ C2 such that (c1 × c2) assigns true to
every element in S+ and false to every element in S−.

Finding these consistent elements of C1 is made easier by the fact that we can check whether
partial assignments to S−

1 are consistent with any concept in C1. As mentioned above, it starts

21

CAULFIELD SESHIA

by creating the sets L1 and L2 containing all samples in the first and second dimension of S+,
respectively. It then iteratively adds labeled samples from S−. At each step, the algorithm chooses
one element (x1, x2) ∈ S− at a time and checks which possible assignments to x1 are consistent
with L1. If (x1,⊥) is consistent, it adds (x1,⊥) to L1 and calls RecursiveF indSubconcepts on
L1 and L2. If (x1,⊤) is consistent with C1, then the algorithm adds (x1,⊤) to L1 and (x2,⊥) to
L2 and calls RFS (RecursiveFindSubconcepts). In either case, if an assignment is not consistent,
no recursive call is made. We can summarize these results in the following theorem.

Theorem 16 Let concept classes C1 and C2 have VC-dimension d1 and d2, respectively. There exists a PAC-
learner for C1×C2 that can learn any concept using a sample of size m = ((d1+d2)·log(1/ϵ)+log(1/δ))/ϵ.
The learner requires time O(md1(T1(1/m, log(δ)) + T2(1/m, log(δ)))).

F.3. Efficient PAC-learning with Membership Queries

Although polynomial for a fixed VC-dimension, the complexity of PAC-learning cross-products
from a EX oracle is fairly expensive. We will show that when a learner is allowed to make mem-
bership queries, PAC-learning cross-products becomes much more efficient. This is due to the
previously shown technique, which uses membership queries and a single positive example to de-
termine on which dimensions a negatively labelled example fails.

In this case, assuming that ∅ ∈ ⊠Ci, we can ignore the assumption that a positive example is
given. If no positive example appears in a large enough labeled sample, the algorithm can return ∅
as the learned hypothesis.

If S does contain a positive example p, then S can be broken down into labeled samples for
each dimension i. The algorithm initialize the sets of positive and negative examples to S+

i :=
{x[i] | (x,⊤) ∈ S} and S−

i := {}, respectively. For each (x,⊥) ∈ S, a membership queries
p[i← x[i]] ∈ c∗. If so, x[i] is added to S+

i . Otherwise it is added to S−
i . This labelling is correct

by Observation 1. The set of labelled examples Si := (S+
i × {⊤}) ∪ (S−

i × {⊥}) is then passed
to the sublearner Ai. Ai is run on Si with accuracy parameter ϵ′ := ϵ/k and confidence parameter
δ′ := δ/k .

Proposition 17 The algorithm described above PAC-learns from the concept class ⊠Ci with accuracy ϵ
and confidence δ. It makes mC(ϵ, δ) queries to EX, k · mC(ϵ, δ) membership queries, and has runtime
O(

∑
Ti(ϵ/k, δ/k)).

22

MODULAR CONCEPT LEARNING

Result: Find Subconcepts Consistent with
Sample

Input: S+: Set of positive examples in
X1 ×X2

S−: Set of negative examples in X1 ×X2

δ : Confidence parameter in (0, 1)
FindSubconcepts (S+, S−, δ)

δ′ := δ/(|S−|GC1(|S−|) +
GC2(|S−|))
ϵ′ := 1/|S|
L1 := {(x1,⊤) | ∃y, (x1, y) ∈ S+}
L2 := {(x2,⊤) | ∃y, (y, x2) ∈ S+}
U := S−

return RFS(L1, L2, U , ϵ′, δ′)
Algorithm 8: PAC Learning

// Recursive Find Subconcepts
RFS (L1, L2, U , ϵ′, δ′):

if U = ∅ then
if A2(L2, ϵ

′, δ′) then
return
(A1(L1, ϵ

′, δ′), A2(L2, ϵ
′, δ′))

else
return ⊥

Get (x1, x2) ∈ U
U := U\{(x1, x2)}
// Tries to label x1 false
if A1(L1 ∪ {(x1,⊥)}, ϵ′, δ′) ̸= ⊥ then

L′
1 := L1 ∪ {(x1,⊥)}
c := RFS(L′

1, L2, U, ϵ
′, δ′)

if c ̸= ⊥ then
return c

// Tries to label x1 true
if A1(L1 ∪ {(x1,⊤)}, ϵ′, δ′) ̸= ⊥ then

L′
1 := L1 ∪ {(x1,⊤)}
L′
2 := L2 ∪ {(x2,⊥)}

c := RFS(L′
1, L

′
2, U, ϵ

′, δ′)
if c ̸= ⊥ then

return c
We give relevant theorems and prove a lemma for PAC learning cross-products. The follow-

ing theorem is well-known in PAC literature (Theorem 6.7 from Shalev-Shwartz and Ben-David
(2014))

Theorem 18 If the concept class C has VC dimension d, then there is a constant, b, such that applying an
Empirical Risk Minimizer A to mC(ϵ, δ) samples will PAC-learn in C, where

mC(ϵ, δ) ≤ b
d · log(1/ϵ) + log(1/δ)

ϵ

The growth function describes how many distinct assignments a concept class can make to a
given set of elements. More formally, for a concept class C and m ∈ N, the growth function
GC(m) is defined by:

GC(m) = max
x1,x2,...,xm

∣∣∣{(c(x1), c(x2), . . . , c(xm)) | c ∈ C}
∣∣∣

Each xi in the above equation is taken over all possible elements of Xi. The VC-dimension of
a class C is the largest number d such that GC(d) = 2d.

We will use the following bound, a corollary of the Perles-Sauer-Shelah Lemma, to bound the
runtime of learning cross-products Shalev-Shwartz and Ben-David (2014).

Lemma 19 For any concept class C with VC-dimension d and m > d+ 1:

GC(m) ≤ (em/d)d

23

CAULFIELD SESHIA

Lemma 15: Given the elements x1, . . . , xm described in the paper, |{(c(x1), c(x2), . . . , c(xm)) |
c ∈ C1}| ≤ (em/d)d

Proof By the definition of growth function, |{(c(x1), c(x2), . . . , c(xm)) | c ∈ C1}| ≤ GC1
(m).

By lemma 19, GC1
(m) ≤ (em/d)d.

24

	Introduction
	Sample Application: Program Synthesis by Sketching
	Sample Application: Learning Automata
	Reusing Component Algorithms

	Notation
	Simple Lower Bound
	Learning From Membership Queries and One Positive Example
	Learning From Only Membership Queries
	Learning from Equivalence or Subset Queries is Hard
	Related Work on Modularity
	Conclusion
	Automata Learning
	Easy Results
	Learning From Membership Queries and One Positive Example
	Learning From Only Membership Queries
	Learning From Equivalence and Subset Queries is Hard
	PAC Learning
	PAC-learning Background
	PAC-Learning Cross-Products
	Efficient PAC-learning with Membership Queries

